Publications by authors named "Victoria E Jackson"

20 Publications

  • Page 1 of 1

A systematic analysis of protein-altering exonic variants in chronic obstructive pulmonary disease.

Am J Physiol Lung Cell Mol Physiol 2021 07 28;321(1):L130-L143. Epub 2021 Apr 28.

Department of Health Sciences, University of Leicester, Leicester, United Kingdom.

Genome-wide association studies (GWASs) have identified regions associated with chronic obstructive pulmonary disease (COPD). GWASs of other diseases have shown an approximately 10-fold overrepresentation of nonsynonymous variants, despite limited exonic coverage on genotyping arrays. We hypothesized that a large-scale analysis of coding variants could discover novel genetic associations with COPD, including rare variants with large effect sizes. We performed a meta-analysis of exome arrays from 218,399 controls and 33,851 moderate-to-severe COPD cases. All exome-wide significant associations were present in regions previously identified by GWAS. We did not identify any novel rare coding variants with large effect sizes. Within GWAS regions on chromosomes 5q, 6p, and 15q, four coding variants were conditionally significant ( < 0.00015) when adjusting for lead GWAS single-nucleotide polymorphisms A common gasdermin B () splice variant (rs11078928) previously associated with a decreased risk for asthma was nominally associated with a decreased risk for COPD [minor allele frequency (MAF) = 0.46, = 1.8e-4]. Two stop variants in coiled-coil α-helical rod protein 1 (), a gene involved in regulating cell proliferation, were associated with COPD (both < 0.0001). The Z allele was associated with a random-effects odds ratio of 1.43 for COPD (95% confidence interval = 1.17-1.74), though with marked heterogeneity across studies. Overall, COPD-associated exonic variants were identified in genes involved in DNA methylation, cell-matrix interactions, cell proliferation, and cell death. In conclusion, we performed the largest exome array meta-analysis of COPD to date and identified potential functional coding variants. Future studies are needed to identify rarer variants and further define the role of coding variants in COPD pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00009.2021DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321852PMC
July 2021

Identification of genetic factors influencing metabolic dysregulation and retinal support for MacTel, a retinal disorder.

Commun Biol 2021 03 2;4(1):274. Epub 2021 Mar 2.

Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.

Macular Telangiectasia Type 2 (MacTel) is a rare degenerative retinal disease with complex genetic architecture. We performed a genome-wide association study on 1,067 MacTel patients and 3,799 controls, which identified eight novel genome-wide significant loci (p < 5 × 10), and confirmed all three previously reported loci. Using MAGMA, eQTL and transcriptome-wide association analysis, we prioritised 48 genes implicated in serine-glycine biosynthesis, metabolite transport, and retinal vasculature and thickness. Mendelian randomization indicated a likely causative role of serine (FDR = 3.9 × 10) and glycine depletion (FDR = 0.006) as well as alanine abundance (FDR = 0.009). Polygenic risk scoring achieved an accuracy of 0.74 and was associated in UKBiobank with retinal damage (p = 0.009). This represents the largest genetic study on MacTel to date and further highlights genetically-induced systemic and tissue-specific metabolic dysregulation in MacTel patients, which impinges on retinal health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-021-01788-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925591PMC
March 2021

A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction.

Nat Commun 2020 06 19;11(1):3150. Epub 2020 Jun 19.

The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.

MLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, Mlkl, that alters the two-helix 'brace' that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL. Homozygous mutant mice develop lethal postnatal inflammation of the salivary glands and mediastinum. The normal embryonic development of Mlkl homozygotes until birth, and the absence of any overt phenotype in heterozygotes provides important in vivo precedent for the capacity of cells to clear activated MLKL. These observations offer an important insight into the potential disease-modulating roles of three common human MLKL polymorphisms that encode amino acid substitutions within or adjacent to the brace region. Compound heterozygosity of these variants is found at up to 12-fold the expected frequency in patients that suffer from a pediatric autoinflammatory disease, chronic recurrent multifocal osteomyelitis (CRMO).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-16819-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305203PMC
June 2020

Severe childhood speech disorder: Gene discovery highlights transcriptional dysregulation.

