Publications by authors named "Vilmundur Gudnason"

585 Publications

The trans-ancestral genomic architecture of glycemic traits.

Nat Genet 2021 Jun 31;53(6):840-860. Epub 2021 May 31.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00852-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610958PMC
June 2021

[Prevalence and incidence of type 2 diabetes in Iceland 2005-2018].

Laeknabladid 2021 May;107(5):227-233

Icelandic Heart Association, University of Iceland.

Introduction: The number of people with type 2 diabetes has increased in Iceland in the last few decades. We utilized the national database on prescribed medication from the Directorate of Health to estimate the prevalence and incidence of type 2 diabetes in Iceland and made prediction on the prevalence of type 2 diabetes in Iceland in 10 and 20 years.

Material And Methods: Prevalence and incidence of type 2 diabetes for the period 2005-2018 was estimated based on prescriptions of diabetes medication in the national prescription database containing all prescriptions in Iceland during the period. The result was compared to the result from the REFINE-Reykjavik study (prospective, population-based cohort study) from 2004 to 2011 and published data from the USA from 1980 to 2016.

Results: The prevalence of type 2 diabetes more than doubled in near all age groups in both men and women in the period 2005-2018. The incidence increased by 2.8% annually (in 18-79 years old). The number of people in Iceland with type 2 diabetes was 10600 in 2018 and had increased from 4200 in the year 2005. Comparison with the results of the REFINE-Reykjavik study showed an underestimation (29% in men and women) of the prevalence of type 2 diabetes. If the increase in type 2 diabetes continues at a similar rate as in the years 2005-2018 the number of people with diabetes in Iceland could be near 24000 in the year 2040.

Conclusion: Linear increase was seen in incidence and prevalence of people with type 2 diabetes in the years 2005-2018. Similar evolution was seen in USA from 1984. In order to counteract the increase of type 2 diabetes following the same path as has been seen in the USA, targeted measures are needed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.17992/lbl.2021.05.634DOI Listing
May 2021

Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies.

Nat Commun 2021 04 22;12(1):2329. Epub 2021 Apr 22.

MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK.

The health effects of omega-3 fatty acids have been controversial. Here we report the results of a de novo pooled analysis conducted with data from 17 prospective cohort studies examining the associations between blood omega-3 fatty acid levels and risk for all-cause mortality. Over a median of 16 years of follow-up, 15,720 deaths occurred among 42,466 individuals. We found that, after multivariable adjustment for relevant risk factors, risk for death from all causes was significantly lower (by 15-18%, at least p < 0.003) in the highest vs the lowest quintile for circulating long chain (20-22 carbon) omega-3 fatty acids (eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids). Similar relationships were seen for death from cardiovascular disease, cancer and other causes. No associations were seen with the 18-carbon omega-3, alpha-linolenic acid. These findings suggest that higher circulating levels of marine n-3 PUFA are associated with a lower risk of premature death.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22370-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062567PMC
April 2021

Contributions of Cerebral Blood Flow to Associations Between Blood Pressure Levels and Cognition: The Age, Gene/Environment Susceptibility-Reykjavik Study.

Hypertension 2021 Jun 19;77(6):2075-2083. Epub 2021 Apr 19.

From the Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD (J.E.M., O.M., L.J.L.).

[Figure: see text].
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.16894DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8119347PMC
June 2021

Exploratory assessment of pineal gland volume, composition, and urinary 6-sulfatoxymelatonin levels on prostate cancer risk.

Prostate 2021 Jun 16;81(8):487-496. Epub 2021 Apr 16.

Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.

Introduction: Melatonin levels are partially driven by the parenchyma volume of the pineal gland. Low urinary levels of 6-sulfatoxymelatonin have been associated with increased risk of advanced prostate cancer, but the relationship between pineal gland volume and composition and prostate cancer risk has not been examined.

Materials And Methods: We utilized data from 864 men from the AGES-Reykjavik Study with complete pineal gland volumes and urinary 6-sulfatoxymelatonin measurements. Pineal parenchyma, calcification, and cyst volumes were calculated from brain magnetic resonance imaging. Levels of 6-sulfatoxymelatonin were assayed from prediagnostic urine samples. We calculated Pearson correlation coefficients between parenchyma volume and urinary 6-sulfatoxymelatonin levels. We used Cox proportional hazards regression to calculate multivariable hazard ratios (HRs) and 95% confidence intervals (95% CIs) comparing prostate cancer risk across parenchyma volume tertiles and across categories factoring in parenchyma volume, gland composition, and urinary 6-sulfatoxymelatonin level.

Results: Parenchyma volume was moderately correlated with urinary 6-sulfatoxymelatonin level (r = .24; p < .01). There was no statistically significant association between parenchyma volume tertile and prostate cancer risk. Men with high parenchyma volume, pineal cysts and calcifications, and low urinary 6-sulfatoxymelatonin levels had almost twice the risk of total prostate cancer as men with low parenchyma volume, no pineal calcifications or cysts, and low urinary 6-sulfatoxymelatonin levels (HR: 1.98; 95% CI: 1.02, 3.84; p: .04).

