Publications by authors named "Vendula Brabcová"

10 Publications

  • Page 1 of 1

Successional Development of Fungal Communities Associated with Decomposing Deadwood in a Natural Mixed Temperate Forest.

J Fungi (Basel) 2021 May 25;7(6). Epub 2021 May 25.

Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic.

Deadwood represents an important carbon stock and contributes to climate change mitigation. Wood decomposition is mainly driven by fungal communities. Their composition is known to change during decomposition, but it is unclear how environmental factors such as wood chemistry affect these successional patterns through their effects on dominant fungal taxa. We analysed the deadwood of and across a deadwood succession series of >40 years in a natural fir-beech forest in the Czech Republic to describe the successional changes in fungal communities, fungal abundance and enzymatic activities and to link these changes to environmental variables. The fungal communities showed high levels of spatial variability and beta diversity. In young deadwood, fungal communities showed higher similarity among tree species, and fungi were generally less abundant, less diverse and less active than in older deadwood. pH and the carbon to nitrogen ratio (C/N) were the best predictors of the fungal community composition, and they affected the abundance of half of the dominant fungal taxa. The relative abundance of most of the dominant taxa tended to increase with increasing pH or C/N, possibly indicating that acidification and atmospheric N deposition may shift the community composition towards species that are currently less dominant.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/jof7060412DOI Listing
May 2021

Forest Microhabitat Affects Succession of Fungal Communities on Decomposing Fine Tree Roots.

Front Microbiol 2021 28;12:541583. Epub 2021 Jan 28.

Institute of Botany of the Czech Academy of Sciences, Pruhonice, Czechia.

Belowground litter derived from tree roots has been shown as a principal source of soil organic matter in coniferous forests. Fate of tree root necromass depends on fungal communities developing on the decaying roots. Local environmental conditions which affect composition of tree root mycobiome may also influence fungal communities developing on decaying tree roots. Here, we assessed fungal communities associated with decaying roots of decomposing in three microhabitats: soil with no vegetation, soil with ericoid shrubs cover, and deadwood, for a 2-year period. Forest microhabitat showed stronger effect on structuring fungal communities associated with decaying roots compared to living roots. Some ericoid mycorrhizal fungi showed higher relative abundance on decaying roots in soils under ericoid shrub cover, while saprotrophic fungi had higher relative abundance in roots decomposing inside deadwood. Regardless of the studied microhabitat, we observed decline of ectomycorrhizal fungi and increase of endophytic fungi during root decomposition. Interestingly, we found substantially more fungal taxa with unknown ecology in late stages of root decomposition, indicating that highly decomposed roots may represent so far overlooked niche for soil fungi. Our study shows the importance of microhabitats on the fate of the decomposing spruce roots.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2021.541583DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876299PMC
January 2021

Complementary Roles of Wood-Inhabiting Fungi and Bacteria Facilitate Deadwood Decomposition.

mSystems 2021 Jan 12;6(1). Epub 2021 Jan 12.

Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic

Forests accumulate and store large amounts of carbon (C), and a substantial fraction of this stock is contained in deadwood. This transient pool is subject to decomposition by deadwood-associated organisms, and in this process it contributes to CO emissions. Although fungi and bacteria are known to colonize deadwood, little is known about the microbial processes that mediate carbon and nitrogen (N) cycling in deadwood. In this study, using a combination of metagenomics, metatranscriptomics, and nutrient flux measurements, we demonstrate that the decomposition of deadwood reflects the complementary roles played by fungi and bacteria. Fungi were found to dominate the decomposition of deadwood and particularly its recalcitrant fractions, while several bacterial taxa participate in N accumulation in deadwood through N fixation, being dependent on fungal activity with respect to deadwood colonization and C supply. Conversely, bacterial N fixation helps to decrease the constraints of deadwood decomposition for fungi. Both the CO efflux and N accumulation that are a result of a joint action of deadwood bacteria and fungi may be significant for nutrient cycling at ecosystem levels. Especially in boreal forests with low N stocks, deadwood retention may help to improve the nutritional status and fertility of soils. Wood represents a globally important stock of C, and its mineralization importantly contributes to the global C cycle. Microorganisms play a key role in deadwood decomposition, since they possess enzymatic tools for the degradation of recalcitrant plant polymers. The present paradigm is that fungi accomplish degradation while commensalist bacteria exploit the products of fungal extracellular enzymatic cleavage, but this assumption was never backed by the analysis of microbial roles in deadwood. This study clearly identifies the roles of fungi and bacteria in the microbiome and demonstrates the importance of bacteria and their N fixation for the nutrient balance in deadwood as well as fluxes at the ecosystem level. Deadwood decomposition is shown as a process where fungi and bacteria play defined, complementary roles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mSystems.01078-20DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901482PMC
January 2021

