Publications by authors named "Valerie C Virta"

3 Publications

  • Page 1 of 1

NCBI's Virus Discovery Codeathon: Building "FIVE" -The Federated Index of Viral Experiments API Index.

Viruses 2020 12 10;12(12). Epub 2020 Dec 10.

National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20894, USA.

Viruses represent important test cases for data federation due to their genome size and the rapid increase in sequence data in publicly available databases. However, some consequences of previously decentralized (unfederated) data are lack of consensus or comparisons between feature annotations. Unifying or displaying alternative annotations should be a priority both for communities with robust entry representation and for nascent communities with burgeoning data sources. To this end, during this three-day continuation of the Virus Hunting Toolkit codeathon series (VHT-2), a new integrated and federated viral index was elaborated. This Federated Index of Viral Experiments (FIVE) integrates pre-existing and novel functional and taxonomy annotations and virus-host pairings. Variability in the context of viral genomic diversity is often overlooked in virus databases. As a proof-of-concept, FIVE was the first attempt to include viral genome variation for HIV, the most well-studied human pathogen, through viral genome diversity graphs. As per the publication of this manuscript, FIVE is the first implementation of a virus-specific federated index of such scope. FIVE is coded in BigQuery for optimal access of large quantities of data and is publicly accessible. Many projects of database or index federation fail to provide easier alternatives to access or query information. To this end, a Python API query system was developed to enhance the accessibility of FIVE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v12121424DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764237PMC
December 2020

Evolution of gastrulation in the ray-finned (actinopterygian) fishes.

J Exp Zool B Mol Dev Evol 2007 Sep;308(5):591-608

Department of Biology and Center for Developmental Biology, University of Washington, Seattle, Washington 98195-1800, USA.

Sometime before or during the early Mesozoic era, new lineages of actinopterygian (ray-finned) fishes radically transformed their mode of gastrulation. During this evolutionary transformation, yolky endoderm was a hotspot for ontogenetic change. As holoblastic cleavage patterns were modified into meroblastic cleavage patterns, major changes in cell identity specification occurred within the mesendodermal marginal zone, as well as in the superficial epithelium of the embryo. These cellular identity changes resulted in the appearance of two novel extra-embryonic tissues within the embryos of teleostean fishes: the enveloping layer (EVL) and the yolk syncytial layer (YSL). The generation of these extra-embryonic tissues prompted major morphogenetic changes within the Organizer Region. As these evolutionary changes occurred, the outermost cell layer of the Organizer (the Organizer Epithelium) was apparently retained as a signaling center necessary for the establishment of left-right embryonic asymmetry in the embryo. Conserved and derived features of Organizer morphogenesis and gastrulation within ancient lineages of ray-finned fishes provide important insights into how the genetically encoded cell behaviors of early morphogenesis can be altered during the course of evolution. In particular, a highly divergent form of actinopterygian gastrulation, which is found in the annual fishes of South America, demonstrates that no aspect of vertebrate gastrulation is inherently immutable to evolutionary change.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jez.b.21142DOI Listing
September 2007

Compromise of clathrin function and membrane association by clathrin light chain deletion.

Traffic 2003 Dec;4(12):891-901

Section of Molecular Cell & Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.

While clathrin heavy chains from different species are highly conserved in amino acid sequence, clathrin light chains are much more divergent. Thus clathrin light chain may have different functions in different organisms. To investigate clathrin light chain function, we cloned the clathrin light chain, clcA, from Dictyostelium and examined clathrin function in clcA-mutants. Phenotypic deficiencies in development, cytokinesis, and osmoregulation showed that light chain was critical for clathrin function in Dictyostelium. In contrast with budding yeast, we found the light chain did not influence steady-state levels of clathrin, triskelion formation, or contribute to clathrin over-assembly on intracellular membranes. Imaging GFP-CHC in clcA- mutants showed that the heavy chain formed dynamic punctate structures that were remarkably similar to those found in wild-type cells. However, clathrin light chain knockouts showed a decreased association of clathrin with intracellular membranes. Unlike wild-type cells, half of the clathrin in clcA- mutants was cytosolic, suggesting that the absence of light chain compromised the assembly of triskelions onto intracellular membranes. Taken together, these results suggest a role for the Dictyostelium clathrin light chain in regulating the self-assembly of triskelions onto intracellular membranes, and demonstrate a crucial contribution of the light chain to clathrin function in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1600-0854.2003.00144.xDOI Listing
December 2003