Conclusions: Although parenchyma volume is not associated with prostate cancer risk, pineal gland composition and other circadian dynamics may influence risk for prostate cancer. Additional studies are needed to examine the interplay of pineal gland volume, composition, and melatonin levels on prostate cancer risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.24130DOI Listing
June 2021

Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure.

Mol Psychiatry 2021 Apr 15. Epub 2021 Apr 15.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 P < 5 × 10), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (P < 5 × 10). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (P = 2 × 10). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (P < 10). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-021-01087-0DOI Listing
April 2021

Allele Specific Variation at APOE Increases Non-alcoholic Fatty Liver Disease and Obesity but Decreases Risk of Alzheimer's Disease and Myocardial Infarction.

Hum Mol Genet 2021 Apr 15. Epub 2021 Apr 15.

Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.

Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is highly correlated with metabolic disease. NAFLD results from environmental exposures acting on a susceptible polygenic background. This study performed the largest multiethnic investigation of exonic variation associated with NAFLD and correlated metabolic traits and diseases. An exome array meta-analysis was carried out among eight multiethnic population-based cohorts (n = 16 492) with computed tomography (CT) measured hepatic steatosis. A fixed effects meta-analysis identified five exome-wide significant loci (P < 5.30x10-7); including a novel signal near TOMM40/APOE. Joint analysis of TOMM40/APOE variants revealed the TOMM40 signal was attributed to APOE rs429358-T; APOE rs7412 was not associated with liver attenuation. Moreover, rs429358-T was associated with higher serum alanine aminotransferase, liver steatosis, cirrhosis, triglycerides and obesity; as well as, lower cholesterol and decreased risk of myocardial infarction (MI) and Alzheimer's disease (ad) in phenome-wide association analyses in the Michigan Genomics Initiative, United Kingdom Biobank and/or public datasets. These results implicate APOE in imaging-based identification of NAFLD. This association may or may not translate to non-alcoholic steatohepatitis (NASH); however, these results indicate a significant association with advanced liver disease and hepatic cirrhosis. These findings highlight allelic heterogeneity at the APOE locus and demonstrate an inverse link between NAFLD and ad at the exome level in the largest analysis to date.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab096DOI Listing
April 2021

Serum levels of ACE2 are higher in patients with obesity and diabetes.

Obes Sci Pract 2021 Apr 16;7(2):239-243. Epub 2020 Dec 16.

Icelandic Heart Association Kopavogur Iceland.

Objective: As severity of outcome in COVID-19 is disproportionately higher among individuals with obesity, smokers, patients with hypertension, kidney disease, chronic pulmonary disease, coronary heart disease (CHD), and/or type 2 diabetes (T2D), serum levels of ACE2, the cellular entry point for the coronavirus SARS-CoV-2, were examined in these high-risk groups.

Methods: Associations of ACE2 levels to smokers and patients with hypertension, T2D, obesity, CHD, or COPD were investigated in a single center population-based study of 5457 Icelanders from the Age, Gene/Environment Susceptibility Reykjavík Study (AGES-RS) of the elderly (mean age 75 ± 6 years), using multiple linear regression analysis.

Results: Serum levels of ACE2 were higher in smokers and individuals with T2D and/or obesity while they were unaffected in the other patient groups.

Conclusion: ACE2 levels are higher in some patient groups with comorbidities linked to COVID-19 including obesity and T2D and as such may have an emerging role as a circulating biomarker for severity of outcome in the disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/osp4.472DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019273PMC
April 2021

Sex-specific 25-hydroxyvitamin D threshold concentrations for functional outcomes in older adults: PRoject on Optimal VItamin D in Older adults (PROVIDO).

Am J Clin Nutr 2021 Apr 7. Epub 2021 Apr 7.

California Pacific Medical Center Research Institute, San Francisco, CA, USA.

Background: Threshold serum 25-hydroxyvitamin D [25(OH)D] concentrations for extraskeletal outcomes are uncertain and could differ from recommendations (20-30 ng/mL) for skeletal health.

Objectives: We aimed to identify and validate sex-specific threshold 25(OH)D concentrations for older adults' physical function.

Methods: Using 5 large prospective, population-based studies-Age, Gene/Environment Susceptibility-Reykjavik (n = 4858, Iceland); Health, Aging, and Body Composition (n = 2494, United States); Invecchiare in Chianti (n = 873, Italy); Osteoporotic Fractures in Men (n = 2301, United States); and Study of Osteoporotic Fractures (n = 5862, United States)-we assessed 16,388 community-dwelling adults (10,376 women, 6012 men) aged ≥65 y. We analyzed 25(OH)D concentrations with the primary outcome (incident slow gait: women <0.8 m/s; men <0.825 m/s) and secondary outcomes (gait speed, incident self-reported mobility, and stair climb impairment) at median 3.0-y follow-up. We identified sex-specific 25(OH)D thresholds that best discriminated incident slow gait using machine learning in training data (2/3 cohort-stratified random sample) and validated using the remaining (validation) data and secondary outcomes.