Neurology 2020 05 28;94(20):e2148-e2167. Epub 2020 Apr 28.

From the Department of Medicine (M.S.H., M.C., K.A.R., I.E.S.), The University of Melbourne, Austin Health, Heidelberg; Population Health and Immunity Division (V.E.J., T.S.S., M.B.), The Walter and Eliza Hall Institute of Medical Research; Departments of Medical Biology (V.E.J., T.S.S., M.B.) and Audiology and Speech Pathology (R.O.B., A.T.M.) and Department of Paediatrics, The Royal Children's Hospital (B.P.-F., G.P., M.H., D.J.A., I.E.S.), The University of Melbourne; Speech and Language (O.V.R., R.O.B., S.T., S.B., S.R., A.T.M.), Murdoch Children's Research Institute (M.S.H., D.J.A., I.E.S.); Victorian Clinical Genetics Services (A. Boys, M.D.), Parkville, Victoria; Department of Neurology (R.W.) and Clinical Genetics (A.M.), The Children's Hospital Westmead; Department of Paediatrics (M.F., K.S.), Monash University; Monash Children's Hospital (K.S.), Clayton, Victoria; The Wesley Hospital (D.C.), Auchenflower, Queensland; Hunter Genetics (H.G., A. Baxter), John Hunter Hospital, New Lambton Heights; Melbourne Children's Clinic (N.D.), Victoria; Griffith University (S.R.), Mount Gravatt, Queensland, Australia; UCL Great Ormond Street Institute of Child Health (F.J.L.), London, UK; Florey Institute of Neuroscience and Mental Health (A.C., I.E.S.), Parkville, Victoria; South Australian Health and Medical Research Institute (J.G.), Robinson Research Institute and Adelaide Medical School, University of Adelaide, South Australia; Language and Genetics Department (S.E.F.), Max Planck Institute for Psycholinguistics; and Donders Institute for Brain, Cognition and Behaviour (S.E.F.), Radboud University, Nijmegen, the Netherlands.

Objective: Determining the genetic basis of speech disorders provides insight into the neurobiology of human communication. Despite intensive investigation over the past 2 decades, the etiology of most speech disorders in children remains unexplained. To test the hypothesis that speech disorders have a genetic etiology, we performed genetic analysis of children with severe speech disorder, specifically childhood apraxia of speech (CAS).

Methods: Precise phenotyping together with research genome or exome analysis were performed on children referred with a primary diagnosis of CAS. Gene coexpression and gene set enrichment analyses were conducted on high-confidence gene candidates.

Results: Thirty-four probands ascertained for CAS were studied. In 11/34 (32%) probands, we identified highly plausible pathogenic single nucleotide (n = 10; , , , , , , , , , ) or copy number (n = 1; 5q14.3q21.1 locus) variants in novel genes or loci for CAS. Testing of parental DNA was available for 9 probands and confirmed that the variants had arisen de novo. Eight genes encode proteins critical for regulation of gene transcription, and analyses of transcriptomic data found CAS-implicated genes were highly coexpressed in the developing human brain.

Conclusion: We identify the likely genetic etiology in 11 patients with CAS and implicate 9 genes for the first time. We find that CAS is often a sporadic monogenic disorder, and highly genetically heterogeneous. Highly penetrant variants implicate shared pathways in broad transcriptional regulation, highlighting the key role of transcriptional regulation in normal speech development. CAS is a distinctive, socially debilitating clinical disorder, and understanding its molecular basis is the first step towards identifying precision medicine approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000009441DOI Listing
May 2020

Recessive variants in ZNF142 cause a complex neurodevelopmental disorder with intellectual disability, speech impairment, seizures, and dystonia.

Genet Med 2019 11 30;21(11):2532-2542. Epub 2019 Apr 30.

Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.

