Publications by authors named "Tommy Regen"

42 Publications

IL-17 controls central nervous system autoimmunity through the intestinal microbiome.

Sci Immunol 2021 Feb;6(56)

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.

Interleukin-17A- (IL-17A) and IL-17F-producing CD4 T helper cells (T17 cells) are implicated in the development of chronic inflammatory diseases, such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). T17 cells also orchestrate leukocyte invasion of the central nervous system (CNS) and subsequent tissue damage. However, the role of IL-17A and IL-17F as effector cytokines is still confused with the encephalitogenic function of the cells that produce these cytokines, namely, T17 cells, fueling a long-standing debate in the neuroimmunology field. Here, we demonstrated that mice deficient for IL-17A/F lose their susceptibility to EAE, which correlated with an altered composition of their gut microbiota. However, loss of IL-17A/F in T cells did not diminish their encephalitogenic capacity. Reconstitution of a wild-type-like intestinal microbiota or reintroduction of IL-17A specifically into the gut epithelium of IL-17A/F-deficient mice reestablished their susceptibility to EAE. Thus, our data demonstrated that IL-17A and IL-17F are not encephalitogenic mediators but rather modulators of intestinal homeostasis that indirectly alter CNS-directed autoimmunity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciimmunol.aaz6563DOI Listing
February 2021

Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood-brain barrier.

Acta Neuropathol 2020 10 11;140(4):549-567. Epub 2020 Jul 11.

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.

The proinflammatory cytokine interleukin 1 (IL-1) is crucially involved in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Herein, we studied the role of IL-1 signaling in blood-brain barrier (BBB) endothelial cells (ECs), astrocytes and microglia for EAE development, using mice with the conditional deletion of its signaling receptor IL-1R1. We found that IL-1 signaling in microglia and astrocytes is redundant for the development of EAE, whereas the IL-1R1 deletion in BBB-ECs markedly ameliorated disease severity. IL-1 signaling in BBB-ECs upregulated the expression of the adhesion molecules Vcam-1, Icam-1 and the chemokine receptor Darc, all of which have been previously shown to promote CNS-specific inflammation. In contrast, IL-1R1 signaling suppressed the expression of the stress-responsive heme catabolizing enzyme heme oxygenase-1 (HO-1) in BBB-ECs, promoting disease progression via a mechanism associated with deregulated expression of the IL-1-responsive genes Vcam1, Icam1 and Ackr1 (Darc). Mechanistically, our data emphasize a functional crosstalk of BBB-EC IL-1 signaling and HO-1, controlling the transcription of downstream proinflammatory genes promoting the pathogenesis of autoimmune neuroinflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-020-02187-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498485PMC
October 2020

Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory.

Sci Immunol 2019 10;4(40)

Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.

The notion of "immune privilege" of the brain has been revised to accommodate its infiltration, at steady state, by immune cells that participate in normal neurophysiology. However, the immune mechanisms that regulate learning and memory remain poorly understood. Here, we show that noninflammatory interleukin-17 (IL-17) derived from a previously unknown fetal-derived meningeal-resident γδ T cell subset promotes cognition. When tested in classical spatial learning paradigms, mice lacking γδ T cells or IL-17 displayed deficient short-term memory while retaining long-term memory. The plasticity of glutamatergic synapses was reduced in the absence of IL-17, resulting in impaired long-term potentiation in the hippocampus. Conversely, IL-17 enhanced glial cell production of brain-derived neurotropic factor, whose exogenous provision rescued the synaptic and behavioral phenotypes of IL-17-deficient animals. Together, our work provides previously unknown clues on the mechanisms that regulate short-term versus long-term memory and on the evolutionary and functional link between the immune and nervous systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciimmunol.aay5199DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894940PMC
October 2019

Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation.

Cell Rep 2019 02;26(7):1854-1868.e5

Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany. Electronic address:

Foxp3 regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and "toxic" gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function restraining methylation of Treg cell-specific conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Consequently, CNS2 is heavily methylated when Blimp1 is ablated, leading to a loss of Foxp3 expression and severe disease. These findings identify a Blimp1-dependent pathway that preserves Treg cell stability in inflamed non-lymphoid tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.01.070DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389594PMC
February 2019

IL-17A/F in Leishmania major-resistant C57BL/6 mice.

Exp Dermatol 2019 03;28(3):321-323

Department of Dermatology, University Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany.

Proinflammatory IL-17 plays an important role in various diseases and defence against extracellular microorganisms. Healing of leishmaniasis is promoted by Th1/Tc1 cells, whereas Th2/Treg are associated with worsened disease outcome. In addition, high expression of IL-17A in Leishmania-susceptible BALB/c and artificial overexpression of IL-17A in T cells in resistant C57BL/6 mice worsened disease outcome. Since C57BL/6 mice lacking only IL-17A exhibited no phenotype, and IL-17A and IL-17F share similar receptors, but differentially regulate chemokine secretion, we studied mice lacking both IL-17A and IL-17F (IL-17A/F ) in infections with Leishmania major. Interestingly, lesion volumes and parasite burdens were comparable to controls, IL-17A/F mice developed a Th1/Tc1 phenotype, and exhibited normal lesion resolution. Thus, in C57BL/6 mice, secretion of IL-17A and IL-17F does not influence disease progression. It appears that-depending on the genetic background-cytokines of the IL-17 family might be responsible for disease progression primarily in susceptible mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.13896DOI Listing
March 2019

Alternative Splice Forms of CYLD Mediate Ubiquitination of SMAD7 to Prevent TGFB Signaling and Promote Colitis.