Results: Mean age in the cohorts ranged from 74.4 to 76.5 y in women and from 73.3 to 76.6 y in men. Overall, 1112/6123 women (18.2%) and 494/3937 men (12.5%) experienced incident slow gait, 1098/7011 women (15.7%) and 474/3962 men (12.0%) experienced incident mobility impairment, and 1044/6941 women (15.0%) and 432/3993 men (10.8%) experienced incident stair climb impairment. Slow gait was best discriminated by 25(OH)D <24.0 ng/mL compared with 25(OH)D ≥24.0 ng/mL in women (RR: 1.29; 95% CI: 1.10, 1.50) and 25(OH)D <21.0 ng/mL compared with 25(OH)D ≥21.0 ng/mL in men (RR: 1.43; 95% CI: 1.01, 2.02). Most associations between 25(OH)D and secondary outcomes were modest; estimates were similar between validation and training datasets.

Conclusions: Empirically identified and validated sex-specific threshold 25(OH)D concentrations for physical function for older adults, 24.0 ng/mL for women and 21.0 ng/mL for men, may inform candidate reference concentrations or the design of vitamin D intervention trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqab025DOI Listing
April 2021

Progression of traction bronchiectasis/bronchiolectasis in interstitial lung abnormalities is associated with increased all-cause mortality: Age Gene/Environment Susceptibility-Reykjavik Study.

Eur J Radiol Open 2021 10;8:100334. Epub 2021 Mar 10.

Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.

Purpose: The aim of this study is to assess the role of traction bronchiectasis/bronchiolectasis and its progression as a predictor for early fibrosis in interstitial lung abnormalities (ILA).

Methods: Three hundred twenty-seven ILA participants out of 5764 in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study who had undergone chest CT twice with an interval of approximately five-years were enrolled in this study. Traction bronchiectasis/bronchiolectasis index (TBI) was classified on a four-point scale: 0, ILA without traction bronchiectasis/bronchiolectasis; 1, ILA with bronchiolectasis but without bronchiectasis or architectural distortion; 2, ILA with mild to moderate traction bronchiectasis; 3, ILA and severe traction bronchiectasis and/or honeycombing. Traction bronchiectasis (TB) progression was classified on a five-point scale: 1, Improved; 2, Probably improved; 3, No change; 4, Probably progressed; 5, Progressed. Overall survival (OS) among participants with different TB Progression Score and between the TB progression group and No TB progression group was also investigated. Hazard radio (HR) was estimated with Cox proportional hazards model.

Results: The higher the TBI at baseline, the higher TB Progression Score (P < 0.001). All five participants with TBI = 3 at baseline progressed; 46 (90 %) of 51 participants with TBI = 2 progressed. TB progression was also associated with shorter OS with statistically significant difference (adjusted HR = 1.68, P < 0.001).

Conclusion: TB progression was visualized on chest CT frequently and clearly. It has the potential to be the predictor for poorer prognosis of ILA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejro.2021.100334DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960545PMC
March 2021

Accelerated decline in quadriceps area and Timed Up and Go test performance are associated with hip fracture risk in older adults with impaired kidney function.

Exp Gerontol 2021 07 16;149:111314. Epub 2021 Mar 16.

National Institute on Aging, Intramural Research Program, Laboratory of Epidemiology and Population Sciences, Bethesda, MD, USA.

Objective: This study aimed to examine whether an accelerated decline in quadriceps cross-sectional area (CSA), attenuation (a surrogate of quality), and strength, as well as lower limb muscular function, are associated with hip fractures in older adults with impaired kidney function.

Design: Prospective population-based study.

Setting: Community-dwelling old population in Reykjavik, Iceland.

Subjects: A total of 875 older adults (mean baseline age 76 years) from the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study with impaired kidney function.

Methods: Quadriceps CSA and density were determined using computed tomography (CT), knee extension strength was measured with an isometric dynamometer chair, and muscular function was assessed using the Timed Up and Go (TUG) test. All muscle-related measurements were assessed twice over a mean follow-up of 5.2 years. Data on hip fracture incidence was obtained from medical records during a maximum of 8.4 years of follow-up time.

Results: Fully adjusted cox-proportional hazard regression models showed that a faster decline in quadriceps CSA and TUG test performance were significantly associated with increased hip fracture risk (HR = 1.55, 95% CI = 1.02-2.36, and HR = 1.80, 95% CI = 1.19-2.72, respectively). A faster decrease in quadriceps density and isometric knee extension strength were not associated with fracture risk.

Conclusions: Accelerated decline in CT-derived quadriceps CSA and muscular function, as measured by the TUG test's performance, are predictive of hip fracture risk in older adults with impaired kidney function. TUG test is a simple measure and easily included in routine medical examinations, compared to CT scans, which seems to be useful for identifying a subgroup of individuals with high risk of fracture.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2021.111314DOI Listing
July 2021

Computed tomography-based skeletal muscle and adipose tissue attenuation: Variations by age, sex, and muscle.

