Publications by authors named "Ursula Hiden"

47 Publications

Flow-through isolation of human first trimester umbilical cord endothelial cells.

Histochem Cell Biol 2021 Jun 24. Epub 2021 Jun 24.

Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.

Human umbilical vein and artery endothelial cells (HUVEC; HUAEC), placental endothelial cells (fpAEC), and endothelial colony-forming cells (ECFC) from cord blood are a widely used model for researching placental vascular development, fetal and placental endothelial function, and the effect of adverse conditions in pregnancy thereon. However, placental vascular development and angiogenesis start in the first weeks of gestation, and adverse conditions in pregnancy may also affect endothelial function before term, suggesting that endothelial cells from early pregnancy may respond differently. Thus, we established a novel, gentle flow-through method to isolate pure human umbilical endothelial cells from first trimester (FTUEC). FTUEC were characterized and their phenotype was compared to the umbilical endothelium in situ as well as to other fetal endothelial cell models from term of gestation, i.e. HUVEC, fpAEC, ECFC. FTUEC possess a CD34-positive, juvenile endothelial phenotype, and can be expanded and passaged. We regard FTUEC as a valuable tool to study developmental processes as well as the effect of adverse insults in pregnancy in vitro.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-021-02007-7DOI Listing
June 2021

Matrix metalloproteinase 15 plays a pivotal role in human first trimester cytotrophoblast invasion and is not altered by maternal obesity.

FASEB J 2020 08 2;34(8):10720-10730. Epub 2020 Jul 2.

Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.

Adequate anchoring of the placenta in the uterus through invasion of first trimester cytotrophoblasts (CTB) is required for a successful pregnancy. This process is mediated by matrix metalloproteinases (MMPs) and regulated by the maternal environment. Obesity is known to alter the intrauterine milieu and has been related to impaired invasion. We hypothesized that placental MMP15, a novel membrane-type MMP, is involved in CTB invasion and regulated by maternal obesity in early pregnancy. Thus, in this study MMP15 was immunolocalized to invasive extravillous and interstitial CTB. MMP15 silencing in chorionic villous explants using two different siRNAs reduced trophoblast outgrowth length (-35%, P ≤ .001 and -26%, P < .05) and area (-43%, P ≤ .001 and -36%, P ≤ .01) without altering trophoblast proliferation or apoptosis. Short-term treatment of primary first trimester trophoblasts with IL-6 (10 ng/mL), interleukin 10 (IL-10) (50 ng/mL), and tumor necrosis factor α (TNF-α) (10 ng/mL) did not affect MMP15 protein levels. Likewise, MMP15 mRNA and protein levels were unaltered between human first trimester placentas from control pregnancies vs those complicated with maternal obesity. Overall, our results suggest that the role of MMP15 in placental development and function in early pregnancy is limited to CTB invasion without being affected by short- and long-term inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202000773RDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496590PMC
August 2020

Maternal Overweight Downregulates MME (Neprilysin) in Feto-Placental Endothelial Cells and in Cord Blood.

Int J Mol Sci 2020 Jan 28;21(3). Epub 2020 Jan 28.

Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.

Maternal overweight in pregnancy alters the metabolic environment and generates chronic low-grade inflammation. This affects fetal development and programs the offspring's health for developing cardiovascular and metabolic disease later in life. MME (membrane-metalloendopeptidase, neprilysin) cleaves various peptides regulating vascular tone. Endothelial cells express membrane-bound and soluble MME. In adults, the metabolic environment of overweight and obesity upregulates endothelial and circulating MME. We here hypothesized that maternal overweight increases MME in the feto-placental endothelium. We used primary feto-placental endothelial cells (fpEC) isolated from placentas after normal vs. overweight pregnancies and determined MME mRNA, protein, and release. Additionally, soluble cord blood MME was analyzed. The effect of oxygen and tumor necrosis factor α (TNFα) on MME protein in fpEC was investigated in vitro. Maternal overweight reduced MME mRNA (-39.9%, < 0.05), protein (-42.5%, = 0.02), and MME release from fpEC (-64.7%, = 0.02). Both cellular and released MME protein negatively correlated with maternal pre-pregnancy BMI. Similarly, cord blood MME was negatively associated with pre-pregnancy BMI ( = -0.42, = 0.02). However, hypoxia and TNFα, potential negative regulators of MME expression, did not affect MME protein. Reduction of MME protein in fpEC and in cord blood may alter the balance of vasoactive peptides. Our study highlights the fetal susceptibility to maternal metabolism and inflammatory state.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21030834DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037888PMC
January 2020

Sexual dimorphism of miRNA signatures in feto-placental endothelial cells is associated with altered barrier function and actin organization.

Clin Sci (Lond) 2020 01;134(1):39-51

Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.

Endothelial function and the risk for endothelial dysfunction differ between males and females. Besides the action of estrogen, sex chromosome gene expression and programming effects also provoke this sexual dimorphism. MicroRNAs (miRNAs) have emerged as regulators of endothelial cell function and dysfunction. We here hypothesized distinct miRNA expression patterns in male versus female human endothelial cells that contribute to the functional differences. We used our well-established model of fetal endothelial cells isolated from placenta (fpEC) and analyzed sexual dimorphic miRNA expression and potentially affected biological functions. Next-generation miRNA sequencing of fpEC isolated after pregnancies with male and female neonates identified sex-dependent miRNA expression patterns. Potential biological pathways regulated by the altered set of miRNAs were determined using mirPath and mirSystem softwares, and suggested differences in barrier function and actin organization. The identified pathways were further investigated by monolayer impedance measurements (ECIS) and analysis of F-actin organization (Phalloidin). Nine miRNAs were differentially expressed in fpEC of male versus female neonates. Functional pathways most significantly regulated by these miRNAs included 'Adherens junction', 'ECM receptor interaction' and 'Focal adhesion'. These pathways control monolayer barrier function and may be paralleled by altered cytoskeletal organization. In fact, monolayer impedance was higher in fpEC of male progeny, and F-actin staining revealed more pronounced peripheral stress fibers in male versus female fpEC. Our data highlight that endothelial cell function differs between males and females already in utero, and that altered miRNAs are associated with sex dependent differences in barrier function and actin organization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20190379DOI Listing
January 2020

Outgrowth, proliferation, viability, angiogenesis and phenotype of primary human endothelial cells in different purchasable endothelial culture media: feed wisely.

Histochem Cell Biol 2019 Nov 21;152(5):377-390. Epub 2019 Sep 21.

Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.