Purpose: The purpose of this study was to expand the genetic architecture of neurodevelopmental disorders, and to characterize the clinical features of a novel cohort of affected individuals with variants in ZNF142, a CH domain-containing transcription factor.

Methods: Four independent research centers used exome sequencing to elucidate the genetic basis of neurodevelopmental phenotypes in four unrelated families. Following bioinformatic filtering, query of control data sets, and secondary variant confirmation, we aggregated findings using an online data sharing platform. We performed in-depth clinical phenotyping in all affected individuals.

Results: We identified seven affected females in four pedigrees with likely pathogenic variants in ZNF142 that segregate with recessive disease. Affected cases in three families harbor either nonsense or frameshifting likely pathogenic variants predicted to undergo nonsense mediated decay. One additional trio bears ultrarare missense variants in conserved regions of ZNF142 that are predicted to be damaging to protein function. We performed clinical comparisons across our cohort and noted consistent presence of intellectual disability and speech impairment, with variable manifestation of seizures, tremor, and dystonia.

Conclusion: Our aggregate data support a role for ZNF142 in nervous system development and add to the emergent list of zinc finger proteins that contribute to neurocognitive disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-019-0523-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821592PMC
November 2019

Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations.

Nat Genet 2019 03 25;51(3):494-505. Epub 2019 Feb 25.

Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon, South Korea.

Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci associated with P < 5 × 10; 47 of these were previously described in association with either COPD or population-based measures of lung function. Of the remaining 35 new loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified functional enrichment of COPD risk loci in lung tissue, smooth muscle, and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups based on associations with quantitative imaging features and comorbidities. Our analyses provide further support for the genetic susceptibility and heterogeneity of COPD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0342-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546635PMC
March 2019

New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries.

Nat Genet 2019 03 25;51(3):481-493. Epub 2019 Feb 25.

Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.

Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0321-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397078PMC
March 2019

Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci.

Mol Psychiatry 2020 10 7;25(10):2392-2409. Epub 2019 Jan 7.

Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands.

Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-018-0313-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515840PMC
October 2020

Meta-analysis of exome array data identifies six novel genetic loci for lung function.

Wellcome Open Res 2018 12;3. Epub 2018 Jan 12.

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27514, USA.

Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV ), forced vital capacity (FVC) and the ratio of FEV to FVC (FEV /FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. We identified significant (P<2·8x10 ) associations with six SNPs: a nonsynonymous variant in , which is predicted to be damaging, three intronic SNPs ( and ) and two intergenic SNPs near to and Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including and . Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12688/wellcomeopenres.12583.3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6081985PMC
January 2018

Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function.

Nat Commun 2018 07 30;9(1):2976. Epub 2018 Jul 30.

University of California Los Angeles, Los Angeles, CA, 90095, USA.

Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of lung function and clinical relevance of implicated loci.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-05369-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6065313PMC
July 2018

Structured physical assessment of arteriovenous fistulae in haemodialysis access surveillance: A missed opportunity?

J Vasc Access 2018 May 18;19(3):221-229. Epub 2018 Mar 18.

1 Manchester Academic Health Science Centre (MAHSC), The University of Manchester, Manchester, UK.

Introduction: Arteriovenous fistulae remain the gold standard of vascular access in haemodialysis. There is currently no consensus on standardised methods of monitoring arteriovenous fistulae. Assessment techniques and practice remain widely variable. The purpose of this study is to determine whether existing evidence supports physical assessment as an effective tool and a good predictor of arteriovenous fistulae dysfunction to allow for timely intervention and improve outcomes.

Methods: A literature search was performed using CINAHL, PubMed, Medline and BNI databases and relevant search terms. Studies included were peer-reviewed, published after 2008, in English and related to arteriovenous fistulae only. Six key papers were identified and critically analysed for validity and relevance, in relation to outcomes, assessor experience, training duration and nurses' ability to perform physical assessment.