Gastroenterology 2019 02 10;156(3):692-707.e7. Epub 2018 Oct 10.

Institute for Molecular Medicine, University Medical Centre, Johannes Gutenberg University of Mainz, Mainz, Germany. Electronic address:

Background & Aims: The CYLD lysine 63 deubiquitinase gene (CYLD) encodes tumor suppressor protein that is mutated in familial cylindromatosus, and variants have been associated with Crohn disease (CD). Splice forms of CYLD that lack exons 7 and 8 regulate transcription factors and functions of immune cells. We examined the expression of splice forms of CYLD in colon tissues from patients with CD and their effects in mice.

Methods: We performed immunohistochemical analyses of colon tissues from patients with untreated CD and patients without inflammatory bowel diseases (controls). We obtained mice that expressed splice forms of CYLD (sCYLD mice) without or with SMAD7 (sCYLD/SMAD7 mice) from transgenes and CYLD-knockout mice (with or without transgenic expression of SMAD7) and performed endoscopic analyses. Colitis was induced in Rag1 mice by transfer of CD4 CD62L T cells from C57/Bl6 or transgenic mice. T cells were isolated from mice and analyzed by flow cytometry and quantitative real-time polymerase chain reaction and intestinal tissues were analyzed by histology and immunohistochemistry. CYLD forms were expressed in mouse embryonic fibroblasts, primary T cells, and HEK293T cells, which were analyzed by immunoblot, mobility shift, and immunoprecipitation assays.

Results: The colonic lamina propria from patients with CD was infiltrated by T cells and had higher levels of sCYLD (but not full-length CYLD) and SMAD7 than tissues from controls. Incubation of mouse embryonic fibroblasts and T cells with transforming growth factor β increased their production of sCYLD and decreased full-length CYLD. Transgenic expression of sCYLD and SMAD7 in T cells prevented the differentiation of regulatory T cells and T-helper type 17 cells and increased the differentiation of T-helper type 1 cells. The same effects were observed in colon tissues from sCYLD/SMAD7 mice but not in those from CYLD-knockout SMAD7 mice. The sCYLD mice had significant increases in the numbers of T-helper type 1 cells and CD44 CD62L memory-effector CD4 T cells in the spleen and mesenteric lymph nodes compared with wild-type mice; sCYLD/SMAD7 mice had even larger increases. The sCYLD/SMAD7 mice spontaneously developed severe colitis, with infiltration of the colon by dendritic cells, neutrophils, macrophages, and CD4 T cells and increased levels of Ifng, Il6, Il12a, Il23a, and Tnf mRNAs. Co-transfer of regulatory T cells from wild-type, but not from sCYLD/SMAD7, mice prevented the induction of colitis in Rag1 mice by CD4 T cells. We found increased levels of poly-ubiquitinated SMAD7 in sCYLD CD4 T cells. CYLD formed a nuclear complex with SMAD3, whereas sCYLD recruited SMAD7 to the nucleus, which inhibited the expression of genes regulated by SMAD3 and SMAD4. We found that sCYLD mediated lysine 63-linked ubiquitination of SMAD7. The sCYLD-SMAD7 complex inhibited transforming growth factor β signaling in CD4 T cells.

Conclusions: Levels of the spliced form of CYLD are increased in colon tissues from patients with CD. sCYLD mediates ubiquitination and nuclear translocation of SMAD7 and thereby decreases transforming growth factor β signaling in T cells. This prevents immune regulatory mechanisms and leads to colitis in mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2018.10.023DOI Listing
February 2019

Expression of IL-17F is associated with non-pathogenic Th17 cells.

J Mol Med (Berl) 2018 08 29;96(8):819-829. Epub 2018 Jun 29.

University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany.

IL-17A and IL-17F share the highest sequence homology of the IL-17 family and signal via the same IL-17RA/RC receptor heterodimer. To better explore the expression of these two cytokines, we used a double reporter mouse strain (IL-17 mice), where IL-17A expressing cells are marked by enhanced green fluorescent protein (eGFP) while red fluorescence protein (RFP) reports the expression of IL-17F. In steady state, we found that Th17 and γδ T cells only expressed IL-17A, while IL-17F expression was restricted to CD8 T cells (Tc17) and innate lymphoid cells (ILC type 3) of the gut. In experimental autoimmune encephalomyelitis, the vast majority of CNS-infiltrating Th17 cells expressed IL-17A but not IL-17F. In contrast, anti-CD3-induced, TGF-β-driven Th17 cells in the gut expressed both of these IL-17 cytokines. In line with this, in vitro differentiation of Th17 cells in the presence of IL-1β led primarily to IL-17A expressing T cells, while TGF-β induced IL-17F co-expressing Th17 cells. Our results suggest that expression of IL-17F is associated with non-pathogenic T cells, pointing to a differential function of IL-17A versus IL-17F.