Function and dysfunction of endothelial cells are regulated by a multitude of factors. Endothelial cell research often requires in vitro cell culture experiments. Hence, various culture media specifically designed to promote endothelial cell growth are available. These strikingly differ in their composition: complex media contain endothelial cell growth supplement (ECGS), an extract produced of bovine brain with undefined amounts of biologically active compounds, whilst defined media contain selected growth factors in defined concentrations. We here compared the effect of seven purchasable endothelial cell culture media on colony outgrowth, proliferation, viability, in vitro angiogenesis and phenotype of mature primary human endothelial cells using feto-placental endothelial cells isolated from chorionic arteries (fpEC). The effect of media on colony outgrowth was additionally tested on umbilical cord blood-derived endothelial progenitor cells (ECFCs). Outgrowth, purity, proliferation and viability differed between media. Outgrowth of fpEC and ECFCs was best in a defined medium containing EGF, FGF2 and VEGF. By contrast, established fpEC isolations proliferated best in complex media containing ECGS, heparin and ascorbic acid. Also viability of cells was higher in complex media. In vitro angiogenesis was most intense in a defined medium containing the highest number of individual growth factors. FACS analysis of surface markers for endothelial cell subtypes revealed that endothelial phenotype of fpEC was unaffected by media composition. Our data demonstrate the fundamental effect of endothelial cell culture media on primary cell isolation success and behaviour. Whether the composition of supplements is suitable also for individual experiments needs to be tested specifically.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-019-01815-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842357PMC
November 2019

Gestational diabetes alters microRNA signatures in human feto-placental endothelial cells depending on fetal sex.

Clin Sci (Lond) 2018 11 21;132(22):2437-2449. Epub 2018 Nov 21.

Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria

MicroRNAs (miRNAs), small non-coding RNAs, have emerged as important, epigenetic regulators of endothelial function. Metabolic disturbances such as diabetes alter miRNA expression. In adults, the miRNA transcriptome as well as endothelial function differ between the sexes. Here, we hypothesized that metabolic disturbances associated with gestational diabetes (GDM) alter miRNA signatures in feto-placental endothelial cells (fpEC), dependent on fetal sex. We isolated human primary fpEC after normal and GDM-complicated pregnancies with male and female neonates and screened for differential miRNA expression using next-generation miRNA sequencing. To test for miRNAs commonly regulated in fpEC of female and male progeny, data were stratified for fetal sex and maternal body mass index (BMI). Analyses were also performed separately for female and male fpEC, again accounting for maternal BMI as covariate. Potential biological pathways regulated by the altered set of miRNAs were determined using mirPath software. Maternal GDM altered 26 miRNA signatures when male and female fpEC were analyzed together. Separate analysis of male versus female fpEC revealed 22 GDM affected miRNAs in the females and only 4 in the males, without overlap. Biological functions potentially modulated by the affected miRNAs related to 'Protein Processing in Endoplasmic Reticulum' and 'Proteoglycans in Cancer'. Maternal GDM alters miRNA signatures in fpEC, and biological functions affected by these miRNAs relate to well-known adverse functional consequences of diabetes on endothelium. GDM effects were highly dependent on fetal sex with miRNA signatures in female fpEC being more susceptible to metabolic derangements of GDM than miRNAs in male fpEC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20180825DOI Listing
November 2018

Human fetoplacental arterial and venous endothelial cells are differentially programmed by gestational diabetes mellitus, resulting in cell-specific barrier function changes.

Diabetologia 2018 11 8;61(11):2398-2411. Epub 2018 Aug 8.

Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria.

Aims/hypothesis: An adverse intrauterine environment can result in permanent changes in the physiology of the offspring and predispose to diseases in adulthood. One such exposure, gestational diabetes mellitus (GDM), has been linked to development of metabolic disorders and cardiovascular disease in offspring. Epigenetic variation, including DNA methylation, is recognised as a leading mechanism underpinning fetal programming and we hypothesised that this plays a key role in fetoplacental endothelial dysfunction following exposure to GDM. Thus, we conducted a pilot epigenetic study to analyse concordant DNA methylation and gene expression changes in GDM-exposed fetoplacental endothelial cells.

Methods: Genome-wide methylation analysis of primary fetoplacental arterial endothelial cells (AEC) and venous endothelial cells (VEC) from healthy pregnancies and GDM-complicated pregnancies in parallel with transcriptome analysis identified methylation and expression changes. Most-affected pathways and functions were identified by Ingenuity Pathway Analysis and validated using functional assays.

Results: Transcriptome and methylation analyses identified variation in gene expression linked to GDM-associated DNA methylation in 408 genes in AEC and 159 genes in VEC, implying a direct functional link. Pathway analysis found that genes altered by exposure to GDM clustered to functions associated with 'cell morphology' and 'cellular movement' in healthy AEC and VEC. Further functional analysis demonstrated that GDM-exposed cells had altered actin organisation and barrier function.

Conclusions/interpretation: Our data indicate that exposure to GDM programs atypical morphology and barrier function in fetoplacental endothelial cells by DNA methylation and gene expression change. The effects differ between AEC and VEC, indicating a stringent cell-specific sensitivity to adverse exposures associated with developmental programming in utero.

Data Availability: DNA methylation and gene expression datasets generated and analysed during the current study are available at the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo ) under accession numbers GSE106099 and GSE103552, respectively.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-018-4699-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182654PMC
November 2018

Correction to: Expression of matrix metalloproteinase 12 is highly specific for non-proliferating invasive trophoblasts in the first trimester and temporally regulated by oxygen-dependent mechanisms including HIF-1A.

Histochem Cell Biol 2018 01;149(1):43

Institute of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, Graz, Austria.

In the original publication, the contribution of Dr. Christian Eyth as equal first author was not indicated. This has been corrected confirming that U. Hidden and C. Eyth contributed equally to this work.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-017-1626-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828265PMC
January 2018

Downregulation of p53 drives autophagy during human trophoblast differentiation.

Cell Mol Life Sci 2018 05 27;75(10):1839-1855. Epub 2017 Oct 27.

Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria.

The placental barrier is crucial for the supply of nutrients and oxygen to the developing fetus and is maintained by differentiation and fusion of mononucleated cytotrophoblasts into the syncytiotrophoblast, a process only partially understood. Here transcriptome and pathway analyses during differentiation and fusion of cultured trophoblasts yielded p53 signaling as negative upstream regulator and indicated an upregulation of autophagy-related genes. We further showed p53 mRNA and protein levels decreased during trophoblast differentiation. Reciprocally, autophagic flux increased and cytoplasmic LC3B-GFP puncta became more abundant, indicating enhanced autophagic activity. In line, in human first trimester placenta p53 protein mainly localized to the cytotrophoblast, while autophagy marker LC3B as well as late autophagic compartments were predominantly detectable in the syncytiotrophoblast. Importantly, ectopic overexpression of p53 reduced levels of LC3B-II, supporting a negative regulatory role on autophagy in differentiating trophoblasts. This was also shown in primary trophoblasts and human first trimester placental explants, where pharmacological stabilization of p53 decreased LC3B-II levels. In summary our data suggest that differentiation-dependent downregulation of p53 is a prerequisite for activating autophagy in the syncytiotrophoblast.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00018-017-2695-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910494PMC
May 2018

Expression of matrix metalloproteinase 12 is highly specific for non-proliferating invasive trophoblasts in the first trimester and temporally regulated by oxygen-dependent mechanisms including HIF-1A.