Exp Gerontol 2021 07 10;149:111306. Epub 2021 Mar 10.

Laboratory of Epidemiology and Population Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.

Objective: This study aimed to investigate how skeletal muscle attenuation and adipose tissue (AT) attenuation of the quadriceps, hamstrings, paraspinal muscle groups and the psoas muscle vary according to the targeted muscles, sex, and age.

Design: Population-based cross-sectional study.

Setting: Community-dwelling old population in Reykjavik, Iceland.

Subjects: A total of 5331 older adults (42.8% women), aged 66-96 years from the Age, Gene/Environment Susceptibility (AGES)- Reykjavik Study, who participated in the baseline visit (between 2002 and 2006) and had valid thigh and abdominal computed tomography (CT) scans were studied.

Methods: Muscle attenuation and AT attenuation of the quadriceps, hamstrings, paraspinal muscle groups and the psoas muscle were determined using CT. Linear mixed model analysis of variance was performed for each sex, with skeletal muscle or AT attenuation as the dependent variable.

Results: Muscle attenuation decreased, and AT attenuation increased with age in both sexes, and these differences were specific for each muscle, although not in all age groups. Age-related differences in muscle and AT attenuation varied with specific muscle. In general, for both sexes, skeletal muscle attenuation of the hamstrings declined more than average with age. Men and women displayed a different pattern in the age differences in AT attenuation for each muscle.

Conclusions: Our data support the hypotheses that skeletal muscle attenuation decreases, and AT attenuation increases with aging. In addition, our data add new evidence, supporting that age-related differences in skeletal muscle and AT attenuation vary between muscles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2021.111306DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096682PMC
July 2021

Wave Reflection at the Origin of a First-Generation Branch Artery and Target Organ Protection: The AGES-Reykjavik Study.

Hypertension 2021 Apr 10;77(4):1169-1177. Epub 2021 Mar 10.

From the Cardiovascular Engineering, Inc, Norwood, MA (M.A.H., J.D.G., G.F.M.).

[Figure: see text].
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.16696DOI Listing
April 2021

Body weight changes and longitudinal associations with cognitive decline among community-dwelling older adults.

Alzheimers Dement (Amst) 2021 20;13(1):e12163. Epub 2021 Feb 20.

The Icelandic Gerontological Research Center the National University Hospital of Iceland Reykjavik Iceland.

Introduction: We aim to investigate the longitudinal associations between changes in body weight (BW) and declines in cognitive function and risk of mild cognitive impairment (MCI)/dementia among cognitively normal individuals 65 years or older.

Methods: Data from the Age Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik Study) including 2620 participants, were examined using multiple logistic regression models. Cognitive function included speed of processing (SP), executive function (EF), and memory function (MF). Changes in BW were classified as; weight loss (WL), weight gain (WG), and stable weight (SW).

Results: Mean follow-up time was 5.2 years and 61.3% were stable weight. Participants who experienced WL (13.4%) were significantly more likely to have declines in MF and SP compared to the SW group. Weight changes were not associated with EF. WL was associated with a higher risk of MCI, while WG (25.3%) was associated with a higher dementia risk, when compared to SW.

Discussion: Significant BW changes in older adulthood may indicate impending changes in cognitive function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dad2.12163DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896555PMC
February 2021

Copeptin is associated with mortality in elderly people.

Eur J Clin Invest 2021 Feb 11:e13516. Epub 2021 Feb 11.

Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.

Background: Elevated copeptin, a marker for vasopressin release, has been associated with impaired prognosis in acute myocardial infarction (MI). The aim was to investigate whether this association extends beyond the acute phase and whether it is related to markers of stress (cortisol) and heart failure (NTproBNP).

Methods: Copeptin, cortisol and NTproBNP were measured in 926 participants (age: 76.0; male: 48.5%) in the ICELAND MI study whereof 246 had a previous MI (91 recognizable (RMI) and 155 previously unrecognizable (UMI) detected by cardiac magnetic resonance imaging). The primary endpoint was cardiovascular events (CVEs), and secondary endpoints were total mortality, heart failure and MI (median follow-up was 9.1 years). The relation between copeptin and prognosis was assessed with the Cox proportional hazard regression (unadjusted, adjusted for cortisol and NTproBNP, respectively, and a multiple model: copeptin, cortisol, NTproBNP, age, sex, serum creatinine, heart failure).

Results: Copeptin was higher in participants with MI (8.9 vs. 6.4 pmol/L; P < .01), with no difference between RMI vs. UMI. Increased copeptin correlated with evening cortisol (r = .11; P < .01) and NTproBNP (r = .07; P = .04). Copeptin was associated with CVE and total mortality after adjusting for cortisol and NTproBNP separately, and remained significantly associated with total mortality in the multiple model.

