Publications by authors named "V Barzon"

5 Publications

  • Page 1 of 1

COVID-19 infection in severe Alpha 1-antitrypsin deficiency: Looking for a rationale.

Respir Med 2021 07 30;183:106440. Epub 2021 Apr 30.

Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Laboratory of Biochemistry and Genetics, Institute for Respiratory Disease, Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.

The clinical manifestations of COVID-19 are heterogeneous: 46.4% of patients admitted into hospital reported to have at least one comorbidity. Comorbidities such as COPD, diabetes, hypertension and malignancy predispose patients with Covid-19 to adverse clinical outcomes. Alpha 1-antitrypsin deficiency (AATD) is a genetic disorder caused by pathological mutation(s) in the SERPINA1 gene resulting in an imbalance in proteinase activity which may lead to premature emphysema and COPD. Our aim was to investigate whether people with severe AAT deficiency (AATD) have an increased risk of (severe) COVID-19 infection. We collected data on COVID-19 symptoms, laboratory-confirmed infection, hospitalization and treatment by means of a telephone survey, directly administered to Italian severe AATD subjects in May 2020. We then compared our findings with data collected by the Istituto Superiore di Sanità on the total population in Italy during the same period. We found an higher frequency of SARS-CoV-2 infection in our cohort (3.8%) compared to national data regarding infection, thus giving severe AATD a relative risk of 8. 8 (95%CI 5.1-20,0; p<0.0001) for symptomatic SARS-CoV-2 infection. Moreover, the relative risk (RR) was higher in AATD patients with pre-existing lung diseases (RR 13.9; 95%CI 8.0-33.6; p<0.001), but with a similar death rate (1 in 8, 12.5%) compared to the general population (13.9%; RR 0.9). These preliminary findings highlight the importance of close surveillance in the spread of COVID-19 in patients with severe AATD and underlines the need for further studies into the role of the antiprotease shield in preventing SARS-Cov-2 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rmed.2021.106440DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086383PMC
July 2021

Comparison of different algorithms in laboratory diagnosis of Alpha1-antitrypsin deficiency.

Clin Chem Lab Med 2021 Mar 5. Epub 2021 Mar 5.

Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Laboratory of Biochemistry and Genetics, Institute for Respiratory Disease, Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.

Objectives: Alpha1-antitrypsin deficiency (AATD) is an inherited condition that predisposes individuals to an increased risk of developing lung and liver disease. Even though AATD is one of the most widespread inherited diseases in Caucasian populations, only a minority of affected individuals has been detected. Whereas methods have been validated for AATD testing, there is no universally-established algorithm for the detection and diagnosis of the disorder. In order to compare different methods for diagnosing AATD, we carried out a systematic review of the literature on AATD diagnostic algorithms.

Methods: Complete biochemical and molecular analyses of 5,352 samples processed in our laboratory were retrospectively studied using each of the selected algorithms.

Results: When applying the diagnostic algorithms to the same samples, the frequency of False Negatives varied from 1.94 to 12.9%, the frequency of True Negatives was 62.91% for each algorithm and the frequency of True Positives ranged from 24.19 to 35.15%. We, therefore, highlighted some differences among Negative Predictive Values, ranging from 0.83 to 0.97. Accordingly, the sensitivity of each algorithm ranged between 0.61 and 0.95. We also postulated 1.108 g/L as optimal AAT cut-off value, in absence of inflammatory status, which points to the possible presence of genetic AATD.

Conclusions: The choice of the diagnostic algorithm has a significant impact on the correct diagnosis of AATD, which is essential for appropriate treatment and medical care. The fairly large number of possible false negative diagnoses revealed by the present paper should also warn clinicians of negative results in patients with clinically-suspected AATD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1515/cclm-2020-1881DOI Listing
March 2021

Molecular diagnosis of alpha1-antitrypsin deficiency: A new method based on Luminex technology.

J Clin Lab Anal 2020 Jul 17;34(7):e23279. Epub 2020 Mar 17.

Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Laboratory of Biochemistry and Genetics, Institute for Respiratory Disease, Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.