Histochem Cell Biol 2018 Jan 9;149(1):31-42. Epub 2017 Oct 9.

Institute of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, Graz, Austria.

During first trimester pregnancy, trophoblast cells invade from the placenta into the maternal decidua where they anchor the placenta and remodel luminal structures like spiral arteries. This process depends on proteases secreted by invading trophoblasts, which degrade extracellular matrix (ECM). We here aimed to identify proteases particularly important for trophoblast invasion. We generated a list of proteases capable of degrading decidual ECM and trophoblast integrins using MEROPS database and compared expression of these proteases between primary trophoblasts isolated from first trimester placenta (FT, n = 3), representing an invasive phenotype, vs trophoblasts isolated from term pregnancy (TT, n = 3), representing a non-invasive trophoblast phenotype. Matrix metalloproteinase 12 (MMP12) revealed highest expression levels in FT, with absent expression in TT. In situ hybridisation and immunofluorescence localised MMP12 specifically to extravillous trophoblasts (evCT) whilst Ki67 co-staining revealed that proliferating trophoblasts of the cell columns were almost negative for MMP12. Quantification revealed a decline in MMP12 positive evCT at the end of first trimester, when oxygen levels start rising. MMP12 promoter analysis identified potential binding sites for hypoxia-inducible factor (HIF-1) and other oxygen-sensitive transcription factors. Moreover, MMP12 protein was increased by low oxygen in FT in vitro and by addition of a HIF-1α activator. Collectively, MMP12 is a highly expressed protease specific for invasive evCT during the first trimester. MMP12 down regulation by increasing oxygen concentration enables temporal expression control of MMP12 and involves several mechanisms including HIF-1α. These findings suggest MMP12 involved in trophoblast invasion during the first trimester.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-017-1608-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767211PMC
January 2018

IGF2 stimulates fetal growth in a sex- and organ-dependent manner.

Pediatr Res 2018 01 18;83(1-1):183-189. Epub 2017 Oct 18.

Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.

BackgroundInsulin-like growth factor 2 (IGF2) is a key determinant of fetal growth, and the altered expression of IGF2 is implicated in fetal growth disorders and maternal metabolic derangements including gestational diabetes. Here we studied how increased levels of IGF2 in late pregnancy affect fetal growth.MethodsWe employed a rat model of repeated intrafetal IGF2 administration in late pregnancy, i.e., during GD19-GD21, and measured the consequences on fetal organ weight and expression of insulin/IGF-axis components.ResultsIGF2 treatment tended to increase fetal weight, but only weight increase of the fetal stomach reached significance (+33±9%; P<0.01). Sex-dependent data analysis revealed a sexual dimorphism of IGF2 action. In male fetuses, IGF2 administration significantly increased fetal weight (+13±3%; P<0.05) and weight of fetal stomach (+42±10%; P<0.01), intestine (+26±5%; P<0.05), liver (+13±4%; P<0.05), and pancreas (+25±8%; P<0.05). Weights of heart, lungs, and kidneys were unchanged. In female fetuses, IGF2 increased only stomach weight (+26±9%; P<0.05). Furthermore, gene expression of insulin/IGF axis in the heart, lungs, liver, and stomach was more sensitive toward IGF2 treatment in male than in female fetuses.ConclusionData suggest that elevated circulating IGF2 in late pregnancy predominantly stimulates organ growth of the digestive system, and male fetuses are more susceptible toward the IGF2 effects than female fetuses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/pr.2017.221DOI Listing
January 2018

Human Placental Hofbauer Cells Maintain an Anti-inflammatory M2 Phenotype despite the Presence of Gestational Diabetes Mellitus.

Front Immunol 2017 31;8:888. Epub 2017 Jul 31.

Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.

Background: Hofbauer cells (HBCs) are macrophages of the feto-placental unit. Despite the general view that these cells have an anti-inflammatory M2 phenotype, recent studies have claimed that pregnancy pathologies-e.g., gestational diabetes mellitus (GDM)-cause a switch from an M2 to an M1 pro-inflammatory phenotype in HBCs. The pilot-study presented here challenges this claim, showing that HBCs maintain anti-inflammatory properties in spite of the hyperglycemic, low-grade inflammatory environment of GDM.

Methods: HBCs were isolated from placentae of healthy women ( = 5) and women with GDM ( = 6) diagnosed in the second trimester. FACS was used to measure surface markers associated with either M1 or M2 phenotype on the cells. In addition, placental tissue sections were subjected to immune histochemical imaging to assess the phenotype within the tissue context. Supernatant from control and GDM HBCs was collected at defined time points and used in a multiplex ELISA-on-beads approach to assess secretion of cytokines, chemokines, and growth factors. The effect of HBC cell culture supernatant on placental endothelial activation was investigated.

Results: FACS and immune staining showed that, indeed, M2 markers, such as CD206 and CD209, are increased in HBCs isolated from GDM placentae. Also, the M1 marker CD86 was increased, but only by trend. Secretion of numerous cytokines, chemokines and growth factors was not changed; pro-inflammatory interleukin (IL)-1β and IL-6 release form GDM HBC was increased but not significant. Exposure to GDM HBC supernatant did not induce cell adhesion molecules (VCAM-1, selectins, vascular endothelial-cadherin) in placental endothelial cells compared to supernatant from control HBCs, an induction of intracellular adhesion molecule 1 was observed however.

Conclusion: Our study-although performed in a small set of patients-shows that placental macrophages maintain their anti-inflammatory, tissue remodeling M2 phenotype even in pregnancies affected by gestational diabetes. This consistent phenotype might be important for propagation of maternal tolerance toward the fetus and for protection of the fetus from a low-grade inflammatory environment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2017.00888DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534476PMC
July 2017

Maternal Type 1 diabetes activates stress response in early placenta.

Placenta 2017 02 16;50:110-116. Epub 2017 Jan 16.