Conclusions: Copeptin was higher in subjects with previous MI regardless whether previously recognized or not. Copeptin correlated weakly with cortisol and NTproBNP, and was independently associated with total mortality. This indicates that the prognostic implications of copeptin are not only mediated by heart failure or stress, supporting the assumption that copeptin is a marker of general vulnerability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/eci.13516DOI Listing
February 2021

Genome-wide association study of circulating interleukin 6 levels identifies novel loci.

Hum Mol Genet 2021 Apr;30(5):393-409

Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK.

Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098112PMC
April 2021

Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability.

Nat Commun 2021 01 5;12(1):24. Epub 2021 Jan 5.

Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA.

Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19366-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785747PMC
January 2021

The genetics of circulating BDNF: towards understanding the role of BDNF in brain structure and function in middle and old ages.

Brain Commun 2020 28;2(2):fcaa176. Epub 2020 Oct 28.

Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA.

Brain-derived neurotrophic factor (BDNF) plays an important role in brain development and function. Substantial amounts of BDNF are present in peripheral blood, and may serve as biomarkers for Alzheimer's disease incidence as well as targets for intervention to reduce Alzheimer's disease risk. With the exception of the genetic polymorphism in the gene, Val66Met, which has been extensively studied with regard to neurodegenerative diseases, the genetic variation that influences circulating BDNF levels is unknown. We aimed to explore the genetic determinants of circulating BDNF levels in order to clarify its mechanistic involvement in brain structure and function and Alzheimer's disease pathophysiology in middle-aged and old adults. Thus, we conducted a meta-analysis of genome-wide association study of circulating BDNF in 11 785 middle- and old-aged individuals of European ancestry from the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES), the Framingham Heart Study (FHS), the Rotterdam Study and the Study of Health in Pomerania (SHIP-Trend). Furthermore, we performed functional annotation analysis and related the genetic polymorphism influencing circulating BDNF to common Alzheimer's disease pathologies from brain autopsies. Mendelian randomization was conducted to examine the possible causal role of circulating BDNF levels with various phenotypes including cognitive function, stroke, diabetes, cardiovascular disease, physical activity and diet patterns. Gene interaction networks analysis was also performed. The estimated heritability of BDNF levels was 30% (standard error = 0.0246, -value = 4 × 10). We identified seven novel independent loci mapped near the gene and in , , , (two single-nucleotide polymorphisms) and . The expression of was associated with neurofibrillary tangles in brain tissues from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP). Seven additional genes (, , , , , and ) were identified through expression and protein quantitative trait loci analyses. Mendelian randomization analyses indicated a potential causal role of BDNF in cardioembolism. Lastly, Ingenuity Pathway Analysis placed circulating BDNF levels in four major networks. Our study provides novel insights into genes and molecular pathways associated with circulating BDNF levels and highlights the possible involvement of plaque instability as an underlying mechanism linking BDNF with brain neurodegeneration. These findings provide a foundation for a better understanding of BDNF regulation and function in the context of brain aging and neurodegenerative pathophysiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/braincomms/fcaa176DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734441PMC
October 2020

Serum FSH Is Associated With BMD, Bone Marrow Adiposity, and Body Composition in the AGES-Reykjavik Study of Older Adults.

J Clin Endocrinol Metab 2021 Mar;106(3):e1156-e1169

Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.

Context: Follicle-stimulating hormone (FSH) concentrations increase during the perimenopausal transition and remain high after menopause. Loss of bone mineral density (BMD) and gain of bone marrow adiposity (BMA) and body fat mass also occur during this time. In mice, blocking the action of FSH increases bone mass and decreases fat mass.

Objective: To investigate the associations between endogenous FSH levels and BMD, BMA, and body composition in older adults, independent of estradiol and testosterone levels.

Design, Setting, And Participants: Older adults from the AGES-Reykjavik Study, an observational cohort study.

Main Outcome Measures: Areal BMD, total body fat, and lean mass were measured with dual-energy x-ray absorptiometry. Lumbar vertebral BMA was measured by 1H-magnetic resonance spectroscopy. Volumetric BMD and visceral and subcutaneous adipose tissue (VAT, SAT) areas were measured with quantitative computed tomography. The least squares means procedure was used to determine sex hormone-adjusted associations between quartiles of serum FSH and BMD, BMA, and body composition.

Results: In women (N = 238, mean age 81 years), those in the highest FSH quartile, compared with the lowest quartile, had lower adjusted mean spine integral BMD (-8.6%), lower spine compressive strength index (-34.8%), higher BMA (+8.4%), lower weight (-8.4%), lower VAT (-17.6%), lower lean mass (-6.1%), and lower fat mass (-11.9%) (all P < 0.05). In men, FSH level was not associated with any outcome.

Conclusions: Older postmenopausal women with higher FSH levels have higher BMA, but lower BMD and lower fat and lean mass, independent of estradiol and testosterone levels. Longitudinal studies are needed to better understand the underlying mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/clinem/dgaa922DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947831PMC
March 2021

A New Panel-Estimated GFR, Including β-Microglobulin and β-Trace Protein and Not Including Race, Developed in a Diverse Population.

