Publications by authors named "Tucker J Netherton"

8 Publications

  • Page 1 of 1

Clinical implementation of automated treatment planning for whole-brain radiotherapy.

J Appl Clin Med Phys 2021 Jul 10. Epub 2021 Jul 10.

Department of Radiation Oncology, Hoag Hospital, Newport Beach, CA, USA.

The purpose of the study was to develop and clinically deploy an automated, deep learning-based approach to treatment planning for whole-brain radiotherapy (WBRT). We collected CT images and radiotherapy treatment plans to automate a beam aperture definition from 520 patients who received WBRT. These patients were split into training (n = 312), cross-validation (n = 104), and test (n = 104) sets which were used to train and evaluate a deep learning model. The DeepLabV3+ architecture was trained to automatically define the beam apertures on lateral-opposed fields using digitally reconstructed radiographs (DRRs). For the beam aperture evaluation, 1st quantitative analysis was completed using a test set before clinical deployment and 2nd quantitative analysis was conducted 90 days after clinical deployment. The mean surface distance and the Hausdorff distances were compared in the anterior-inferior edge between the clinically used and the predicted fields. Clinically used plans and deep-learning generated plans were evaluated by various dose-volume histogram metrics of brain, cribriform plate, and lens. The 1st quantitative analysis showed that the average mean surface distance and Hausdorff distance were 7.1 mm (±3.8 mm) and 11.2 mm (±5.2 mm), respectively, in the anterior-inferior edge of the field. The retrospective dosimetric comparison showed that brain dose coverage (D99%, D95%, D1%) of the automatically generated plans was 29.7, 30.3, and 32.5 Gy, respectively, and the average dose of both lenses was up to 19.0% lower when compared to the clinically used plans. Following the clinical deployment, the 2nd quantitative analysis showed that the average mean surface distance and Hausdorff distance between the predicted and clinically used fields were 2.6 mm (±3.2 mm) and 4.5 mm (±5.6 mm), respectively. In conclusion, the automated patient-specific treatment planning solution for WBRT was implemented in our clinic. The predicted fields appeared consistent with clinically used fields and the predicted plans were dosimetrically comparable.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acm2.13350DOI Listing
July 2021

Technical Note: Dose prediction for head and neck radiotherapy using a three-dimensional dense dilated U-net architecture.

Med Phys 2021 Jun 22. Epub 2021 Jun 22.

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Purpose: Radiation therapy treatment planning is a time-consuming and iterative manual process. Consequently, plan quality varies greatly between and within institutions. Artificial intelligence shows great promise in improving plan quality and reducing planning times. This technical note describes our participation in the American Association of Physicists in Medicine Open Knowledge-Based Planning Challenge (OpenKBP), a competition to accurately predict radiation therapy dose distributions.

Methods: A three-dimensional (3D) densely connected U-Net with dilated convolutions was developed to predict 3D dose distributions given contoured CT images of head and neck patients as input. While traditional augmentation techniques such as rotations and translations were explored, it was found that training on random patches alone resulted in the greatest model performance. A custom-weighted mean squared error loss function was employed. Finally, an ensemble of best-performing networks was used to generate the final challenge predictions.

Results: Our team (SuperPod) placed second in the dose stream of the OpenKBP challenge. The average mean absolute difference between the predicted and clinical dose distributions of the testing dataset was 2.56 Gy. On average, the predicted normalized target DVH metrics were within 3% of the clinical plans, and the predicted organ at risk DVH metrics were within 2 Gy of the clinical plans.

Conclusions: The developed 3D dense dilated U-Net architecture can accurately predict 3D radiotherapy dose distributions and can be used as part of a fully automated radiation therapy planning pipeline.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.14827DOI Listing
June 2021

Evaluation of a multiview architecture for automatic vertebral labeling of palliative radiotherapy simulation CT images.

Med Phys 2020 Nov 15;47(11):5592-5608. Epub 2020 Sep 15.

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.

Purpose: The purpose of this work was to evaluate the performance of X-Net, a multiview deep learning architecture, to automatically label vertebral levels (S2-C1) in palliative radiotherapy simulation CT scans.