Department of Obstetrics and Gynecology, Medical University of Graz, Austria. Electronic address:

Introduction: Human pregnancy and in particular the first trimester, is a period highly susceptible towards adverse insults such as oxidative stress, which may lead to inadequate embryonic and feto-placental development. Diabetes mellitus is associated with increased oxidative stress caused by hyperglycemia, reactive oxygen species (ROS) production and inflammatory signals. In pregnancy, diabetes elevates the risk for early pregnancy loss, preeclampsia and fetal growth restriction, pathologies that origin from early placental maldevelopment. We hypothesized that maternal Type 1 diabetes mellitus (T1DM) induces oxidative stress in the first trimester human placenta.

Methods: We quantified stress induced, cytoprotective proteins, i.e. heat shock protein (HSP)70 and heme oxygenase (HO)-1 and determined protein modifications as markers for oxidation and glycation, i.e. levels of 4-hydroxynonenal (HNE) or Nε-(carboxymethyl)lysine (CML) modified proteins. Moreover, we measured expression levels of enzymes involved in antioxidant defense in the first trimester (week 7-9) placenta of normal and T1DM women by immunoblot and real-time qPCR. Primary human trophoblasts were isolated from first trimester placenta and the effects of oxygen, hyperglycemia and the pro-inflammatory cytokine tumor necrosis factor (TNF)-α on levels of HSP70 and HO-1 were analyzed.

Results: HSP70 (+19.9± 10.1%) and HO-1 (+63.5± 14.5%) were elevated (p < 0.05) in first trimester placenta of T1DM women when compared to normal women. However, levels of HNE or CML modified proteins were unchanged. Also, expression of most antioxidant enzymes was unchanged, with only superoxide dismutase 3 (SOD3) being upregulated by 3.0-fold (p < 0.05). In isolated primary trophoblasts, HSP70 and HO-1 were upregulated by increasing oxygen tension, but not by hyperglycemia or TNF-α.

Conclusion: Although protein oxidation and glycation was not elevated, we infer that T1DM increases placental cellular stress in the first trimester. Elevated stress in early placenta of T1DM women may contribute to disturbances in placental development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.placenta.2017.01.118DOI Listing
February 2017

GDM alters paracrine regulation of feto-placental angiogenesis via the trophoblast.

Lab Invest 2017 04 23;97(4):409-418. Epub 2017 Jan 23.

Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.

Feto-placental angiogenesis and vascular development are tightly regulated by pro- and anti-angiogenic factors. Villous trophoblast may be a major source of these factors. It forms the classical placental barrier between mother and fetus, and is thus exposed to maternal influences as well. Metabolic and hormonal derangements in gestational diabetes mellitus (GDM) affect feto-placental angiogenesis and vascular growth. Here we hypothesized that GDM alters the trophoblast secretome, which will modulate the paracrine regulation of feto-placental angiogenesis. Primary term trophoblasts were isolated from normal (n=6) and GDM (n=6) pregnancies. Trophoblast conditioned medium (CM) was used to investigate paracrine effects of normal and GDM-exposed trophoblasts on feto-placental endothelial cells (fpECs; n=7), using functional assays for 2D network formation, wound healing, chemotaxis, and proliferation. Gene expression of 23 pro- and anti-angiogenic factors was analyzed. Four trophoblast-derived paracrine regulators of angiogenesis were specifically measured in CM. CM from GDM trophoblasts increased 2D network formation of fpEC by 2.4-fold (P<0.001), whereas wound healing was attenuated by 1.8-fold (P=0.02) and chemo-attraction to the CM was reduced by 33±9% (P=0.02). The effect of CM on proliferation was unchanged between normal and GDM trophoblasts. Expression analysis of pro- and anti-angiogenic molecules in normal and GDM trophoblasts revealed significant differences in ANGPT2, HGF, KISS1 and PLGF expression. Analysis of secreted proteins demonstrated reduced pigment epithelium derived factor and tumor necrosis factor-α secretion by GDM trophoblasts. GDM alters the balance of trophoblast derived, angiogenesis modulating paracrine factors. This may contribute to GDM-associated changes in placental angiogenesis and vascular structure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.2016.149DOI Listing
April 2017

Placental DAPK1 and autophagy marker LC3B-II are dysregulated by TNF-α in a gestational age-dependent manner.

Histochem Cell Biol 2017 Jun 17;147(6):695-705. Epub 2017 Jan 17.

Institute of Cell Biology, Histology and Embryology, Medical University Graz, Harrachgasse 21/VII, 8010, Graz, Austria.

Autophagy, a cell-survival process responsible for degradation of protein aggregates and damaged organelles, is increasingly recognized as another mechanism essential for human placentation. A substantial body of experiments suggests inflammation and oxidative stress as the underlying stimuli for altered placental autophagy, giving rise to placenta dysfunction and pregnancy pathologies. Here, the hypothesis is tested whether or not pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α are able to influence the expression profile of autophagy genes in human first-trimester villous placenta. Autophagy-focused qPCR arrays identified substantial downregulation of death-associated protein kinase 1 (DAPK1) in first-trimester placental explants in response to IL-6 and TNF-α, respectively. Immunohistochemistry of placental explants detected considerable DAPK1 staining in placental macrophages, villous cytotrophoblasts and less intense in the syncytiotrophoblast. Both immunohistochemistry and Western blot showed decreased DAPK1 protein in TNF-α-treated placental explants compared to control. On cellular level, DAPK1 expression decreased in SGHPL-4 trophoblasts in response to TNF-α. Observed changes in the expression profile of autophagy-related genes were reflected by significantly decreased lipidation of autophagy marker microtubule-associated protein light chain 3 beta (LC3B-II) in first trimester placental explants in response to TNF-α. Analysis of TNF-α-treated term placental explants showed decreased DAPK1 protein, whereas in contrast to first-trimester LC3B expression and lipidation increased. Immunohistochemistry of placental tissues from early-onset preeclampsia (PE) showed less DAPK1 staining, when compared to controls. Accordingly, DAPK1 mRNA and protein were decreased in primary trophoblasts isolated from early-onset PE, while LC3B-I and -II were increased. Results from this study suggest that DAPK1, a regulator of apoptosis, autophagy and programmed necrosis, decreases in human placenta in response to elevated maternal TNF-α, irrespective of gestational age. In contrast, TNF-α differentially regulates levels of autophagy marker LC3B in human placenta over gestation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-016-1537-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429897PMC
June 2017

Endothelin-1 down-regulates matrix metalloproteinase 14 and 15 expression in human first trimester trophoblasts via endothelin receptor type B.

Hum Reprod 2017 01 17;32(1):46-54. Epub 2016 Nov 17.

Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria.

Study Question: Does endothelin-1 (ET-1) regulate matrix metalloproteinase (MMP) 14 and 15 production and invasion of human first trimester trophoblasts?