Results: Physical assessment has been shown to be effective in detecting arteriovenous fistulae dysfunction and comparable to technology-based surveillance. Physical assessment techniques generally adopt a 'look, listen and feel' approach to identify arteriovenous fistulae dysfunction that includes stenosis, thrombosis, ischaemia and infections. Physical assessment is a skill that can be taught with studies showing that skill-specific training is more effective than experience alone. Cost-effectiveness analysis is lacking.

Conclusion: The analysis of evidence demonstrates that physical assessment of arteriovenous fistulae is an effective method of detecting arteriovenous fistulae dysfunction and is a skill that can be taught. A structured physical assessment and its implementation may be significant in routine care, but research into the most effective physical assessment techniques and its impact on clinical practice in haemodialysis is required.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1129729817751867DOI Listing
May 2018

Phenotypic and pharmacogenetic evaluation of patients with thiazide-induced hyponatremia.

J Clin Invest 2017 Sep 7;127(9):3367-3374. Epub 2017 Aug 7.

Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, United Kingdom.

Thiazide diuretics are among the most widely used treatments for hypertension, but thiazide-induced hyponatremia (TIH), a clinically significant adverse effect, is poorly understood. Here, we have studied the phenotypic and genetic characteristics of patients hospitalized with TIH. In a cohort of 109 TIH patients, those with severe TIH displayed an extended phenotype of intravascular volume expansion, increased free water reabsorption, urinary prostaglandin E2 excretion, and reduced excretion of serum chloride, magnesium, zinc, and antidiuretic hormone. GWAS in a separate cohort of 48 TIH patients and 2,922 controls from the 1958 British birth cohort identified an additional 14 regions associated with TIH. We identified a suggestive association with a variant in SLCO2A1, which encodes a prostaglandin transporter in the distal nephron. Resequencing of SLCO2A1 revealed a nonsynonymous variant, rs34550074 (p.A396T), and association with this SNP was replicated in a second cohort of TIH cases. TIH patients with the p.A396T variant demonstrated increased urinary excretion of prostaglandin E2 and metabolites. Moreover, the SLCO2A1 phospho-mimic p.A396E showed loss of transporter function in vitro. These findings indicate that the phenotype of TIH involves a more extensive metabolic derangement than previously recognized. We propose one mechanism underlying TIH development in a subgroup of patients in which SLCO2A1 regulation is altered.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI89812DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669583PMC
September 2017

Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis.

Nat Genet 2017 Mar 6;49(3):426-432. Epub 2017 Feb 6.

Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3752DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381275PMC
March 2017

Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets.

Nat Genet 2017 Mar 6;49(3):416-425. Epub 2017 Feb 6.

Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Greifswald, Germany.

Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 individuals, we increased the yield of independent signals for lung function from 54 to 97. A genetic risk score was associated with COPD susceptibility (odds ratio per 1 s.d. of the risk score (∼6 alleles) (95% confidence interval) = 1.24 (1.20-1.27), P = 5.05 × 10), and we observed a 3.7-fold difference in COPD risk between individuals in the highest and lowest genetic risk score deciles in UK Biobank. The 97 signals show enrichment in genes for development, elastic fibers and epigenetic regulation pathways. We highlight targets for drugs and compounds in development for COPD and asthma (genes in the inositol phosphate metabolism pathway and CHRM3) and describe targets for potential drug repositioning from other clinical indications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3787DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326681PMC
March 2017

Evidence for large-scale gene-by-smoking interaction effects on pulmonary function.

Int J Epidemiol 2017 06;46(3):894-904

Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK.

Background: Smoking is the strongest environmental risk factor for reduced pulmonary function. The genetic component of various pulmonary traits has also been demonstrated, and at least 26 loci have been reproducibly associated with either FEV 1 (forced expiratory volume in 1 second) or FEV 1 /FVC (FEV 1 /forced vital capacity). Although the main effects of smoking and genetic loci are well established, the question of potential gene-by-smoking interaction effect remains unanswered. The aim of the present study was to assess, using a genetic risk score approach, whether the effect of these 26 loci on pulmonary function is influenced by smoking.