Am J Kidney Dis 2021 05 7;77(5):673-683.e1. Epub 2020 Dec 7.

Division of Nephrology, Tufts Medical Center; Tufts Clinical and Translational Science Institute, Tufts University, Boston, MA.

Rationale And Objective: Glomerular filtration rate (GFR) estimation based on creatinine and cystatin C (eGFR) is more accurate than estimated GFR (eGFR) based on creatinine or cystatin C alone (eGFR or eGFR, respectively), but the inclusion of creatinine in eGFR requires specification of a person's race. β-Microglobulin (B2M) and β-trace protein (BTP) are alternative filtration markers that appear to be less influenced by race than creatinine is.

Study Design: Study of diagnostic test accuracy.

Setting And Participants: Development in a pooled population of 7 studies with 5,017 participants with and without chronic kidney disease. External validation in a pooled population of 7 other studies with 2,245 participants.

Tests Compared: Panel eGFR using B2M and BTP in addition to cystatin C (3-marker panel) or creatinine and cystatin C (4-marker panel) with and without age and sex or race.

Outcomes: GFR measured as the urinary clearance of iothalamate, plasma clearance of iohexol, or plasma clearance of [Cr]EDTA.

Results: Mean measured GFRs were 58.1 and 83.2 mL/min/1.73 m, and the proportions of Black participants were 38.6% and 24.0%, in the development and validation populations, respectively. In development, addition of age and sex improved the performance of all equations compared with equations without age and sex, but addition of race did not further improve the performance. In validation, the 4-marker panels were more accurate than the 3-marker panels (P < 0.001). The 3-marker panel without race was more accurate than eGFR (percentage of estimates greater than 30% different from measured GFR [1 - P] of 15.6% vs 17.4%; P = 0.01), and the 4-marker panel without race was as accurate as eGFR (1 - P of 8.6% vs 9.4%; P = 0.2). Results were generally consistent across subgroups.

Limitations: No representation of participants with severe comorbid illness and from geographic areas outside of North America and Europe.

Conclusions: The 4-marker panel eGFR is as accurate as eGFR without requiring specification of race. A more accurate race-free eGFR could be an important advance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.ajkd.2020.11.005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102017PMC
May 2021

Cerebral small vessel disease genomics and its implications across the lifespan.

Nat Commun 2020 12 8;11(1):6285. Epub 2020 Dec 8.

University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.

White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19111-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722866PMC
December 2020

A Noncoding Variant Near PPP1R3B Promotes Liver Glycogen Storage and MetS, but Protects Against Myocardial Infarction.

J Clin Endocrinol Metab 2021 Jan;106(2):372-387

Brigham and Women's Hospital, Havard University, Boston, MA, USA.

Context: Glycogen storage diseases are rare. Increased glycogen in the liver results in increased attenuation.

Objective: Investigate the association and function of a noncoding region associated with liver attenuation but not histologic nonalcoholic fatty liver disease.

Design: Genetics of Obesity-associated Liver Disease Consortium.

Setting: Population-based.

Main Outcome: Computed tomography measured liver attenuation.

Results: Carriers of rs4841132-A (frequency 2%-19%) do not show increased hepatic steatosis; they have increased liver attenuation indicative of increased glycogen deposition. rs4841132 falls in a noncoding RNA LOC157273 ~190 kb upstream of PPP1R3B. We demonstrate that rs4841132-A increases PPP1R3B through a cis genetic effect. Using CRISPR/Cas9 we engineered a 105-bp deletion including rs4841132-A in human hepatocarcinoma cells that increases PPP1R3B, decreases LOC157273, and increases glycogen perfectly mirroring the human disease. Overexpression of PPP1R3B or knockdown of LOC157273 increased glycogen but did not result in decreased LOC157273 or increased PPP1R3B, respectively, suggesting that the effects may not all occur via affecting RNA levels. Based on electronic health record (EHR) data, rs4841132-A associates with all components of the metabolic syndrome (MetS). However, rs4841132-A associated with decreased low-density lipoprotein (LDL) cholesterol and risk for myocardial infarction (MI). A metabolic signature for rs4841132-A includes increased glycine, lactate, triglycerides, and decreased acetoacetate and beta-hydroxybutyrate.

Conclusions: These results show that rs4841132-A promotes a hepatic glycogen storage disease by increasing PPP1R3B and decreasing LOC157273. rs4841132-A promotes glycogen accumulation and development of MetS but lowers LDL cholesterol and risk for MI. These results suggest that elevated hepatic glycogen is one cause of MetS that does not invariably promote MI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/clinem/dgaa855DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823249PMC
January 2021

Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals.

Nat Genet 2020 12 23;52(12):1314-1332. Epub 2020 Nov 23.

Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00713-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610439PMC
December 2020

Genetic loci associated with prevalent and incident myocardial infarction and coronary heart disease in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.

PLoS One 2020 13;15(11):e0230035. Epub 2020 Nov 13.

The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America.