Summary Answer: ET-1 in pathophysiological concentrations down-regulates MMP14 and MMP15 expression via endothelin receptor (ETR) type B and decreases trophoblast migration and invasion.

What Is Known Already: MMP14 and MMP15 are involved in trophoblast invasion. Impairment of invasion has been linked to pregnancy complications such as pre-eclampsia (PE). ET-1 is up-regulated in PE.

Study Design, Size, Duration: In vitro study using primary human trophoblasts from 50 first trimester placentas (gestational week 7-12).

Participants/materials, Setting, Methods: Trophoblasts were cultured in the absence or presence of 10-100 nM ET-1. MMP14 and MMP15 mRNA and protein were quantified by RT-qPCR and Western blotting, respectively. Selective antagonists for ETRA (BQ-123) or ETRB (BQ-788) were used to identify ETR subtypes involved. Functional ET-1 effects were tested in first trimester chorionic villous explants and transwell invasion assays. The roles of tumor necrosis factor (TNF)-α (25 ng/ml) and oxygen (1%) in ET-1 regulation of MMP14 and 15 expression were assessed by Western blotting.

Main Results And The Role Of Chance: ET-1 down-regulated MMP14 and MMP15 mRNA (-21% and -26%, respectively, P < 0.05) and protein levels (-18% and -22%, respectively, P < 0.05). This effect was mediated via ETRB. ET-1 decreased trophoblast outgrowth in placental explants (-24%, P < 0.05) and trophoblast invasion (-26%, P ≤ 0.01). TNF-α enhanced ET-1 mediated MMP15 down-regulation (by 10%, P < 0.05), whereas hypoxia abolished the effect of ET-1 on both MMPs.

Large Scale Data: N/A.

Limitations, Reasons For Caution: Only primary trophoblasts were used in this study. Since trophoblast yield from first trimester placental material is limited, further aspects of MMP14 and 15 regulation could not be characterized. Other anti-invasive factors may be altered by ET-1 in trophoblasts and, thus, contribute to the reduced invasion, but have not been investigated. Oxygen levels similar to those found in the decidua (5-8% O) were not analyzed in this study.

Wider Implications Of The Findings: ET-1 modifies placental function already during the first trimester of pregnancy, the time-window when the placental changes implicated in PE occur. Thus, our results improve the understanding of the placental mechanisms underlying trophoblast invasion and PE.

Study Funding/competing Interests: The study was funded by the Oesterreichische Nationalbank (Anniversary Fund, project number: 14796) and the Herzfelder'sche Familienstiftung (to J.P.; number: 00685). AMM received funding from the Austrian Science Fund FWF (W1241) and the Medical University Graz through the PhD Program Molecular Fundamentals of Inflammation (DK-MOLIN). The authors have no conflict of interest.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/dew295DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5165079PMC
January 2017

Pigment epithelium-derived factor (PEDF): a novel trophoblast-derived factor limiting feto-placental angiogenesis in late pregnancy.

Angiogenesis 2016 07 8;19(3):373-88. Epub 2016 Jun 8.

Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria.

The rapidly expanding feto-placental vasculature needs tight control by paracrine and endocrine mechanisms. Here, we focused on paracrine influence by trophoblast, the placental epithelium. We aimed to identify differences in regulation of feto-placental angiogenesis in early versus late pregnancy. To this end, the effect of conditioned media (CM) from early and late pregnancy human trophoblast was tested on network formation, migration and proliferation of human feto-placental endothelial cells. Only CM of late pregnancy trophoblast reduced network formation and migration. Screening of trophoblast transcriptome for anti-angiogenic candidates identified pigment epithelium-derived factor (PEDF) with higher expression and protein secretion in late pregnancy trophoblast. Addition of a PEDF-neutralizing antibody restored the anti-angiogenic effect of CM from late pregnancy trophoblast. Notably, human recombinant PEDF reduced network formation only in combination with VEGF. Also in the CAM assay, the combination of PEDF with VEGF reduced branching of vessels below control levels. Analysis of phosphorylation of ERK1/2 and FAK, two key players in VEGF-induced proliferation and migration, revealed that PEDF altered VEGF signaling, while PEDF alone did not affect phosphorylation of ERK1/2 and FAK. These data suggest that the trophoblast-derived anti-angiogenic molecule PEDF is involved in restricting growth and expansion of the feto-placental endothelium predominantly in late pregnancy and targets to modulate the intracellular effect of VEGF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10456-016-9513-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930480PMC
July 2016

Post-transcriptional down regulation of ICAM-1 in feto-placental endothelium in GDM.

Cell Adh Migr 2016 03 13;10(1-2):18-27. Epub 2016 Jan 13.

a Department of Obstetrics and Gynecology , Medical University of Graz , Austria.

Maternal gestational diabetes (GDM) is associated with hyperglycaemia and hyperinsulinemia in the fetal circulation which consequently may induce endothelial dysfunction in the feto-placental vasculature. In fact, feto-placental vasculature reveals various morphological changes in response to GDM. The cell adhesion molecules (CAMs) ICAM-1, VCAM-1 and E-selectin promote attachment and trans-endothelial migration of leukocytes, and are up regulated in inflammation and endothelial dysfunction. Thus, we hypothesized that the GDM environment upregulates ICAM-1, VCAM-1 and E-selectin in the feto-placental endothelium. We isolated primary feto-placental endothelial cells (fpEC) after normal (n=18) and GDM pregnancy (n=11) and analyzed mRNA (RT-qPCR) and protein expression (Immunoblot) of ICAM-1, VCAM-1 and E-selectin. While other CAMs were unchanged on mRNA and protein levels, ICAM-1 protein was decreased by GDM. Further analysis revealed also a decrease in the release of soluble ICAM-1 (sICAM-1), whose levels correlated negatively with maternal BMI. We conclude that this reduction of ICAM-1 protein species is the result of post-translational regulation, since ICAM-1 mRNA expression was unchanged. In fact, miRNAs targeting ICAM-1 were upregulated in GDM fpEC. Immunohistochemistry showed weaker ICAM-1 staining in the placental endothelium after GDM pregnancies, and demonstrated ICAM-1 binding partners CD11a and CD18 expressed on leukocytes in fetal circulation and on placental tissue macrophages. This study identified reduction of ICAM-1 protein in fpEC in GDM pregnancy, which was regulated post-transcriptionally. Low ICAM-1 protein production may represent a protective, placenta-specific mechanism to avoid leukocyte transmigration into the placenta in response to GDM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/19336918.2015.1127467DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853051PMC
March 2016

TNF-α alters the inflammatory secretion profile of human first trimester placenta.

Lab Invest 2016 Apr 11;96(4):428-38. Epub 2016 Jan 11.

