N Engl J Med 2019 12 11;381(26):2529-2540. Epub 2019 Dec 11.
The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.).
Background: Vitamin D deficiency is a common, potentially reversible contributor to morbidity and mortality among critically ill patients. The potential benefits of vitamin D supplementation in acute critical illness require further study.
Methods: We conducted a randomized, double-blind, placebo-controlled, phase 3 trial of early vitamin D supplementation in critically ill, vitamin D-deficient patients who were at high risk for death. Randomization occurred within 12 hours after the decision to admit the patient to an intensive care unit. Eligible patients received a single enteral dose of 540,000 IU of vitamin D or matched placebo. The primary end point was 90-day all-cause, all-location mortality.
Results: A total of 1360 patients were found to be vitamin D-deficient during point-of-care screening and underwent randomization. Of these patients, 1078 had baseline vitamin D deficiency (25-hydroxyvitamin D level, <20 ng per milliliter [50 nmol per liter]) confirmed by subsequent testing and were included in the primary analysis population. The mean day 3 level of 25-hydroxyvitamin D was 46.9±23.2 ng per milliliter (117±58 nmol per liter) in the vitamin D group and 11.4±5.6 ng per milliliter (28±14 nmol per liter) in the placebo group (difference, 35.5 ng per milliliter; 95% confidence interval [CI], 31.5 to 39.6). The 90-day mortality was 23.5% in the vitamin D group (125 of 531 patients) and 20.6% in the placebo group (109 of 528 patients) (difference, 2.9 percentage points; 95% CI, -2.1 to 7.9; P = 0.26). There were no clinically important differences between the groups with respect to secondary clinical, physiological, or safety end points. The severity of vitamin D deficiency at baseline did not affect the association between the treatment assignment and mortality.
Conclusions: Early administration of high-dose enteral vitamin D did not provide an advantage over placebo with respect to 90-day mortality or other, nonfatal outcomes among critically ill, vitamin D-deficient patients. (Funded by the National Heart, Lung, and Blood Institute; VIOLET ClinicalTrials.gov number, NCT03096314.).