Key Messages: Naïve mice: CD4 T cells and γδ T cells express IL-17A, and Tc17 cells express IL-17F. Gut ILC3 show differential expression of IL17A and F. Th17 differentiation with TGF-β1 induces IL-17A and F, whereas IL-1β induced cells expressing IL-17A. Th17 cells in EAE in CNS express IL-17A only. Gut Th17 cells induced by anti-CD3 express IL-17A and F together as skin γδ T cells of IMQ-treated mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-018-1662-5DOI Listing
August 2018

RNase H2 Loss in Murine Astrocytes Results in Cellular Defects Reminiscent of Nucleic Acid-Mediated Autoinflammation.

Front Immunol 2018 29;9:587. Epub 2018 Mar 29.

Medical Faculty, Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany.

Aicardi-Goutières syndrome (AGS) is a rare early onset childhood encephalopathy caused by persistent neuroinflammation of autoimmune origin. AGS is a genetic disorder and >50% of affected individuals bear hypomorphic mutations in ribonuclease H2 (RNase H2). All available RNase H2 mouse models so far fail to mimic the prominent CNS involvement seen in AGS. To establish a mouse model recapitulating the human disease, we deleted RNase H2 specifically in the brain, the most severely affected organ in AGS. Although RNase H2 mice lacked the nuclease in astrocytes and a majority of neurons, no disease signs were apparent in these animals. We additionally confirmed these results in a second, neuron-specific RNase H2 knockout mouse line. However, when astrocytes were isolated from brains of RNase H2 mice and cultured under mitogenic conditions, they showed signs of DNA damage and premature senescence. Enhanced expression of interferon-stimulated genes (ISGs) represents the most reliable AGS biomarker. Importantly, primary RNase H2 astrocytes displayed significantly increased ISG transcript levels, which we failed to detect in in brains of RNase H2 mice. Isolated astrocytes primed by DNA damage, including RNase H2-deficiency, exhibited a heightened innate immune response when exposed to bacterial or viral antigens. Taken together, we established a valid cellular AGS model that utilizes the very cell type responsible for disease pathology, the astrocyte, and phenocopies major molecular defects observed in AGS patient cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2018.00587DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5890188PMC
May 2019

IL-4 Receptor Alpha Signaling through Macrophages Differentially Regulates Liver Fibrosis Progression and Reversal.

EBioMedicine 2018 Mar 17;29:92-103. Epub 2018 Feb 17.

Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States. Electronic address:

Chronic hepatitis leads to liver fibrosis and cirrhosis. Cirrhosis is a major cause of worldwide morbidity and mortality. Macrophages play a key role in fibrosis progression and reversal. However, the signals that determine fibrogenic vs fibrolytic macrophage function remain ill defined. We studied the role of interleukin-4 receptor α (IL-4Rα), a potential central switch of macrophage polarization, in liver fibrosis progression and reversal. We demonstrate that inflammatory monocyte infiltration and liver fibrogenesis were suppressed in general IL-4Rα as well as in macrophage-specific IL-4Rα (IL-4Rα) mice. However, with deletion of IL-4Rα spontaneous fibrosis reversal was retarded. Results were replicated by pharmacological intervention using IL-4Rα-specific antisense oligonucleotides. Retarded resolution was linked to the loss of M2-type resident macrophages, which secreted MMP-12 through IL-4 and IL-13-mediated phospho-STAT6 activation. We conclude that IL-4Rα signaling regulates macrophage functional polarization in a context-dependent manner. Pharmacological targeting of macrophage polarization therefore requires disease stage-specific treatment strategies.

Research In Context: Alternative (M2-type) macrophage activation through IL-4Rα promotes liver inflammation and fibrosis progression but speeds up fibrosis reversal. This demonstrates context dependent, opposing roles of M2-type macrophages. During reversal IL-4Rα induces fibrolytic MMPs, especially MMP-12, through STAT6. Liver-specific antisense oligonucleotides efficiently block IL-4Rα expression and attenuate fibrosis progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2018.01.028DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925448PMC
March 2018

Interferon-γ-Driven iNOS: A Molecular Pathway to Terminal Shock in Arenavirus Hemorrhagic Fever.

Cell Host Microbe 2017 Sep 17;22(3):354-365.e5. Epub 2017 Aug 17.

Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland. Electronic address:

Arenaviruses such as Lassa virus (LASV) cause hemorrhagic fever. Terminal shock is associated with a systemic cytokine storm, but the mechanisms are ill defined. Here we used HLA-A2-expressing mice infected with a monkey-pathogenic strain of lymphocytic choriomeningitis virus (LCMV-WE), a close relative of LASV, to investigate the pathophysiology of arenavirus hemorrhagic fever (AHF). AHF manifested as pleural effusions, edematous skin swelling, and serum albumin loss, culminating in hypovolemic shock. A characteristic cytokine storm included numerous pro-inflammatory cytokines and nitric oxide (NO) metabolites. Edema formation and terminal shock were abrogated in mice lacking inducible nitric oxide synthase (iNOS), although the cytokine storm persisted. iNOS was upregulated in the liver in a T cell- and interferon-γ (IFN-γ)-dependent fashion. Accordingly, blockade of IFN-γ or depletion of T cells repressed hepatic iNOS and prevented disease despite unchecked high-level viremia. We identify the IFN-γ-iNOS axis as an essential and potentially druggable molecular pathway to AHF-induced shock.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2017.07.008DOI Listing
September 2017

A presumed antagonistic LPS identifies distinct functional organization of TLR4 in mouse microglia.

Glia 2017 07 4;65(7):1176-1185. Epub 2017 May 4.

Institute of Neuropathology, University Medical Center Göttingen, Göttingen, 37075, Germany.

Microglia as principle innate immune cells of the central nervous system (CNS) are the first line of defense against invading pathogens. They are capable of sensing infections through diverse receptors, such as Toll-like receptor 4 (TLR4). This receptor is best known for its ability to recognize bacterial lipopolysaccharide (LPS), a causative agent of gram-negative sepsis and septic shock. A putative, naturally occurring antagonist of TLR4 derives from the photosynthetic bacterium Rhodobacter sphaeroides. However, the antagonistic potential of R. sphaeroides LPS (Rs-LPS) is no universal feature, since several studies suggested agonistic rather than antagonistic actions of this molecule depending on the investigated mammalian species. Here we show the agonistic versus antagonistic potential of Rs-LPS in primary mouse microglia. We demonstrate that Rs-LPS efficiently induces the release of cytokines and chemokines, which depends on TLR4, MyD88, and TRIF, but not CD14. Furthermore, Rs-LPS is able to regulate the phagocytic capacity of microglia as agonist, while it antagonizes Re-LPS-induced MHC I expression. Finally, to our knowledge, we are the first to provide in vivo evidence for an agonistic potential of Rs-LPS, as it efficiently triggers the recruitment of peripheral immune cells to the endotoxin-challenged CNS. Together, our results argue for a versatile and complex organization of the microglial TLR4 system, which specifically translates exogenous signals into cellular functions. Importantly, as demonstrated here for microglia, the antagonistic potential of Rs-LPS needs to be considered with caution, as reactions to Rs-LPS not only differ by cell type, but even by function within one cell type.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.23151DOI Listing
July 2017

TGF-β inhibitor Smad7 regulates dendritic cell-induced autoimmunity.

Proc Natl Acad Sci U S A 2017 02 6;114(8):E1480-E1489. Epub 2017 Feb 6.

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;

TGF-β is an anti-inflammatory cytokine whose signaling is negatively controlled by Smad7. Previously, we established a role for Smad7 in the generation of autoreactive T cells; however, the function of Smad7 in dendritic cells (DCs) remains elusive. Here, we demonstrate that DC-specific Smad7 deficiency resulted in elevated expression of the transcription factors Batf3 and IRF8, leading to increased frequencies of CD8CD103 DCs in the spleen. Furthermore, Smad7-deficient DCs expressed higher levels of indoleamine 2,3-dioxygenase (IDO), an enzyme associated with tolerance induction. Mice devoid of Smad7 specifically in DCs are resistant to the development of experimental autoimmune encephalomyelitis (EAE) as a result of an increase of protective regulatory T cells (Tregs) and reduction of encephalitogenic effector T cells in the central nervous system. In agreement, inhibition of IDO activity or depletion of Tregs restored disease susceptibility. Intriguingly, when Smad7-deficient DCs also lacked the IFN-γ receptor, the mice regained susceptibility to EAE, demonstrating that IFN-γ signaling in DCs mediates their tolerogenic function. Our data indicate that Smad7 expression governs splenic DC subset differentiation and is critical for the promotion of their efficient function in immunity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1615065114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338403PMC
February 2017

Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic T17 cells.

Nat Immunol 2017 01 28;18(1):74-85. Epub 2016 Nov 28.

Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Munich, Germany.

The cellular sources of interleukin 6 (IL-6) that are relevant for differentiation of the T17 subset of helper T cells remain unclear. Here we used a novel strategy for the conditional deletion of distinct IL-6-producing cell types to show that dendritic cells (DCs) positive for the signaling regulator Sirpα were essential for the generation of pathogenic T17 cells. Using their IL-6 receptor α-chain (IL-6Rα), Sirpα DCs trans-presented IL-6 to T cells during the process of cognate interaction. While ambient IL-6 was sufficient to suppress the induction of expression of the transcription factor Foxp3 in T cells, trans-presentation of IL-6 by DC-bound IL-6Rα (called 'IL-6 cluster signaling' here) was needed to prevent premature induction of interferon-γ (IFN-γ) expression in T cells and to generate pathogenic T17 cells in vivo. Our findings should guide therapeutic approaches for the treatment of T17-cell-mediated autoimmune diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ni.3632DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5164931PMC
January 2017

IL-1 signaling is critical for expansion but not generation of autoreactive GM-CSF+ Th17 cells.