Institute of Cell Biology, Histology and Embryology, Medical University Graz, Graz, Austria.

Implantation and subsequent placental development depend on a well-orchestrated interaction between fetal and maternal tissues, involving a fine balanced synergistic cross-talk of inflammatory and immune-modulating factors. Tumor necrosis factor (TNF)-α has been increasingly recognized as pivotal factor for successful pregnancy, although high maternal TNF-α levels are associated with a number of adverse pregnancy conditions including gestational hypertension and gestational diabetes mellitus. This study describes effects of exogenously applied TNF-α, mimicking increased maternal TNF-α levels, on the secretion profile of inflammation associated factors in human first trimester villous placenta. Conditioned culture media from first trimester villous placental explants were analyzed by inflammation antibody arrays and ELISA after 48 h culture in the presence or absence of TNF-α. Inflammation antibody arrays identified interleukin (IL)-6, IL-8, chemokine (C-C motif) ligand 2 (CCL2), CCL4, and granulocyte-macrophage colony-stimulating factor (GM-CSF) as the most abundantly secreted inflammation-associated factors under basal culture conditions. In the presence of TNF-α, secretion of GM-CSF, CCL5, and IL-10 increased, whereas IL-4 and macrophage CSF levels decreased compared with controls. ELISA analysis verified antibody arrays by showing significantly increased synthesis and release of GM-CSF and CCL5 by placental explants in response to TNF-α. Immunohistochemistry localized GM-CSF in the villous trophoblast compartment, whereas CCL5 was detected in maternal platelets adhering to perivillous fibrin deposits on the villous surface. mRNA-based in situ padlock probe approach localized GM-CSF and CCL5 transcripts in the villous trophoblast layer and the villous stroma. Results from this study suggest that the inflammatory secretion profile of human first trimester placenta shifts towards increased levels of GM-CSF, CCL5, and IL10 in response to elevated maternal TNF-α levels, whereas IL-6 and IL-8 remain unaffected. This shift may represent a protective mechanism by human first trimester villous placenta to sustain trophoblast function and dampen inflammatory processes in the intervillous space.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.2015.159DOI Listing
April 2016

Placental membrane-type metalloproteinases (MT-MMPs): Key players in pregnancy.

Cell Adh Migr 2016 03 8;10(1-2):136-46. Epub 2016 Jan 8.

a Department of Obstetrics and Gynecology , Medical University of Graz , Graz , Austria.

Membrane-type matrix metalloproteinases (MT-MMPs) are a sub-family of zinc-dependent endopeptidases involved in the degradation of the extracellular matrix. Although MT-MMPs have been mainly characterized in tumor biology, they also play a relevant role during pregnancy. Placental MT-MMPs are required for cytotrophoblast migration and invasion of the uterine wall and in the remodeling of the spiral arteries. They are involved in the fusion of cytotrophoblasts to form the syncytiotrophoblast as well as in angiogenesis. All these processes are crucial for establishing and maintaining a successful pregnancy and, thus, MT-MMP activity has to be tightly regulated in time and space. Indeed, a de-regulation of MT-MMP expression has been linked with pregnancy complications such as preeclampsia (PE), fetal growth restriction (FGR), gestational diabetes mellitus (GDM) and was also found in maternal obesity. Here we review what is currently known about MT-MMPs in the placenta, with a focus on their general features, their localization and their involvement in pregnancy disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/19336918.2015.1110671DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853033PMC
March 2016

Different Preference of Degradome in Invasion versus Angiogenesis.

Cells Tissues Organs 2014 11;200(3-4):181-94. Epub 2015 Jun 11.

Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria.

Proteases are required for a multitude of cellular processes including homeostatic tissue remodelling, invasion and angiogenesis. The physiological function of a cell or tissue is reflected by the set of proteases expressed, also termed degradome. The role of proteases in invasion and angiogenesis has been studied intensively, mostly in cancer. We aimed to compare the set of proteases required for physiological invasion versus physiological angiogenesis from cells deriving from the same organ, and to identify the proteases specific for each process. The human placenta comprises trophoblasts that invade the maternal uterus in a regulated, physiological manner, and it is the source of primary endothelial cells. We isolated the trophoblasts and endothelial cells and verified their invasive phenotype and angiogenic properties, respectively. We then performed gene expression analysis of the degradome, e.g. cysteine, metallo, serine, threonine and aspartic proteases, identified the differentially expressed proteases among the trophoblasts and endothelial cells, and clustered them hierarchically. The results revealed that the set of proteases in trophoblasts versus in endothelial cells overlaps, with a total of 69% in common. Nevertheless, 42% of the studied degradomes differed, with a fold change ≥2. For instance, metalloproteinases were predominantly expressed in trophoblasts, and 31% of the proteases were exclusively expressed in either trophoblasts or endothelial cells; this suggests particular roles for these proteases in either invasion or angiogenesis. Our data identify common and distinct proteases in cells capable of performing invasion and angiogenesis, and may provide basic information for the design of techniques to specifically investigate invasion or angiogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000381766DOI Listing
March 2016

GDM Alters Expression of Placental Estrogen Receptor α in a Cell Type and Gender-Specific Manner.

Reprod Sci 2015 Dec 6;22(12):1488-95. Epub 2015 May 6.

Department of Obstetrics and Gynecology, Ludwig Maximilians Universität München, Campus Innenstadt, Munich, Germany

Objective: The nuclear receptor estrogen receptor α (ERα) is one of the key players in energy balance, insulin resistance, and trophoblast differentiation. We tested the hypothesis that gestational diabetes mellitus (GDM) alters expression of placental ERα in a cell type-specific manner and that this regulation may involve epigenetic changes.

Study Design: Expression of ERα was analyzed by immunohistochemistry using the semiquantitative immunoreactive score in 80 placentas (40 GDM/40 controls). Quantitative real-time polymerase chain reaction (PCR) measured ERα messenger RNA (mRNA) in decidual tissue. Methylation-specific PCR was performed to analyze cytosine-phosphatidyl-guanine-island methylation of the ERα promoter.

Results: Expression of ERα protein is upregulated (P = .011) in GDM in extravillous trophoblasts but not in syncytiotrophoblast. Gestational diabetes mellitus downregulated ERα in decidual vessels only in pregnancies with male but not female fetuses. Furthermore, mRNA of the ERα encoding gene estrogen receptor gene 1 (ESR1) was increased (+1.77 fold) in GDM decidua when compared to controls (P = .024). In parallel, the promoter of ESR1 was methylated only in decidua of healthy control individuals but not in GDM.