Feeding on fungi: genomic and proteomic analysis of the enzymatic machinery of bacteria decomposing fungal biomass.

Environ Microbiol 2020 11 31;22(11):4604-4619. Epub 2020 Aug 31.

Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic.

Dead fungal biomass is an abundant source of nutrition in both litter and soil of temperate forests largely decomposed by bacteria. Here, we have examined the utilization of dead fungal biomass by the five dominant bacteria isolated from the in situ decomposition of fungal mycelia using a multiOMIC approach. The genomes of the isolates encoded a broad suite of carbohydrate-active enzymes, peptidases and transporters. In the extracellular proteome, only Ewingella americana expressed chitinases while the two Pseudomonas isolates attacked chitin by lytic chitin monooxygenase, deacetylation and deamination. Variovorax sp. expressed enzymes acting on the side-chains of various glucans and the chitin backbone. Surprisingly, despite its genomic potential, Pedobacter sp. did not produce extracellular proteins to decompose fungal mycelia but presumably feeds on simple substrates. The ecological roles of the five individual strains exhibited complementary features for a fast and efficient decomposition of dead fungal biomass by the entire bacterial community.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.15183DOI Listing
November 2020

GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies.

Sci Data 2020 07 13;7(1):228. Epub 2020 Jul 13.

Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic.

Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, symbiotic associations with cultivated and wild plants and pathogenicity. The high importance of fungi in ecosystem processes contrasts with the incompleteness of our understanding of the patterns of fungal biogeography and the environmental factors that drive those patterns. To reduce this gap of knowledge, we collected and validated data published on the composition of soil fungal communities in terrestrial environments including soil and plant-associated habitats and made them publicly accessible through a user interface at https://globalfungi.com . The GlobalFungi database contains over 600 million observations of fungal sequences across > 17 000 samples with geographical locations and additional metadata contained in 178 original studies with millions of unique nucleotide sequences (sequence variants) of the fungal internal transcribed spacers (ITS) 1 and 2 representing fungal species and genera. The study represents the most comprehensive atlas of global fungal distribution, and it is framed in such a way that third-party data addition is possible.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41597-020-0567-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359306PMC
July 2020

A meta-analysis of global fungal distribution reveals climate-driven patterns.

Nat Commun 2019 11 13;10(1):5142. Epub 2019 Nov 13.

Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic.

The evolutionary and environmental factors that shape fungal biogeography are incompletely understood. Here, we assemble a large dataset consisting of previously generated mycobiome data linked to specific geographical locations across the world. We use this dataset to describe the distribution of fungal taxa and to look for correlations with different environmental factors such as climate, soil and vegetation variables. Our meta-study identifies climate as an important driver of different aspects of fungal biogeography, including the global distribution of common fungi as well as the composition and diversity of fungal communities. In our analysis, fungal diversity is concentrated at high latitudes, in contrast with the opposite pattern previously shown for plants and other organisms. Mycorrhizal fungi appear to have narrower climatic tolerances than pathogenic fungi. We speculate that climate change could affect ecosystem functioning because of the narrow climatic tolerances of key fungal taxa.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-13164-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853883PMC
November 2019

Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling.

ISME J 2018 06 28;12(7):1768-1778. Epub 2018 Feb 28.

Institute of Microbiology of the CAS, Průmyslová 595, 252 50, Vestec, Czech Republic.