EMBO J 2017 01 8;36(1):102-115. Epub 2016 Nov 8.

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany

Interleukin-1 (IL-1) is implicated in numerous pathologies, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the exact mechanism by which IL-1 is involved in the generation of pathogenic T cells and in disease development remains largely unknown. We found that following EAE induction, pertussis toxin administration leads to IL-1 receptor type 1 (IL-1R1)-dependent IL-1β expression by myeloid cells in the draining lymph nodes. This myeloid-derived IL-1β did not vitally contribute to the generation and plasticity of Th17 cells, but rather promoted the expansion of a GM-CSF Th17 cell subset, thereby enhancing its encephalitogenic potential. Lack of expansion of GM-CSF-producing Th17 cells led to ameliorated disease in mice deficient for IL-1R1 specifically in T cells. Importantly, pathogenicity of IL-1R1-deficient T cells was fully restored by IL-23 polarization and expansion in vitro Therefore, our data demonstrate that IL-1 functions as a mitogenic mediator of encephalitogenic Th17 cells rather than qualitative inducer of their generation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15252/embj.201694615DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210124PMC
January 2017

Generation of a Novel T Cell Specific Interleukin-1 Receptor Type 1 Conditional Knock Out Mouse Reveals Intrinsic Defects in Survival, Expansion and Cytokine Production of CD4 T Cells.

PLoS One 2016 23;11(8):e0161505. Epub 2016 Aug 23.

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.

Interleukin-1 (IL-1) plays a crucial role in numerous inflammatory diseases via action on its only known signaling IL-1 receptor type 1 (IL-1R1). To investigate the role of IL-1 signaling in selected cell types, we generated a new mouse strain in which exon 5 of the Il1r1 gene is flanked by loxP sites. Crossing of these mice with CD4-Cre transgenic mice resulted in IL-1R1 loss of function specifically in T cells. These mice, termed IL-1R1ΔT, displayed normal development under steady state conditions. Importantly, isolated CD4 positive T cells retained their capacity to differentiate toward Th1 or Th17 cell lineages in vitro, and strongly proliferated in cultures supplemented with either anti-CD3/CD28 or Concanavalin A, but, as predicted, were completely unresponsive to IL-1β administration. Furthermore, IL-1R1ΔT mice were protected from gut inflammation in the anti-CD3 treatment model, due to dramatically reduced frequencies and absolute numbers of IL-17A and interferon (IFN)-γ producing cells. Taken together, our data shows the necessity of intact IL-1 signaling for survival and expansion of CD4 T cells that were developed in an otherwise IL-1 sufficient environment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161505PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995027PMC
July 2017

TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ.

Proc Natl Acad Sci U S A 2016 Jan 22;113(1):212-7. Epub 2015 Dec 22.

Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, University of Heidelberg, D-69120 Heidelberg, Germany;

Microglia (tissue-resident macrophages) represent the main cell type of the innate immune system in the CNS; however, the mechanisms that control the activation of microglia are widely unknown. We systematically explored microglial activation and functional microglia-neuron interactions in organotypic hippocampal slice cultures, i.e., postnatal cortical tissue that lacks adaptive immunity. We applied electrophysiological recordings of local field potential and extracellular K(+) concentration, immunohistochemistry, design-based stereology, morphometry, Sholl analysis, and biochemical analyses. We show that chronic activation with either bacterial lipopolysaccharide through Toll-like receptor 4 (TLR4) or leukocyte cytokine IFN-γ induces reactive phenotypes in microglia associated with morphological changes, population expansion, CD11b and CD68 up-regulation, and proinflammatory cytokine (IL-1β, TNF-α, IL-6) and nitric oxide (NO) release. Notably, these reactive phenotypes only moderately alter intrinsic neuronal excitability and gamma oscillations (30-100 Hz), which emerge from precise synaptic communication of glutamatergic pyramidal cells and fast-spiking, parvalbumin-positive GABAergic interneurons, in local hippocampal networks. Short-term synaptic plasticity and extracellular potassium homeostasis during neural excitation, also reflecting astrocyte function, are unaffected. In contrast, the coactivation of TLR4 and IFN-γ receptors results in neuronal dysfunction and death, caused mainly by enhanced microglial inducible nitric oxide synthase (iNOS) expression and NO release, because iNOS inhibition is neuroprotective. Thus, activation of TLR4 in microglia in situ requires concomitant IFN-γ receptor signaling from peripheral immune cells, such as T helper type 1 and natural killer cells, to unleash neurotoxicity and inflammation-induced neurodegeneration. Our findings provide crucial mechanistic insight into the complex process of microglia activation, with relevance to several neurologic and psychiatric disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1513853113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4711883PMC
January 2016

CD14 is a key organizer of microglial responses to CNS infection and injury.