Conclusion: Gestational diabetes mellitus affects expression of placental ERα in a cell type-dependent way, on epigenetic level. These data link GDM with epigenetic deregulations of ERα expression and open new insights into the intrauterine programming hypothesis of GDM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1933719115585147DOI Listing
December 2015

Placental fractalkine mediates adhesion of THP-1 monocytes to villous trophoblast.

Histochem Cell Biol 2015 Jun 8;143(6):565-74. Epub 2015 Jan 8.

Institute of Cell Biology, Histology and Embryology, Medical University Graz, Harrachgasse 21/VII, 8010, Graz, Austria.

The chemokine fractalkine (CX3CL1) recently attracted increasing attention in the field of placenta research due to its dual nature, acting both as membrane-bound and soluble forms. While the membrane-bound form mediates flow-resistant adhesion of leukocytes to endothelial and epithelial cells via its corresponding receptor CX3CR1, the soluble form arises from metalloprotease-dependent shedding and bears chemoattractive activity for monocytes, natural killer cells and T cells. In human placenta, fractalkine is expressed at the apical microvillous plasma membrane of the syncytiotrophoblast, which may enable close physical contact with circulating maternal leukocytes. Based on these observations, we tested the hypothesis that fractalkine mediates adhesion of monocytes to the villous trophoblast. Forskolin-induced differentiation and syncytialization of the trophoblast cell line BeWo was accompanied with a substantial upregulation in fractalkine expression and led to increased adhesion of the monocyte cell line THP-1, which preferentially bound to syncytia. Blocking as well as silencing of the fractalkine receptor CX3CR1 proved involvement of the fractalkine/CX3CR1 system in adherence of THP-1 monocytes to villous trophoblast. Pre-incubation of THP-1 monocytes with human recombinant fractalkine as well as silencing of CX3CR1 expression in THP-1 monocytes significantly impaired their adherence to BeWo cells and primary term trophoblasts. The present study suggests fractalkine as another candidate among the panel of adhesion molecules enabling stable interaction between leukocytes and the syncytiotrophoblast.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-014-1304-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487366PMC
June 2015

Diabetes-associated changes in the fetal insulin/insulin-like growth factor system are organ specific in rats.

Pediatr Res 2015 Jan 30;77(1-1):48-55. Epub 2014 Sep 30.

Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.

Background: Diabetes in pregnancy affects fetal growth and development. The insulin/insulin-like growth factors (IGF) system comprising insulin, IGF, their receptors, and binding proteins, has been implicated in fetal growth regulation. This study tested the hypothesis that maternal diabetes alters the fetal insulin/IGF system in a tissue-specific manner.

Methods: Wistar rats were rendered diabetic by neonatal administration of streptozotocin and mated with control rats. At day 21 of gestation, the weights of fetuses, placentas, and fetal organs (heart, lung, liver, stomach, intestine, and pancreas) were determined. Maternal and fetal plasma concentrations of insulin, IGF1, and IGF2 were measured by ELISA, and expression of IGF1, IGF2, IGF1R, IGF2R, IR, IGFBP1, BP2, and BP3 in placenta and fetal organs by qPCR.

Results: The well-known increase in fetal growth in this model of mild diabetes is accompanied by elevated insulin and IGF1 levels and alterations of the insulin/IGF system in the fetus and the placenta. These alterations were organ and gene specific. The insulin/IGF system was generally upregulated, especially in the fetal heart, while it was downregulated in fetal lung.

Conclusion: In our model of mild diabetes, the effect of maternal diabetes on fetal weight and fetal insulin/IGF system expression is organ specific with highly sensitive organs such as lung and heart, and organs that were less affected, such as stomach.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/pr.2014.139DOI Listing
January 2015

Glucose, insulin, and oxygen interplay in placental hypervascularisation in diabetes mellitus.

Biomed Res Int 2014 2;2014:145846. Epub 2014 Sep 2.

Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria.

The placental vasculature rapidly expands during the course of pregnancy in order to sustain the growing needs of the fetus. Angiogenesis and vascular growth are stimulated and regulated by a variety of growth factors expressed in the placenta or present in the fetal circulation. Like in tumors, hypoxia is a major regulator of angiogenesis because of its ability to stimulate expression of various proangiogenic factors. Chronic fetal hypoxia is often found in pregnancies complicated by maternal diabetes as a result of fetal hyperglycaemia and hyperinsulinemia. Both are associated with altered levels of hormones, growth factors, and proinflammatory cytokines, which may act in a proangiogenic manner and, hence, affect placental angiogenesis and vascular development. Indeed, the placenta in diabetes is characterized by hypervascularisation, demonstrating high placental plasticity in response to diabetic metabolic derangements. This review describes the major regulators of placental angiogenesis and how the diabetic environment in utero alters their expression. In the light of hypervascularized diabetic placenta, the focus was placed on proangiogenic factors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2014/145846DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167234PMC
May 2016

Gestational diabetes mellitus upregulates vitamin D receptor in extravillous trophoblasts and fetoplacental endothelial cells.

Reprod Sci 2015 Mar 15;22(3):358-66. Epub 2014 Jul 15.

Department of Obstetrics and Gynecology, Ludwig-Maximilians-Universität, Munich, Germany

Objective: Gestational diabetes mellitus (GDM) is often accompanied by low maternal vitamin D, that is, calcitriol (1,25[OH]2 vitamin D3), levels. Here, we tested the hypothesis that the placental vitamin D receptor (VDR) is regulated by calcitriol and altered in GDM with distinct changes in different placental cell types. Specifically, we aimed to localize VDR in human term placentas from normal and GDM pregnancies, to quantify its cellular expression and to study in vitro its regulation by its physiological agonist calcitriol.

Study Design: Placental tissue slides of 80 patients (40 with GDM/40 controls) were double stained for VDR and human leukocyte antigen G to identify extravillous trophoblasts (EVTs). Staining intensity was semiquantified. Quantitative real time-polymerase chain reaction and Western blotting measured VDR messenger RNA (mRNA) and protein in decidual tissue. The trophoblast cell line BeWo was used to study in vitro VDR regulation by calcitriol (0.01, 0.1, and 1 nmol/mL).

Results: Vitamin D receptor protein and mRNA levels are upregulated (P < .05) in EVT (1.8-fold) as well as in placental endothelium (5.8-fold) of patients with GDM. Expression of VDR is regulated by calcitriol in a bimodal manner: high doses (0.1 and 1 nmol/mL) caused downregulation, whereas the low dose (0.01 nmol/mL) resulted in VDR upregulation.

Conclusion: Vitamin D receptor is upregulated in EVT and endothelium of GDM placentas. This could be due to low maternal vitamin D levels in patients with GDM because in vitro low calcitriol doses upregulate VDR in trophoblast cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1933719114542020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352142PMC
March 2015

The human placental sexome differs between trophoblast epithelium and villous vessel endothelium.