Methods: We evaluated the interaction between smoking exposure, considered as either ever vs never or pack-years, and a 26-single nucleotide polymorphisms (SNPs) genetic risk score in relation to FEV 1 or FEV 1 /FVC in 50 047 participants of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) and SpiroMeta consortia.

Results: We identified an interaction ( βint  = -0.036, 95% confidence interval, -0.040 to -0.032, P  = 0.00057) between an unweighted 26 SNP genetic risk score and smoking status (ever/never) on the FEV 1 /FVC ratio. In interpreting this interaction, we showed that the genetic risk of falling below the FEV /FVC threshold used to diagnose chronic obstructive pulmonary disease is higher among ever smokers than among never smokers. A replication analysis in two independent datasets, although not statistically significant, showed a similar trend in the interaction effect.

Conclusions: This study highlights the benefit of using genetic risk scores for identifying interactions missed when studying individual SNPs and shows, for the first time, that persons with the highest genetic risk for low FEV 1 /FVC may be more susceptible to the deleterious effects of smoking.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ije/dyw318DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837518PMC
June 2017

Exome-wide analysis of rare coding variation identifies novel associations with COPD and airflow limitation in MOCS3, IFIT3 and SERPINA12.

Thorax 2016 06 25;71(6):501-9. Epub 2016 Feb 25.

Freemasons' Department of Geriatric Medicine, University of Auckland, New Zealand.

Background: Several regions of the genome have shown to be associated with COPD in genome-wide association studies of common variants.

Objective: To determine rare and potentially functional single nucleotide polymorphisms (SNPs) associated with the risk of COPD and severity of airflow limitation.

Methods: 3226 current or former smokers of European ancestry with lung function measures indicative of Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2 COPD or worse were genotyped using an exome array. An analysis of risk of COPD was carried out using ever smoking controls (n=4784). Associations with %predicted FEV1 were tested in cases. We followed-up signals of interest (p<10(-5)) in independent samples from a subset of the UK Biobank population and also undertook a more powerful discovery study by meta-analysing the exome array data and UK Biobank data for variants represented on both arrays.

Results: Among the associated variants were two in regions previously unreported for COPD; a low frequency non-synonymous SNP in MOCS3 (rs7269297, pdiscovery=3.08×10(-6), preplication=0.019) and a rare SNP in IFIT3, which emerged in the meta-analysis (rs140549288, pmeta=8.56×10(-6)). In the meta-analysis of % predicted FEV1 in cases, the strongest association was shown for a splice variant in a previously unreported region, SERPINA12 (rs140198372, pmeta=5.72×10(-6)). We also confirmed previously reported associations with COPD risk at MMP12, HHIP, GPR126 and CHRNA5. No associations in novel regions reached a stringent exome-wide significance threshold (p<3.7×10(-7)).

Conclusions: This study identified several associations with the risk of COPD and severity of airflow limitation, including novel regions MOCS3, IFIT3 and SERPINA12, which warrant further study.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/thoraxjnl-2015-207876DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893124PMC
June 2016

Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank.

Lancet Respir Med 2015 Oct 27;3(10):769-81. Epub 2015 Sep 27.

Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, UK.

Background: Understanding the genetic basis of airflow obstruction and smoking behaviour is key to determining the pathophysiology of chronic obstructive pulmonary disease (COPD). We used UK Biobank data to study the genetic causes of smoking behaviour and lung health.

Methods: We sampled individuals of European ancestry from UK Biobank, from the middle and extremes of the forced expiratory volume in 1 s (FEV1) distribution among heavy smokers (mean 35 pack-years) and never smokers. We developed a custom array for UK Biobank to provide optimum genome-wide coverage of common and low-frequency variants, dense coverage of genomic regions already implicated in lung health and disease, and to assay rare coding variants relevant to the UK population. We investigated whether there were shared genetic causes between different phenotypes defined by extremes of FEV1. We also looked for novel variants associated with extremes of FEV1 and smoking behaviour and assessed regions of the genome that had already shown evidence for a role in lung health and disease. We set genome-wide significance at p<5 × 10(-8).