Background: Genome-wide association studies have identified multiple genomic loci associated with coronary artery disease, but most are common variants in non-coding regions that provide limited information on causal genes and etiology of the disease. To overcome the limited scope that common variants provide, we focused our investigation on low-frequency and rare sequence variations primarily residing in coding regions of the genome.

Methods And Results: Using samples of individuals of European ancestry from ten cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, both cross-sectional and prospective analyses were conducted to examine associations between genetic variants and myocardial infarction (MI), coronary heart disease (CHD), and all-cause mortality following these events. For prevalent events, a total of 27,349 participants of European ancestry, including 1831 prevalent MI cases and 2518 prevalent CHD cases were used. For incident cases, a total of 55,736 participants of European ancestry were included (3,031 incident MI cases and 5,425 incident CHD cases). There were 1,860 all-cause deaths among the 3,751 MI and CHD cases from six cohorts that contributed to the analysis of all-cause mortality. Single variant and gene-based analyses were performed separately in each cohort and then meta-analyzed for each outcome. A low-frequency intronic variant (rs988583) in PLCL1 was significantly associated with prevalent MI (OR = 1.80, 95% confidence interval: 1.43, 2.27; P = 7.12 × 10-7). We conducted gene-based burden tests for genes with a cumulative minor allele count (cMAC) ≥ 5 and variants with minor allele frequency (MAF) < 5%. TMPRSS5 and LDLRAD1 were significantly associated with prevalent MI and CHD, respectively, and RC3H2 and ANGPTL4 were significantly associated with incident MI and CHD, respectively. No loci were significantly associated with all-cause mortality following a MI or CHD event.

Conclusion: This study identified one known locus (ANGPTL4) and four new loci (PLCL1, RC3H2, TMPRSS5, and LDLRAD1) associated with cardiovascular disease risk that warrant further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230035PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665790PMC
December 2020

It's in Our Blood: A Glimpse of Personalized Medicine.

Trends Mol Med 2021 01 25;27(1):20-30. Epub 2020 Sep 25.

Icelandic Heart Association, IS-201 Kopavogur, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland. Electronic address:

Recent advances in protein profiling technology has facilitated simultaneous measurement of thousands of proteins in large population studies, exposing the depth and complexity of the plasma and serum proteomes. This revealed that proteins in circulation were organized into regulatory modules under genetic control and closely associated with current and future common diseases. Unlike networks in solid tissues, serum protein networks comprise members synthesized across different tissues of the body. Genetic analysis reveals that this cross-tissue regulation of the serum proteome participates in systemic homeostasis and mirrors the global disease state of individuals. Here, we discuss how application of this information in routine clinical evaluations may transform the future practice of medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molmed.2020.09.003DOI Listing
January 2021

Association of common genetic variants with brain microbleeds: A genome-wide association study.

Neurology 2020 12 10;95(24):e3331-e3343. Epub 2020 Sep 10.

From the Departments of Epidemiology (M.J.K., H.H.H.A., D.V., S.J.v.d.L., P.Y., M.W.V., N.A., C.M.v.D., M.A.I.), Radiology and Nuclear Medicine (H.H.H.A., P.Y., A.v.d.L., M.W.V.), and Clinical Genetics (H.H.H.A.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Stroke Research Group, Department of Clinical Neurosciences (D.L., M.T., J.L., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (J.R.J.R., C.L.S., J.J.H., A.S.B., C.D., S. Seshadri), Boston University School of Medicine; The Framingham Heart Study (J.R.J.R., C.L.S., J.J.H., A.S.B., S. Seshadri), MA; Department of Biostatistics (A.V.S.), University of Michigan, Ann Arbor; Icelandic Heart Association (A.V.S., S. Sigurdsson, V.G.), Kopavogur, Iceland; Brown Foundation Institute of Molecular Medicine, McGovern Medical School (M.F.), and Human Genetics Center, School of Public Health (M.F.), University of Texas Health Science Center at Houston; Clinical Division of Neurogeriatrics, Department of Neurology (E.H., L.P., R.S.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry (Y.S., H.S.), Medical University of Graz, Austria; Center of Cerebrovascular Diseases, Department of Neurology (J.L.), West China Hospital, Sichuan University, Chengdu; Stroke Research Centre, Queen Square Institute of Neurology (I.C.H., D.W., H.H., D.J.W.), University College London, UK; Department of Neurosurgery (I.C.H.), Klinikum rechts der Isar, University of Munich, Germany; Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology (M.L., D.C.M.L., M.E.B., I.J.D., J.M.W.), and Centre for Clinical Brain Sciences, Edinburgh Imaging, UK Dementia Research Institute (M.E.B., J.M.W.), University of Edinburgh, UK; Department of Internal Medicine, Section of Gerontology and Geriatrics (S.T.), Department of Cardiology (S.T., J.v.d.G., J.W.J.), Section of Molecular Epidemiology, Biomedical Data Sciences (E.B.v.d.A., M.B., P.E.S.), Leiden Computational Biology Center, Biomedical Data Sciences (E.B.v.d.A.), Department of Radiology (J.v.d.G.), and Einthoven Laboratory for Experimental Vascular Medicine (J.W.J.), Leiden University Medical Center, the Netherlands; Department of Neurology (A.-K.G., N.S.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Memory Aging and Cognition Center (S.H., C.C.), National University Health System, Singapore; Department of Pharmacology (S.H., C.C.) and Saw Swee Hock School of Public Health (S.H.), National University of Singapore and National University Health System, Singapore; Pattern Recognition & Bioinformatics (E.B.v.d.A.), Delft University of Technology, the Netherlands; Department of Biostatistics (S.L., J.J.H., Q.Y., A.S.B.), Boston University School of Public Health, MA; Department of Radiology (C.R.J., K.K.), Mayo Clinic, Rochester, MN; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., S. Seshadri), UT Health San Antonio, TX; Department of Medicine, Division of Geriatrics (B.G.W., T.H.M), and Memory Impairment and Neurodegenerative Dementia (MIND) Center (T.H.M.), University of Mississippi Medical Center, Jackson; Singapore Eye Research Institute (C.Y.C., J.Y.K., T.Y.W.); Department of Neuroradiology (Z.M., J.M.W.), NHS Lothian, Edinburgh; Institute of Cardiovascular and Medical Sciences (D.J.S.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Division of Cerebrovascular Neurology (R.F.G.), Johns Hopkins University, Baltimore, MD; Department of Neuroradiology (A.D.M.), Atkinson Morley Neurosciences Centre, St George's NHS Foundation Trust, London, UK; Department of Neurology (C.D.), University of California at Davis; Nuffield Department of Population Health (C.M.v.D.), University of Oxford, UK; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, Baltimore, MD; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik, Iceland.