PLoS One 2013 29;8(10):e79233. Epub 2013 Oct 29.

Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.

Molecular mechanisms underlying sexual dimorphism in mammals, fetal sex influences on intrauterine development, and the sex-biased susceptibility for selected diseases in adulthood are novel areas of current research. As importantly, two decades of multifaceted research has established that susceptibility to many adult disorders originates in utero, commonly secondary to the effects of placental dysfunction. We hypothesized that fetal sex influences gene expression and produces functional differences in human placentas. We thus extended previous studies on sexual dimorphism in mammals, which used RNA isolated from whole tissues, to investigate the effects of sex on four cell-phenotypes within a single key tissue, human placental villi. The cells studied included cytotrophoblasts, syncytiotrophoblast, arterial and venous endothelial cells. The cells were isolated from placentas of male or female fetuses and subjected to microarray analysis. We found that fetal sex differentially affected gene expression in a cell-phenotype dependent manner among all four cell-phenotypes. The markedly enriched pathways in males were identified to be signaling pathways for graft-versus-host disease as well as the immune and inflammatory systems that parallel the reported poorer outcome of male fetuses. Our study is the first to compare global gene expression by microarray analysis in purified, characterized, somatic cells from a single human tissue, i.e. placental villi. Importantly, our findings demonstrate that there are cell-phenotype specific, and tissue-specific, sex-biased responses in the human placenta, suggesting fetal sex should be considered as an independent variable in gene expression analysis of human placental villi.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079233PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812163PMC
February 2015

Macrophage-derived IL-33 is a critical factor for placental growth.

J Immunol 2013 Oct 30;191(7):3734-43. Epub 2013 Aug 30.

Reproductive Biology Unit, Department of Obstetrics and Fetal-Maternal Medicine, Medical University of Vienna, 1090 Vienna, Austria;

IL-33, the most recently discovered member of the IL-1 superfamily and ligand for the transmembrane form of ST2 (ST2L), has been linked to several human pathologies including rheumatoid arthritis, asthma, and cardiovascular disease. Deregulated levels of soluble ST2, the natural IL-33 inhibitor, have been reported in sera of preeclamptic patients. However, the role of IL-33 during healthy pregnancy remains elusive. In the current study, IL-33 was detected in the culture supernatants of human placental and decidual macrophages, identifying them as a major source of secreted IL-33 in the uteroplacental unit. Because flow cytometry and immunofluorescence stainings revealed membranous ST2L expression on specific trophoblast populations, we hypothesized that IL-33 stimulates trophoblasts in a paracrine manner. Indeed, BrdU incorporation assays revealed that recombinant human IL-33 significantly increased proliferation of primary trophoblasts as well as of villous cytotrophoblasts and cell column trophoblasts in placental explant cultures. These effects were fully abolished upon addition of soluble ST2. Interestingly, Western blot and immunofluorescence analyses demonstrated that IL-33 activates AKT and ERK1/2 in primary trophoblasts and placental explants. Inhibitors against PI3K (LY294002) and MEK1/2 (UO126) efficiently blocked IL-33-induced proliferation in all model systems used. In summary, with IL-33, we define for the first time, to our knowledge, a macrophage-derived regulator of placental growth during early pregnancy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1300490DOI Listing
October 2013

Variable promoter methylation contributes to differential expression of key genes in human placenta-derived venous and arterial endothelial cells.

BMC Genomics 2013 Jul 15;14:475. Epub 2013 Jul 15.

Cancer and Disease Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Melbourne, Australia.

Background: The endothelial compartment, comprising arterial, venous and lymphatic cell types, is established prenatally in association with rapid phenotypic and functional changes. The molecular mechanisms underpinning this process in utero have yet to be fully elucidated. The aim of this study was to investigate the potential for DNA methylation to act as a driver of the specific gene expression profiles of arterial and venous endothelial cells.

Results: Placenta-derived venous and arterial endothelial cells were collected at birth prior to culturing. DNA methylation was measured at >450,000 CpG sites in parallel with expression measurements taken from 25,000 annotated genes. A consistent set of genomic loci was found to show coordinate differential methylation between the arterial and venous cell types. This included many loci previously not investigated in relation to endothelial function. An inverse relationship was observed between gene expression and promoter methylation levels for a limited subset of genes implicated in endothelial function, including NOS3, encoding endothelial Nitric Oxide Synthase.

Conclusion: Endothelial cells derived from the placental vasculature at birth contain widespread methylation of key regulatory genes. These are candidates involved in the specification of different endothelial cell types and represent potential target genes for environmentally mediated epigenetic disruption in utero in association with cardiovascular disease risk later in life.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2164-14-475DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729658PMC
July 2013

Hyperinsulinemia stimulates angiogenesis of human fetoplacental endothelial cells: a possible role of insulin in placental hypervascularization in diabetes mellitus.

J Clin Endocrinol Metab 2013 Sep 3;98(9):E1438-47. Epub 2013 Jul 3.

Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria.

Context: The insulin/IGF system regulates fetal and placental growth and development. In a pregnancy complicated by maternal diabetes, placentas are hypervascularized and fetal insulin levels are elevated. In the fetal circulation, insulin can act on the placenta through insulin receptors present on the fetoplacental endothelial cells.

Objective: We hypothesized that insulin exerts proangiogenic effects on the fetoplacental endothelial cells, thereby contributing to the placental hypervascularization in diabetes.

Design: The effect of insulin on angiogenesis and proliferation of human fetoplacental endothelial cells was investigated by a 2-dimensional network formation assay, staining for actin fibers, automatic cell counting, and cell cycle analysis. The signaling pathways involved were identified using antibodies against activated signaling proteins and pharmacological inhibitors.

Results: Insulin enhanced network formation by 23% (P < .05%) and caused actin reorganization. Insulin stimulated (P < .05) phosphorylation of insulin receptor (+320%), and insulin receptor substrate-1 (+140%), Akt (+177%), glycogen-synthase kinase-β3 (+70%), and endothelial nitric oxide synthase (eNOS; +100%) increased nitric oxide production and activated Ras-related C3 botulinum toxin substrate 1 (Rac1). Insulin did not induce ERK1/2 phosphorylation or proliferation. Inhibition of phosphatidylinositol 3-kinase, eNOS, and Rac1 signaling abolished the effects on network formation.

Conclusions: Elevated fetal insulin levels may contribute to the placental hypervascularization in diabetes via the phosphatidylinositol 3-kinase/Akt/eNOS pathway and involve Rac1. However, insulin does not stimulate proliferation and may need to cooperate with other growth factors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2013-1210DOI Listing
September 2013
-->