Methods: For each patient CT scan, our automated approach 1) segmented spinal canal using a convolutional-neural network (CNN), 2) formed sagittal and coronal intensity projection pairs, 3) labeled vertebral levels with X-Net, and 4) detected irregular intervertebral spacing using an analytic methodology. The spinal canal CNN was trained via fivefold cross validation using 1,966 simulation CT scans and evaluated on 330 CT scans. After labeling vertebral levels (S2-C1) in 897 palliative radiotherapy simulation CT scans, a volume of interest surrounding the spinal canal in each patient's CT scan was converted into sagittal and coronal intensity projection image pairs. Then, intensity projection image pairs were augmented and used to train X-Net to automatically label vertebral levels using fivefold cross validation (n = 803). Prior to testing upon the final test set (n = 94), CT scans of patients with anatomical abnormalities, surgical implants, or other atypical features from the final test set were placed in an outlier group (n = 20), whereas those without these features were placed in a normative group (n = 74). The performance of X-Net, X-Net Ensemble, and another leading vertebral labeling architecture (Btrfly Net) was evaluated on both groups using identification rate, localization error, and other metrics. The performance of our approach was also evaluated on the MICCAI 2014 test dataset (n = 60). Finally, a method to detect irregular intervertebral spacing was created based on the rate of change in spacing between predicted vertebral body locations and was also evaluated using the final test set. Receiver operating characteristic analysis was used to investigate the performance of the method to detect irregular intervertebral spacing.

Results: The spinal canal architecture yielded centroid coordinates spanning S2-C1 with submillimeter accuracy (mean ± standard deviation, 0.399 ± 0.299 mm; n = 330 patients) and was robust in the localization of spinal canal centroid to surgical implants and widespread metastases. Cross-validation testing of X-Net for vertebral labeling revealed that the deep learning model performance (F score, precision, and sensitivity) improved with CT scan length. The X-Net, X-Net Ensemble, and Btrfly Net mean identification rates and localization errors were 92.4% and 2.3 mm, 94.2% and 2.2 mm, and 90.5% and 3.4 mm, respectively, in the final test set and 96.7% and 2.2 mm, 96.9% and 2.0 mm, and 94.8% and 3.3 mm, respectively, within the normative group of the final test set. The X-Net Ensemble yielded the highest percentage of patients (94%) having all vertebral bodies identified correctly in the final test set when the three most inferior and superior vertebral bodies were excluded from the CT scan. The method used to detect labeling failures had 67% sensitivity and 95% specificity when combined with the X-Net Ensemble and flagged five of six patients with atypical vertebral counts (additional thoracic (T13), additional lumbar (L6) or only four lumbar vertebrae). Mean identification rate on the MICCAI 2014 dataset using an X-Net Ensemble was increased from 86.8% to 91.3% through the use of transfer learning and obtained state-of-the-art results for various regions of the spine.

Conclusions: We trained X-Net, our unique convolutional neural network, to automatically label vertebral levels from S2 to C1 on palliative radiotherapy CT images and found that an ensemble of X-Net models had high vertebral body identification rate (94.2%) and small localization errors (2.2 ± 1.8 mm). In addition, our transfer learning approach achieved state-of-the-art results on a well-known benchmark dataset with high identification rate (91.3%) and low localization error (3.3 mm ± 2.7 mm). When we pre-screened radiotherapy CT images for the presence of hardware, surgical implants, or other anatomic abnormalities prior to the use of X-Net, it labeled the spine correctly in more than 97% of patients and 94% of patients when scans were not prescreened. Automatically generated labels are robust to widespread vertebral metastases and surgical implants and our method to detect labeling failures based on neighborhood intervertebral spacing can reliably identify patients with an additional lumbar or thoracic vertebral body.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.14415DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756475PMC
November 2020

The Emergence of Artificial Intelligence within Radiation Oncology Treatment Planning.

Oncology 2021 22;99(2):124-134. Epub 2020 Dec 22.

Department of Radiation Oncology and Radiation Therapy, Stanford University, Stanford, California, USA.

Background: The future of artificial intelligence (AI) heralds unprecedented change for the field of radiation oncology. Commercial vendors and academic institutions have created AI tools for radiation oncology, but such tools have not yet been widely adopted into clinical practice. In addition, numerous discussions have prompted careful thoughts about AI's impact upon the future landscape of radiation oncology: How can we preserve innovation, creativity, and patient safety? When will AI-based tools be widely adopted into the clinic? Will the need for clinical staff be reduced? How will these devices and tools be developed and regulated?