Findings: UK Biobank participants were recruited from March 15, 2006, to July 7, 2010. Sample selection for the UK BiLEVE study started on Nov 22, 2012, and was completed on Dec 20, 2012. We selected 50,008 unique samples: 10,002 individuals with low FEV1, 10,000 with average FEV1, and 5002 with high FEV1 from each of the heavy smoker and never smoker groups. We noted a substantial sharing of genetic causes of low FEV1 between heavy smokers and never smokers (p=2.29 × 10(-16)) and between individuals with and without doctor-diagnosed asthma (p=6.06 × 10(-11)). We discovered six novel genome-wide significant signals of association with extremes of FEV1, including signals at four novel loci (KANSL1, TSEN54, TET2, and RBM19/TBX5) and independent signals at two previously reported loci (NPNT and HLA-DQB1/HLA-DQA2). These variants also showed association with COPD, including in individuals with no history of smoking. The number of copies of a 150 kb region containing the 5' end of KANSL1, a gene that is important for epigenetic gene regulation, was associated with extremes of FEV1. We also discovered five new genome-wide significant signals for smoking behaviour, including a variant in NCAM1 (chromosome 11) and a variant on chromosome 2 (between TEX41 and PABPC1P2) that has a trans effect on expression of NCAM1 in brain tissue.

Interpretation: By sampling from the extremes of the lung function distribution in UK Biobank, we identified novel genetic causes of lung function and smoking behaviour. These results provide new insight into the specific mechanisms underlying airflow obstruction, COPD, and tobacco addiction, and show substantial shared genetic architecture underlying airflow obstruction across individuals, irrespective of smoking behaviour and other airway disease.

Funding: Medical Research Council.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2213-2600(15)00283-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593935PMC
October 2015

Causal and synthetic associations of variants in the SERPINA gene cluster with alpha1-antitrypsin serum levels.

PLoS Genet 2013 22;9(8):e1003585. Epub 2013 Aug 22.

Swiss Tropical and Public Health Institute, Basel, Switzerland.

Several infrequent genetic polymorphisms in the SERPINA1 gene are known to substantially reduce concentration of alpha1-antitrypsin (AAT) in the blood. Since low AAT serum levels fail to protect pulmonary tissue from enzymatic degradation, these polymorphisms also increase the risk for early onset chronic obstructive pulmonary disease (COPD). The role of more common SERPINA1 single nucleotide polymorphisms (SNPs) in respiratory health remains poorly understood. We present here an agnostic investigation of genetic determinants of circulating AAT levels in a general population sample by performing a genome-wide association study (GWAS) in 1392 individuals of the SAPALDIA cohort. Five common SNPs, defined by showing minor allele frequencies (MAFs) >5%, reached genome-wide significance, all located in the SERPINA gene cluster at 14q32.13. The top-ranking genotyped SNP rs4905179 was associated with an estimated effect of β = -0.068 g/L per minor allele (P = 1.20*10(-12)). But denser SERPINA1 locus genotyping in 5569 participants with subsequent stepwise conditional analysis, as well as exon-sequencing in a subsample (N = 410), suggested that AAT serum level is causally determined at this locus by rare (MAF<1%) and low-frequent (MAF 1-5%) variants only, in particular by the well-documented protein inhibitor S and Z (PI S, PI Z) variants. Replication of the association of rs4905179 with AAT serum levels in the Copenhagen City Heart Study (N = 8273) was successful (P<0.0001), as was the replication of its synthetic nature (the effect disappeared after adjusting for PI S and Z, P = 0.57). Extending the analysis to lung function revealed a more complex situation. Only in individuals with severely compromised pulmonary health (N = 397), associations of common SNPs at this locus with lung function were driven by rarer PI S or Z variants. Overall, our meta-analysis of lung function in ever-smokers does not support a functional role of common SNPs in the SERPINA gene cluster in the general population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1003585DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749935PMC
March 2014
-->