Glia 2016 Apr 18;64(4):635-49. Epub 2015 Dec 18.

Institute of Neuropathology, University of Göttingen, Göttingen, 37075, Germany.

Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia. First, it confers an up to 100-fold higher LPS sensitivity compared to peripheral macrophages to enable efficient proinflammatory cytokine induction. Second, CD14 prevents excessive responses to massive LPS challenges via an interferon β-mediated feedback. Third, CD14 is mandatory for microglial reactions to tissue damage-associated signals. In mice, these functions are essential for balanced CNS responses to bacterial infection, traumatic and ischemic injuries, since CD14 deficiency causes either hypo- or hyperinflammation, insufficient or exaggerated immune cell recruitment or worsened stroke outcomes. While CD14 orchestrates functions of TLR4 and related immune receptors, it is itself regulated by TLR and non-TLR systems to thereby fine-tune microglial damage-sensing capacity upon infectious and non-infectious CNS challenges.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.22955DOI Listing
April 2016

Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System.

Immunity 2015 Jul 7;43(1):92-106. Epub 2015 Jul 7.

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany. Electronic address:

During early embryogenesis, microglia arise from yolk sac progenitors that populate the developing central nervous system (CNS), but how the tissue-resident macrophages are maintained throughout the organism's lifespan still remains unclear. Here, we describe a system that allows specific, conditional ablation of microglia in adult mice. We found that the microglial compartment was reconstituted within 1 week of depletion. Microglia repopulation relied on CNS-resident cells, independent from bone-marrow-derived precursors. During repopulation, microglia formed clusters of highly proliferative cells that migrated apart once steady state was achieved. Proliferating microglia expressed high amounts of the interleukin-1 receptor (IL-1R), and treatment with an IL-1R antagonist during the repopulation phase impaired microglia proliferation. Hence, microglia have the potential for efficient self-renewal without the contribution of peripheral myeloid cells, and IL-1R signaling participates in this restorative proliferation process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2015.06.012DOI Listing
July 2015

Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism.

Glia 2015 Jun 2;63(6):1083-99. Epub 2015 Mar 2.

Institute of Neuropathology, University of Göttingen, Germany.

The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. AG126 alleviates the clinical symptoms, diminishes encephalitogenic Th17 differentiation, reduces inflammatory CNS infiltration as well as microglia activation and attenuates myelin damage. We show that AG126 directly inhibits Bruton's tyrosine kinase (BTK), a PTK associated with B cell receptor and Toll-like receptor (TLR) signaling. However, BTK inhibition cannot account for the entire activity spectrum. Effects on TLR-induced proinflammatory cytokine expression in microglia involve AG126 hydrolysis and conversion of its dinitrile side chain to malononitrile (MN). Notably, while liberated MN can subsequently mediate critical AG126 features, full protection in EAE still requires delivery of intact AG126. Its anti-inflammatory potential and especially interference with TLR signaling thus rely on a dual mechanism encompassing BTK and a novel MN-sensitive target. Both principles bear great potential for the therapeutic management of disturbed innate and adaptive immune functions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.22803DOI Listing
June 2015

The role of IL-17 in CNS diseases.

Acta Neuropathol 2015 May 26;129(5):625-37. Epub 2015 Feb 26.

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany,

Cytokines of the IL-17 family are uniquely placed on the border between immune cells and tissue. Although IL-17 was originally found to induce the activation and mobilization of neutrophils to sites of inflammation, its tissue-specific function is not yet fully understood. The best-studied IL-17 family members, IL-17A and IL-17F, are both typically produced by immune cells such as Th17, γδ T cells and innate lymphoid cells group 3. However, the cells that respond to these cytokines are mostly found in inflamed tissue. As seen in psoriatic skin lesions or in joints of rheumatoid arthritis patients, high levels of IL-17 have been detected in the central nervous system (CNS) during inflammatory responses. Here, we provide a general review of the molecular function of IL-17 and its role in the CNS in particular. Of the different inflammatory conditions of the CNS, we found multiple sclerosis (MS) to be the one most associated with the presence of Th17 cells and IL-17. In particular, many studies using the murine model for MS, experimental autoimmune encephalomyelitis, found a clear association of Th17 and IL-17 with disease severity and progression. We summarize the recent advances made in correlating the presence of IL-17 with impaired blood-brain barrier integrity as well as the activation of astrocytes and microglia and the consequences for disease progression. There is also evidence that IL-17 plays a pathogenic role in the post-ischemic phase of stroke as well as its experimental model. We review the limited but promising data on the sources of post-stroke IL-17 production and its effects on CNS-resident target cells. In addition to MS and stroke, there is also evidence linking high levels of IL-17 to depression, as a frequent comorbidity of several inflammatory diseases, as well as to different types of infections of the CNS. The evidence we supply here suggests that inhibiting the function of the IL-17 cytokine family could have a beneficial effect on pathogenic conditions in the CNS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-015-1402-7DOI Listing
May 2015

IFN-γ-producing CD4+ T cells promote generation of protective germinal center-derived IgM+ B cell memory against Salmonella Typhi.