Forest soils represent important terrestrial carbon (C) pools where C is primarily fixed in the plant-derived biomass but it flows further through the biomass of fungi and bacteria before it is lost from the ecosystem as CO or immobilized in recalcitrant organic matter. Microorganisms are the main drivers of C flow in forests and play critical roles in the C balance through the decomposition of dead biomass of different origins. Here, we track the path of C that enters forest soil by following respiration, microbial biomass production, and C accumulation by individual microbial taxa in soil microcosms upon the addition of C-labeled biomass of plant, fungal, and bacterial origin. We demonstrate that both fungi and bacteria are involved in the assimilation and mineralization of C from the major complex sources existing in soil. Decomposer fungi are, however, better suited to utilize plant biomass compounds, whereas the ability to utilize fungal and bacterial biomass is more frequent among bacteria. Due to the ability of microorganisms to recycle microbial biomass, we suggest that the decomposer food web in forest soil displays a network structure with loops between and within individual pools. These results question the present paradigms describing food webs as hierarchical structures with unidirectional flow of C and assumptions about the dominance of fungi in the decomposition of complex organic matter.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41396-018-0084-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018761PMC
June 2018

Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community.

New Phytol 2016 06 2;210(4):1369-81. Epub 2016 Feb 2.

Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, 14220, Praha 4, Czech Republic.

Turnover of fungal biomass in forest litter and soil represents an important process in the environment. To date, knowledge of mycelial decomposition has been derived primarily from short-term studies, and the guild of mycelium decomposers has been poorly defined. Here, we followed the fate of the fruiting bodies of an ectomycorrhizal fungus in litter and soil of a temperate forest over 21 wk. The community of associated microbes and enzymatic processes in this specific substrate were described. The decomposition of fungal fruiting bodies exhibited biphasic kinetics. The rapid initial phase, which included the disappearance of DNA, was followed by a slower turnover of the recalcitrant fraction. Compared with the surrounding litter and soil, the mycelium represented a hotspot of activity of several biopolymer-degrading enzymes and high bacterial biomass. Specific communities of bacteria and fungi were associated with decomposing mycelium. These communities differed between the initial and late phases of decomposition. The bacterial community associated with decomposing mycelia typically contained the genera Pedobacter, Pseudomonas, Variovorax, Chitinophaga, Ewingella and Stenotrophomonas, whereas the fungi were mostly nonbasidiomycetous r-strategists of the genera Aspergillus, Penicillium, Mortierella, Cladosporium and several others. Decomposing ectomycorrhizal fungal mycelium exhibits high rates of decomposition and represents a specific habitat supporting a specific microbial community.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.13849DOI Listing
June 2016

Seasonal dynamics of fungal communities in a temperate oak forest soil.

New Phytol 2014 Jan 6;201(1):269-278. Epub 2013 Sep 6.

Institute of Microbiology of the Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 14220, Praha 4, Czech Republic.

Fungi are the agents primarily responsible for the transformation of plant-derived carbon in terrestrial ecosystems. However, little is known of their responses to the seasonal changes in resource availability in deciduous forests, including photosynthate allocation below ground and seasonal inputs of fresh litter. Vertical stratification of and seasonal changes in fungal abundance, activity and community composition were investigated in the litter, organic and upper mineral soils of a temperate Quercus petraea forest using ergosterol and extracellular enzyme assays and amplicon 454-pyrosequencing of the rDNA-ITS region. Fungal activity, biomass and diversity decreased substantially with soil depth. The highest enzyme activities were detected in winter, especially in litter, where these activities were followed by a peak in fungal biomass during spring. The litter community exhibited more profound seasonal changes than did the community in the deeper horizons. In the litter, saprotrophic genera reached their seasonal maxima in autumn, but summer typically saw the highest abundance of ectomycorrhizal taxa. Although the composition of the litter community changes over the course of the year, the mineral soil shows changes in biomass. The fungal community is affected by season. Litter decomposition and phytosynthate allocation represent important factors contributing to the observed variations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.12481DOI Listing
January 2014