Background: Alpha1-antitrypsin deficiency (AATD) is an under-diagnosed hereditary disorder characterized by reduced serum levels of alpha1-antitrypsin (AAT) and increased risk to develop lung and liver diseases at an early age. AAT is encoded by the highly polymorphic SERPINA1 gene. The most common deficiency alleles are S and Z, but more than 150 rare variants lead to low levels of the protein. To identify these pathological allelic variants, sequencing is required. Since traditional sequencing is expensive and time-consuming, we evaluated the accuracy of A1AT Genotyping Test, a new diagnostic genotyping kit which allows to simultaneously identify and genotype 14 deficiency variants of the SERPINA1 gene based on Luminex technology.

Methods: A total of 418 consecutive samples with AATD suspicion and submitted to the Italian Reference laboratory between January and April 2016 were analyzed both by applying the diagnostic algorithm currently in use, and by applying A1AT Genotyping Test.

Results: The assay gave the following results: 101 samples (24.2%) were positive for at least one of the 14 deficiency variants, 316 (75.6%) were negative for all the variants analyzed. The identified mutations showed a 100% correlation with the results obtained with our diagnostic algorithm. Seventeen samples (4%) resulted negative for the assay but sequencing identified other rare pathological variants in SERPINA1 gene.

Conclusion: The A1AT Genotyping Test assay was highly reliable and robust and allowed shorter diagnostic times. In few cases, it has been necessary to sequence the SERPINA1 gene to identify other rare mutations not included in the kit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcla.23279DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370739PMC
July 2020

Adipose Mesenchymal Extracellular Vesicles as Alpha-1-Antitrypsin Physiological Delivery Systems for Lung Regeneration.

Cells 2019 08 23;8(9). Epub 2019 Aug 23.

Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.

Accumulating evidence shows that Mesenchymal Stem/Stromal Cells (MSCs) exert their therapeutic effects by the release of secretome, made of both soluble proteins and nano/microstructured extracellular vesicles (EVs). In this work, for the first time, we proved by a proteomic investigation that adipose-derived (AD)-MSC-secretome contains alpha-1-antitrypsin (AAT), the main elastase inhibitor in the lung, 72 other proteins involved in protease/antiprotease balance, and 46 proteins involved in the response to bacteria. By secretome fractionation, we proved that AAT is present both in the soluble fraction of secretome and aggregated and/or adsorbed on the surface of EVs, that can act as natural carriers promoting AAT in vivo stability and activity. To modulate secretome composition, AD-MSCs were cultured in different stimulating conditions, such as serum starvation or chemicals (IL-1β and/or dexamethasone) and the expression of the gene encoding for AAT was increased. By testing in vitro the anti-elastase activity of MSC-secretome, a dose-dependent effect was observed; chemical stimulation of AD-MSCs did not increase their secretome anti-elastase activity. Finally, MSC-secretome showed anti-bacterial activity on Gram-negative bacteria, especially for . These preliminary results, in addition to the already demonstrated immunomodulation, pave the way for the use of MSC-secretome in the treatment of AAT-deficiency lung diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells8090965DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770759PMC
August 2019

Case-finding for alpha1-antitrypsin deficiency in Kazakh patients with COPD.

Multidiscip Respir Med 2017 25;12:23. Epub 2017 Oct 25.

Semey State Medical University, Semey, Kazakhstan.

Background: Alpha-1-antitrypsin deficiency (AATD) is an under-diagnosed condition in patients with chronic obstructive pulmonary disease (COPD). The aim of this study was to screen for AATD in Kazakh patients with COPD using dried blood spot specimens.

Methods: The alpha1-antitrypsin (AAT) concentration was determined by nephelometry, PCR was used to detect PiS and PiZ alleles; and isoelectric focusing was used to confirm questionable genotype results and detect rare AAT variants.

Results: To this aim, 187 Kazakh subjects with COPD were recruited. Blood samples were collected as dried blood spot. Genotyping of 187 samples revealed 3 (1.6%) PI*MZ and 1 (0.53%) PI*MS, Phenotyping identified also two sample (1.1%) with phenotype PiMI. Allelic frequencies of pathological mutations Z, S and I resulted 0.8%, 0.3%, 0.5%, respectively, in COPD Kazakh population.

Conclusion: This study proved that AATD is present in the Kazakh population. These results support the general concept of targeted screening for AAT deficiency in countries like Kazakhstan, with a large population of COPD patients and low awareness among care-givers about this genetic condition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40248-017-0104-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655868PMC
October 2017