J Immunol 2014 Jun 28;192(11):5192-200. Epub 2014 Apr 28.

Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland;

Abs play a significant role in protection against the intracellular bacterium Salmonella Typhi. In this article, we investigated how long-term protective IgM responses can be elicited by a S. Typhi outer-membrane protein C- and F-based subunit vaccine (porins). We found that repeated Ag exposure promoted a CD4(+) T cell-dependent germinal center reaction that generated mutated IgM-producing B cells and was accompanied by a strong expansion of IFN-γ-secreting T follicular helper cells. Genetic ablation of individual cytokine receptors revealed that both IFN-γ and IL-17 are required for optimal germinal center reactions and production of porin-specific memory IgM(+) B cells. However, more profound reduction of porin-specific IgM B cell responses in the absence of IFN-γR signaling indicated that this cytokine plays a dominant role. Importantly, mutated IgM mAbs against porins exhibited bactericidal capacity and efficiently augmented S. Typhi clearance. In conclusion, repeated vaccination with S. Typhi porins programs type I T follicular helper cell responses that contribute to the diversification of B cell memory and promote the generation of protective IgM Abs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1302526DOI Listing
June 2014

A new model for primary-progressive multiple sclerosis?

Acta Neuropathol 2013 Oct 15;126(4):519-21. Epub 2013 Sep 15.

Institute for Molecular Medicine, University Medical Center of the Johannes-Gutenberg University of Mainz, Obere Zahlbacher Str. 67, 55131, Mainz, Germany,

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-013-1179-5DOI Listing
October 2013

Empty liposomes induce antitumoral effects associated with macrophage responses distinct from those of the TLR1/2 agonist Pam3CSK 4 (BLP).

Cancer Immunol Immunother 2013 Oct 6;62(10):1587-97. Epub 2013 Aug 6.

Institute of Human Genetics, University Medical Center, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.

Liposomes are frequently used in cancer therapy to encapsulate and apply anticancer drugs. Here, we show that a systemic treatment of mice bearing skin tumors with empty phosphatidylcholine liposomes (PCL) resulted in inhibition of tumor growth, which was similar to that observed with the synthetic bacterial lipoprotein and TLR1/2 agonist Pam(3)CSK(4) (BLP). Both compounds led to a substantial decrease of macrophages in spleen and in the tumor-bearing skin. Furthermore, both treatments induced the expression of typical macrophage markers in the tumor-bearing tissue. As expected, BLP induced the expression of the M1 marker genes Cxcl10 and iNOS, whereas PCL, besides inducing iNOS, also increased the M2 marker genes Arg1 and Trem2. In vitro experiments demonstrated that neither PCL nor BLP influenced proliferation or survival of tumor cells, whereas both compounds inhibited proliferation and survival and increased the migratory capacity of bone marrow-derived macrophages (BMDM). However, in contrast to BLP, PCL did not activate cytokine secretion and induced a different BMDM phenotype. Together, the data suggest that similar to BLP, PCL induce an antitumor response by influencing the tumor microenvironment, in particular by functional alterations of macrophages, however, in a distinct manner from those induced by BLP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00262-013-1444-4DOI Listing
October 2013

Histone deacetylase inhibitors suppress immune activation in primary mouse microglia.

J Neurosci Res 2013 Sep 17;91(9):1133-42. Epub 2013 May 17.

Department of Neuroscience, Section of Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Neuroinflammation is required for tissue clearance and repair after infections or insults. To prevent excessive damage, it is crucial to limit the extent of neuroinflammation and thereby the activation of its principal effector cell, microglia. The two main major innate immune cell types in the CNS are astrocytes and microglia. Histone deacetylases (HDACs) have been implicated in regulating the innate inflammatory response, and here we addressed their role in pure astrocyte and microglia cultures. Endogenous HDAC expression levels were determined in microglia and astrocytes and after treatment with lipopolysaccharide (LPS) or LPS and interferon γ (IFNγ). The relative expression level of HDACs was reduced in LPS- or LPS/IFNγ (with the exception of HDAC1 and -7)-stimulated astrocytes and increased in microglia after LPS treatment both in primary cultures and in microglia acutely isolated from LPS-treated mice, so we focused on the inflammatory response in microglia. Primary microglia cultures were treated with LPS in the presence or absence of HDAC inhibitors (HDACi). Expression and release of inflammatory cytokines was determined by quantitative RT-PCR, flow cytometry, and ELISA. HDACi strongly suppressed LPS-induced cytokine expression and release by microglia. Furthermore, expression of M1- and M2-associated activation markers was suppressed, and the migratory behavior of microglia was attenuated. Our findings strongly suggest that HDACi suppress innate immune activation in microglia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.23221DOI Listing
September 2013

Resistance of the brain to Escherichia coli K1 infection depends on MyD88 signaling and the contribution of neutrophils and monocytes.