Summary: In this work, we examine how deep learning, a rapidly emerging subset of AI, fits into the broader historical context of advancements made in radiation oncology and medical physics. In addition, we examine a representative set of deep learning-based tools that are being made available for use in external beam radiotherapy treatment planning and how these deep learning-based tools and other AI-based tools will impact members of the radiation treatment planning team. Key Messages: Compared to past transformative innovations explored in this article, such as the Monte Carlo method or intensity-modulated radiotherapy, the development and adoption of deep learning-based tools is occurring at faster rates and promises to transform practices of the radiation treatment planning team. However, accessibility to these tools will be determined by each clinic's access to the internet, web-based solutions, or high-performance computing hardware. As seen by the trends exhibited by many technologies, high dependence on new technology can result in harm should the product fail in an unexpected manner, be misused by the operator, or if the mitigation to an expected failure is not adequate. Thus, the need for developers and researchers to rigorously validate deep learning-based tools, for users to understand how to operate tools appropriately, and for professional bodies to develop guidelines for their use and maintenance is essential. Given that members of the radiation treatment planning team perform many tasks that are automatable, the use of deep learning-based tools, in combination with other automated treatment planning tools, may refocus tasks performed by the treatment planning team and may potentially reduce resource-related burdens for clinics with limited resources.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000512172DOI Listing
February 2021

Generating High-Quality Lymph Node Clinical Target Volumes for Head and Neck Cancer Radiation Therapy Using a Fully Automated Deep Learning-Based Approach.

Int J Radiat Oncol Biol Phys 2021 03 14;109(3):801-812. Epub 2020 Oct 14.

Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas.

Purpose: To develop a deep learning model that generates consistent, high-quality lymph node clinical target volumes (CTV) contours for head and neck cancer (HNC) patients, as an integral part of a fully automated radiation treatment planning workflow.

Methods And Materials: Computed tomography (CT) scans from 71 HNC patients were retrospectively collected and split into training (n = 51), cross-validation (n = 10), and test (n = 10) data sets. All had target volume delineations covering lymph node levels Ia through V (Ia-V), Ib through V (Ib-V), II through IV (II-IV), and retropharyngeal (RP) nodes, which were previously approved by a radiation oncologist specializing in HNC. Volumes of interest (VOIs) about nodal levels were automatically identified using computer vision techniques. The VOI (cropped CT image) and approved contours were used to train a U-Net autosegmentation model. Each lymph node level was trained independently, with model parameters optimized by assessing performance on the cross-validation data set. Once optimal model parameters were identified, overlap and distance metrics were calculated between ground truth and autosegmentations on the test set. Lastly, this final model was used on 32 additional patient scans (not included in original 71 cases) and autosegmentations visually rated by 3 radiation oncologists as being "clinically acceptable without requiring edits," "requiring minor edits," or "requiring major edits."

Results: When comparing ground truths to autosegmentations on the test data set, median Dice Similarity Coefficients were 0.90, 0.90, 0.89, and 0.81, and median mean surface distance values were 1.0 mm, 1.0 mm, 1.1 mm, and 1.3 mm for node levels Ia-V, Ib-V, II-IV, and RP nodes, respectively. Qualitative scoring varied among physicians. Overall, 99% of autosegmented target volumes were either scored as being clinically acceptable or requiring minor edits (ie, stylistic recommendations, <2 minutes).

Conclusions: We developed a fully automated artificial intelligence approach to autodelineate nodal CTVs for patients with intact HNC. Most autosegmentations were found to be clinically acceptable after qualitative review when considering recommended stylistic edits. This promising work automatically delineates nodal CTVs in a robust and consistent manner; this approach can be implemented in ongoing efforts for fully automated radiation treatment planning.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2020.10.005DOI Listing
March 2021

Dosimetric impact and detectability of multi-leaf collimator positioning errors on Varian Halcyon.

J Appl Clin Med Phys 2019 Aug 11;20(8):47-55. Epub 2019 Jul 11.

