Publications by authors named "Tooba Sadat Ahmadi"

2 Publications

  • Page 1 of 1

Anti-flagellin IgY antibodies protect against Pseudomonas aeruginosa infection in both acute pneumonia and burn wound murine models in a non-type-specific mode.

Mol Immunol 2021 Aug 12;136:118-127. Epub 2021 Jun 12.

Medicinal Plants Research Center, Shahed University, Tehran, Iran.

Pseudomonas aeruginosa (PA) is one of the most dominant causes of nosocomial infections in burn patients. Increasing emergence of antibiotic-resistant strains highlights the need for novel antimicrobial agents. Flagellin, the main component protein of flagellum, is determined as the major antigen interacting with anti-P. aeruginosa IgY antibodies. The current study was aimed to evaluate the antibacterial potency of IgY antibodies raised against recombinant type A, and B flagellins. The immunogenicity and specificity of IgY antibodies were confirmed through indirect ELISA and western blot analysis, respectively. Anti-flagellin IgYs reduced the motility, biofilm formation and invasion potency of both strains. The cell surface hydrophobicity (CSH) of bacteria was increased upon IgY treatment, and in vitro opsonophagocytosis assay confirmed the high protective potency of specific antibodies via polymorphonuclear leukocyte (PMN)-augmented bacterial cell killing. The protective efficacy of IgYs was also studied in both acute pneumonia and burn wound murine models. Anti-flagellin B-IgY induced 100 % and 40 % protection against laboratory, and hospital strains in burn wound model, respectively. Protection in acute pneumonia against all strains was 100 %. Anti-flagellin A-IgY failed to protect mice in burn wound model, but provided 100 % protection against all strains in acute pneumonia challenge. In vitro, ex vivo and in vivo experiments confirmed the dose-dependent and non-type specific essence of anti-flagellin IgY antibodies, providing the benefit of covering all strain types in a dose dependent manner. Our findings provide evidence that anti-flagellin IgY antibodies qualify as novel economical therapeutic option against PA infection.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2021

Protective effects of egg yolk immunoglobulins (IgYs) developed against recombinant immunogens CtxB, OmpW and TcpA on infant mice infected with Vibrio cholerae.

Int Immunopharmacol 2020 Dec 13;89(Pt B):107054. Epub 2020 Oct 13.

Department of Biology, Shahed University, Tehran, Iran. Electronic address:

Vibrio cholerae causes cholera and other infections, especially in children under five years of age. Cholera toxin (CT), toxin-coregulated pilus (TCP) and outer membrane protein W (OmpW) are three major virulence factors of this bacterium. The emergence of antimicrobial-resistant (AMR) strains and the absence of a comprehensive and flawless vaccine, has prompted other treatments. There are several advantages of egg yolk antibodies (IgY) over other immunotherapy agents, such as economic feasibility, high yield simple production, and better immune responsiveness to mammalian antigens due to phylogenetic distance. Accordingly, in the present study, IgYs against recombinant proteins CtxB (responsible for the CT binding to eukaryotic cells), TcpA (enhances bacterial attachment to enterocytes) and OmpW were produced, in single, coupled or combined forms, to evaluate and compare their protectivity potency. Immunoreactivity of IgYs were examined through protein and whole cell ELISA, their specificity was confirmed by western blotting, and their neutralizing effects on CT was evaluated in Y1 cell culture. Produced IgYs were gavage administered to different groups of infant mice infected with V. cholerae. The results indicated that IgYs produced against CtxB had the highest titers, and were able to neutralize cytotoxicity effects in Y1 cell culture, while the highest protection in the mice challenge was obtained by IgY-TcpA. No considerable increase was observed in immunoreactivity or protectivity of antibodies produced against combined antigens. The produced IgYs showed a good antigen-specificity and protectivity which can be used in passive immunotherapy against cholera.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
December 2020