Publications by authors named "Umut Gerlevik"

3 Publications

  • Page 1 of 1

Identifying and elucidating the roles of Y198N and Y204F mutations in the PAH enzyme through molecular dynamic simulations.

J Biomol Struct Dyn 2021 May 10:1-12. Epub 2021 May 10.

Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey.

Phenylketonuria is an autosomal recessive disorder caused by mutations in the phenylalanine hydroxylase gene. In phenylketonuria causes various symptoms including severe mental retardation. PAH gene of a classical Phenylketonuria patient was sequenced, and two novel heterozygous mutations, p.Y198N and p.Y204F, were found. This study aimed to reveal the impacts of these variants on the structural stability of the PAH enzyme. analyses using prediction tools and molecular dynamics simulations were performed. Mutations were introduced to the wild type catalytic monomer and full length tetramer crystal structures. Variant pathogenicity analyses predicted p.Y198N to be damaging, and p.Y204F to be benign by some prediction tools and damaging by others. Simulations suggested p.Y198N mutation cause significant fluctuations in the spatial organization of two catalytic residues in the temperature accelerated MD simulations with the monomer and increased root-mean-square deviations in the tetramer structure. p.Y204F causes noticeable changes in the spatial positioning of T278 suggesting a possible segregation from the catalytic site in temperature accelerated MD simulations with the monomer. This mutation also leads to increased root-mean-square fluctuations in the regulatory domain which may lead to conformational change resulting in inhibition of dimerization and enzyme activation. Our study reports two novel mutations in the PAH gene and gives insight to their effects on the PAH activity. MD simulations did not yield conclusive results that explains the phenotype but gave plausible insight to possible effects which should be investigated further with and studies to assess the roles of these mutations in etiology of PKU. Communicated by Ramaswamy H. Sarma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2021.1921619DOI Listing
May 2021

Mutations and Copy Number Alterations in Wild-Type Glioblastomas Are Shaped by Different Oncogenic Mechanisms.

Biomedicines 2020 Dec 7;8(12). Epub 2020 Dec 7.

Department of Neurosurgery, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey.

Little is known about the mutational processes that shape the genetic landscape of gliomas. Numerous mutational processes leave marks on the genome in the form of mutations, copy number alterations, rearrangements or their combinations. To explore gliomagenesis, we hypothesized that gliomas with different underlying oncogenic mechanisms would have differences in the burden of various forms of these genomic alterations. This was an analysis on adult diffuse gliomas, but -mutant gliomas as well as diffuse midline gliomas -K27M were excluded to search for the possible presence of new entities among the very heterogenous group of -WT glioblastomas. The cohort was divided into two molecular subsets: (1) Molecularly-defined GBM (mGBM) as those that carried molecular features of glioblastomas (including promoter mutations, 7/10 pattern, or -amplification), and (2) those who did not (others). Whole exome sequencing was performed for 37 primary tumors and matched blood samples as well as 8 recurrences. Single nucleotide variations (SNV), short insertion or deletions (indels) and copy number alterations (CNA) were quantified using 5 quantitative metrics (SNV burden, indel burden, copy number alteration frequency-wGII, chromosomal arm event ratio-CAER, copy number amplitude) as well as 4 parameters that explored underlying oncogenic mechanisms (chromothripsis, double minutes, microsatellite instability and mutational signatures). Findings were validated in the TCGA pan-glioma cohort. mGBM and "Others" differed significantly in their SNV (only in the TCGA cohort) and CNA metrics but not indel burden. SNV burden increased with increasing age at diagnosis and at recurrences and was driven by mismatch repair deficiency. On the contrary, indel and CNA metrics remained stable over increasing age at diagnosis and with recurrences. Copy number alteration frequency (wGII) correlated significantly with chromothripsis while CAER and CN amplitude correlated significantly with the presence of double minutes, suggesting separate underlying mechanisms for different forms of CNA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biomedicines8120574DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762325PMC
December 2020

HriGFP Novel Flourescent Protein: Expression and Applications.

Mol Biotechnol 2020 May;62(5):280-288

Department of Biosciences, Comsats University Islamabad Campus, Islamabad, Pakistan.

Biosensors based on microbial cells have been developed to monitor environmental pollutants. These biosensors serve as inexpensive and convenient alternatives to the conventional lab based instrumental analysis of environmental pollutants. Small monomeric naturally occurring fluorescent proteins (fp) can be exploited by converting them as small biosensing devices for biomedical and environmental applications. Moreover, they can withstand exposure to denaturants, high temperature, and a wide pH range variation. The current study employs newly identified novel fluorescent protein HriGFP from Hydnophora rigida to detect environmental contaminants like heavy metals and organo-phosphorous (pesticide) compounds such as methyl parathion. The HriGFP was initially tested or its expression in bacterial systems (Gram positive and Gram negative) and later on for its biosensing capability in E coli (BL21DE3) for detection of heavy metals and methyl parathion was evaluated. Our results indicated the discrete and stable expression of HriGFP and a profound fluorescent quenching were observed in the presence of heavy metals (Hg, Cu, As) and methyl parathion. Structural analysis revealed heavy metal ions binding to HriGFP via amino acid residues. In-silico-analysis further revealed strong interaction via hydrogen bonds between methyl parathion phosphate oxygen atoms and the amino group of Arg119 of HriGFP. This study implies that HriGFP can act as a biosensor for detecting harmful carcinogenic pesticide like methyl parathion in water resources in the vicinity of heavily pesticide impregnated agricultural lands and heavy metal contaminated water bodies around industrial areas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-020-00243-1DOI Listing
May 2020