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

The purpose of this study is to investigate the dosimetric impact of multi-leaf collimator (MLC) positioning errors on a Varian Halcyon for both random and systematic errors, and to evaluate the effectiveness of portal dosimetry quality assurance in catching clinically significant changes caused by these errors. Both random and systematic errors were purposely added to 11 physician-approved head and neck volumetric modulated arc therapy (VMAT) treatment plans, yielding a total of 99 unique plans. Plans were then delivered on a preclinical Varian Halcyon linear accelerator and the fluence was captured by an opposed portal dosimeter. When comparing dose-volume histogram (DVH) values of plans with introduced MLC errors to known good plans, clinically significant changes to target structures quickly emerged for plans with systematic errors, while random errors caused less change. For both error types, the magnitude of clinically significant changes increased as error size increased. Portal dosimetry was able to detect all systematic errors, while random errors of ±5 mm or less were unlikely to be detected. Best detection of clinically significant errors, while minimizing false positives, was achieved by following the recommendations of AAPM TG-218. Furthermore, high- to moderate correlation was found between dose DVH metrics for normal tissues surrounding the target and portal dosimetry pass rates. Therefore, it may be concluded that portal dosimetry on the Halcyon is robust enough to detect errors in MLC positioning before they introduce clinically significant changes to VMAT treatment plans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acm2.12677DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698762PMC
August 2019

A snapshot of medical physics practice patterns.

J Appl Clin Med Phys 2018 Nov 1;19(6):306-315. Epub 2018 Oct 1.

Morton Plant Mease Health System, Clearwater, FL, USA.

A large number of surveys have been sent to the medical physics community addressing many clinical topics for which the medical physicist is, or may be, responsible. Each survey provides an insight into clinical practice relevant to the medical physics community. The goal of this study was to create a summary of these surveys giving a snapshot of clinical practice patterns. Surveys used in this study were created using SurveyMonkey and distributed between February 6, 2013 and January 2, 2018 via the MEDPHYS and MEDDOS listserv groups. The format of the surveys included questions that were multiple choice and free response. Surveys were included in this analysis if they met the following criteria: more than 20 responses, relevant to radiation therapy physics practice, not single-vendor specific, and formatted as multiple-choice questions (i.e., not exclusively free-text responses). Although the results of free response questions were not explicitly reported, they were carefully reviewed, and the responses were considered in the discussion of each topic. Two-hundred and fifty-two surveys were available, of which 139 passed the inclusion criteria. The mean number of questions per survey was 4. The mean number of respondents per survey was 63. Summaries were made for the following topics: simulation, treatment planning, electron treatments, linac commissioning and quality assurance, setup and treatment verification, IMRT and VMAT treatments, SRS/SBRT, breast treatments, prostate treatments, brachytherapy, TBI, facial lesion treatments, clinical workflow, and after-hours/emergent treatments. We have provided a coherent overview of medical physics practice according to surveys conducted over the last 5 yr, which will be instructive for medical physicists.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acm2.12464DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236839PMC
November 2018

Cost-effective immobilization for whole brain radiation therapy.

J Appl Clin Med Phys 2017 Jul 6;18(4):116-122. Epub 2017 Jun 6.

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

To investigate the inter- and intra-fraction motion associated with the use of a low-cost tape immobilization technique as an alternative to thermoplastic immobilization masks for whole-brain treatments. The results of this study may be of interest to clinical staff with severely limited resources (e.g., in low-income countries) and also when treating patients who cannot tolerate standard immobilization masks. Setup reproducibility of eight healthy volunteers was assessed for two different immobilization techniques. (a) One strip of tape was placed across the volunteer's forehead and attached to the sides of the treatment table. (b) A second strip was added to the first, under the chin, and secured to the table above the volunteer's head. After initial positioning, anterior and lateral photographs were acquired. Volunteers were positioned five times with each technique to allow calculation of inter-fraction reproducibility measurements. To estimate intra-fraction reproducibility, 5-minute anterior and lateral videos were taken for each technique per volunteer. An in-house software was used to analyze the photos and videos to assess setup reproducibility. The maximum intra-fraction displacement for all volunteers was 2.8 mm. Intra-fraction motion increased with time on table. The maximum inter-fraction range of positions for all volunteers was 5.4 mm. The magnitude of inter-fraction and intra-fraction motion found using the "1-strip" and "2-strip" tape immobilization techniques was comparable to motion restrictions provided by a thermoplastic mask for whole-brain radiotherapy. The results suggest that tape-based immobilization techniques represent an economical and useful alternative to the thermoplastic mask.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acm2.12101DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874864PMC
July 2017
-->