Objective: To identify common genetic variants associated with the presence of brain microbleeds (BMBs).

Methods: We performed genome-wide association studies in 11 population-based cohort studies and 3 case-control or case-only stroke cohorts. Genotypes were imputed to the Haplotype Reference Consortium or 1000 Genomes reference panel. BMBs were rated on susceptibility-weighted or T2*-weighted gradient echo MRI sequences, and further classified as lobar or mixed (including strictly deep and infratentorial, possibly with lobar BMB). In a subset, we assessed the effects of ε2 and ε4 alleles on BMB counts. We also related previously identified cerebral small vessel disease variants to BMBs.

Results: BMBs were detected in 3,556 of the 25,862 participants, of which 2,179 were strictly lobar and 1,293 mixed. One locus in the region reached genome-wide significance for its association with BMB (lead rs769449; odds ratio [OR] [95% confidence interval (CI)] 1.33 [1.21-1.45]; = 2.5 × 10). ε4 alleles were associated with strictly lobar (OR [95% CI] 1.34 [1.19-1.50]; = 1.0 × 10) but not with mixed BMB counts (OR [95% CI] 1.04 [0.86-1.25]; = 0.68). ε2 alleles did not show associations with BMB counts. Variants previously related to deep intracerebral hemorrhage and lacunar stroke, and a risk score of cerebral white matter hyperintensity variants, were associated with BMB.

Conclusions: Genetic variants in the region are associated with the presence of BMB, most likely due to the ε4 allele count related to a higher number of strictly lobar BMBs. Genetic predisposition to small vessel disease confers risk of BMB, indicating genetic overlap with other cerebral small vessel disease markers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000010852DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836652PMC
December 2020

Associations of ω-3 Fatty Acids With Interstitial Lung Disease and Lung Imaging Abnormalities Among Adults.

Am J Epidemiol 2021 01;190(1):95-108

Docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid, attenuates interstitial lung disease (ILD) in experimental models, but human studies are lacking. We examined associations of circulating levels of DHA and other polyunsaturated fatty acids with hospitalization and death due to ILD over 12 years in the Multi-Ethnic Study of Atherosclerosis (MESA; n = 6,573). We examined cross-sectional associations with CT lung abnormalities in MESA (2000-2012; n = 6,541), the Framingham Heart Study (2005-2011; n = 3,917), and the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik) (2002-2006; n = 1,106). Polyunsaturated fatty acid levels were determined from fasting blood samples and extracted from plasma phospholipids (MESA and AGES-Reykjavik) or red blood cell membranes (Framingham Heart Study). Higher DHA levels were associated with a lower risk of hospitalization due to ILD (per standard-deviation increment, adjusted rate ratio = 0.69, 95% confidence interval (CI): 0.48, 0.99) and a lower rate of death due to ILD (per standard-deviation increment, adjusted hazard ratio = 0.68, 95% CI: 0.47, 0.98). Higher DHA was associated with fewer interstitial lung abnormalities on computed tomography (per natural log increment, pooled adjusted odds ratio = 0.65, 95% CI: 0.46, 0.91). Higher DHA levels were associated with a lower risk of hospitalization and death due to ILD and fewer lung abnormalities on computed tomography in a meta-analysis of data from population-based cohort studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/aje/kwaa168DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784523PMC
January 2021