Publications by authors named "Veera Sri-Indrasutdhi"

3 Publications

  • Page 1 of 1

Trichoderma matsushimae and T. aeroaquaticum: two aero-aquatic species with Pseudaegerita-like propagules.

Mycologia 2012 Sep-Oct;104(5):1109-20. Epub 2012 Apr 11.

National Institute of Technology and Evaluation, Kisarazu, Chiba, Japan.

Four isolates tentatively identified as Pseudaegerita matsushimae on the basis of the morphology of bulbil-like propagules were collected from substrates submerged in water in Thailand and Japan. In culture studies the two Thai isolates were found to produce phialoconidia on conidiogenous cells and phialoconidiophores whose morphology was similar to that of Trichoderma. Phylogenetic analysis based on D1/D2 regions of LSU rDNA sequences showed that the four isolates were nested in Hypocrea/Trichoderma (Hypocreales) while P. corticalis, the type species of Pseudaegerita, belongs to Hyaloscypha (Helotiales). Preliminary analysis by ISTH Web tools based on 5.8S-ITS rDNA and phylogenetic analysis based on rpb2 and tef1-int4 genes showed that the isolates have specific sequences of Trichoderma (anchors 1-5) and belong to the Hamatum clade but they grouped apart from any known species of Trichoderma. The sequences of the tef1-int4 gene, which were amplified from the authentic specimen of P. matsushimae (IMI 266915), also showed that it belongs to the Hamatum clade closely clustering with T. yunnanense but separate from our four isolates. The morphology of P. matsushimae (IMI 266915), especially the sizes of phialides and phialoconidia, were different from T. yunnanense. Thus, we conclude that IMI 266915 and our isolates are to be assigned to two different species in the Hamatum clade of Trichoderma, although both species have similar morphology of bulbils and phialoconidia. Morphology and molecular data revealed that P. matsushimae should be assigned to the genus Trichoderma as T. matsushimae and the Thai and Japanese isolates are placed in T. aeroaquaticum sp. nov. This finding supports the interpretation that aero-aquatic fungi have evolved from terrestrial fungi. We assume that these fungi probably were derived from typically soil-inhabiting species of Trichoderma; an adaptation to aquatic environments is shown by formation of bulbil-like propagules floating on water.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3852/11-253DOI Listing
November 2012

Annulatascus aquatorba sp. nov., a lignicolous freshwater ascomycete from Sirindhorn Peat Swamp Forest, Narathiwat, Thailand.

Mycologia 2012 May-Jun;104(3):746-57. Epub 2012 Jan 5.

National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand.

As part of a long term study of fungi colonizing submerged wood in freshwater streams a new Annulatascus species, A. aquatorba, is described and illustrated from Erythrophleum teysmannii test blocks from Sirindhorn Peat Swamp Forest, southern Thailand. It differs from other species in the genus in ascospore measurements, thickness of the cell wall, 1-3-septate, fusoid to lunate shape, with central brown cells and subhyaline end cells and without a mucilaginous sheath. Asci are cylindrical, pedicellate, with a distinct, wedge-shaped and non-amyloid apical ring. Phylogenetic relationships of this species, based on the combined partial 18S and 28S rDNA, place it in the same clade as A. velatisporus (type species), A. hongkongensis and A. nilensis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3852/11-238DOI Listing
January 2013

Savoryellales (Hypocreomycetidae, Sordariomycetes): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia, and Savoryella.

Mycologia 2011 Nov-Dec;103(6):1351-71. Epub 2011 Jun 3.

Mycology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phaholyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120, Thailand.

The taxonomic placement of freshwater and marine Savoryella species has been widely debated, and the genus has been tentatively assigned to various orders in the Sordariomycetes. The genus is characterized as possessing paraphyses that deliquesce early, elongate, clavate to cylindrical asci with a poorly developed apical ring and versicolored, three-septate ascospores. We performed two combined phylogenetic analyses of different genes: (i) partial small subunit rRNA (SSU), large subunit rRNA (LSU), DNA-dependent RNA polymerase II largest subunit (rpb2) dataset and (ii) SSU rDNA, LSU rDNA, DNA-dependent RNA polymerase II largest subunit (rpb1 and rpb2), translation elongation factor 1-alpha (tef1), the 5.8S ribosomal DNA (5.8S rDNA) dataset. Our results indicate that Savoryella species formed a monophyletic group within the Sordariomycetes but showed no affinity to the Hypocreales, Halosphaeriales (now Microascales), Sordariales and Xylariales, despite earlier assignments to these orders. Savoryella, Ascotaiwania and Ascothailandia (and its anamorph, Canalisporium) formed a new lineage that has invaded both marine and freshwater habitats, indicating that these genera share a common ancestor and are closely related. Because they show no clear relationship with any named order we erect a new order Savoryellales in the subclass Hypocreomycetidae, Sordariomycetes. The genera Savoryella and Ascothailandia are monophyletic, while the position of Ascotaiwania is unresolved. All three genera are phylogenetically related and form a distinct clade similar to the unclassified group of marine ascomycetes comprising the genera Swampomyces, Torpedospora and Juncigera (TBM clade: Torpedospora/Bertia/Melanospora) in the Hypocreomycetidae incertae sedis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3852/11-102DOI Listing
January 2012