Infect Immun 2013 May 11;81(5):1810-9. Epub 2013 Mar 11.

Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.

Escherichia coli is the leading cause of Gram-negative neonatal bacterial meningitis and also causes meningitis and meningoencephalitis in older and immunocompromised patients. Here, we determined the contribution of granulocytes, monocytes, and TLR signaling cascades in the resistance of adult mice to Escherichia coli K1 brain infection. Deficiency in MyD88 (myd88(-/-)) but not in TRIF (trif(lps2)) adaptor proteins dramatically reduced the survival of animals. Depletion of CD11b(+) Ly-6G(+) Ly-6C(int) neutrophils by application of the anti-Ly-6G (1A8) monoclonal antibody (MAb) led to higher bacterial loads in cerebellum and spleen tissue and resulted in increased mortality compared to those of isotype-treated controls. Depletion of CD11b(+) Ly-6G(+) Ly-6C(int) neutrophils and CD11b(+) Ly-6G(-) Ly-6C(high) monocytes by administration of the anti-Gr-1 (RB6-8C5) MAb rendered mice even more susceptible to the infection, with higher central nervous system (CNS) and spleen bacterial burdens than anti-Ly-6G-treated animals. Depletion of ∼50% of CD11b(+) Ly-6G(-) Ly-6C(high) monocytes by injection of the anti-CCR2 (MC-21) MAb resulted in a trend toward higher mortality compared to that with isotype treatment. Production of interleukin 1β (IL-1β), IL-6, KC, and MIP-2 in the CNS strongly depended on the bacterial load: increased levels of these cytokines/chemokines were found after depletion of CD11b(+) Ly-6G(+) Ly-6C(int) neutrophils alone or together with CD11b(+) Ly-6G(-) Ly-6C(high) monocytes. These findings identify Toll-like receptor (TLR)-MyD88 signaling and neutrophil and monocyte activity as critical elements in the early host defense against E. coli meningitis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/IAI.01349-12DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648016PMC
May 2013

Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia.

Glia 2012 Dec 21;60(12):1930-43. Epub 2012 Aug 21.

Institute of Neuropathology, University of Göttingen, Göttingen, Germany.

The sentinel and immune functions of microglia require rapid and appropriate reactions to infection and damage. Their Toll-like receptors (TLRs) sense both as threats. However, whether activated microglia mount uniform responses or whether subsets conduct selective tasks is unknown. We demonstrate that murine microglia reorganize their responses to TLR activations postnatally and that this process comes with a maturation of TLR4-organized functions. Although induction of MHCI for antigen presentation remains as a pan-populational feature, synthesis of TNFα becomes restricted to a subset, even within adult central nervous system regions. Response heterogeneity is evident ex vivo, in situ, and in vivo, but is not limited to TNFα production or to TLR-triggered functions. Also, clearance activities for myelin under physiological and pathophysiological conditions, IFNγ-enforced upregulation of MHCII, or challenged inductions of other proinflammatory factors reveal dissimilar microglial contributions. Notably, response heterogeneity is also confirmed in human brain tissue. Our findings suggest that microglia divide by constitutive and inducible capacities. Privileged production of inflammatory mediators assigns a master control to subsets. Sequestration of clearance of endogenous material versus antigen presentation in exclusive compartments can separate potentially interfering functions. Finally, subsets rather than a uniform population of microglia may assemble the reactive phenotypes in responses during infection, injury, and rebuilding, warranting consideration in experimental manipulation and therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.22409DOI Listing
December 2012

The nucleotide-binding oligomerization domain-containing-2 ligand muramyl dipeptide enhances phagocytosis and intracellular killing of Escherichia coli K1 by Toll-like receptor agonists in microglial cells.

J Neuroimmunol 2012 Nov 11;252(1-2):16-23. Epub 2012 Aug 11.

Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.

Increasing the phagocytic activity of microglia could improve the resistance of immunocompromised patients to CNS infections. We studied the microglial responses upon stimulation with the Nod2 ligand muramyl dipeptide (MDP) alone or in combination with a TLR1/2, 3 or 4 agonist. MDP caused a mild release of NO, but induced neither a significant release of pro-inflammatory cytokines nor an expression of molecules associated with professional antigen presentation. Using the Escherichia coli K1 model, microglial pre-stimulation with MDP enhanced bacterial phagocytosis which was strengthened on TLR-pre-stimulated cells. Dual pre-stimulation of Nod2 and TLR1/2 or 4 caused maximal phagocytosis and intracellular killing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2012.07.012DOI Listing
November 2012

Reduced astrocytic NF-κB activation by laquinimod protects from cuprizone-induced demyelination.

Acta Neuropathol 2012 Sep 6;124(3):411-24. Epub 2012 Jul 6.

Department of Neuropathology, University Medical Center, Robert-Koch-Str. 40, 37099, Göttingen, Germany.

Laquinimod (LAQ) is a new oral immunomodulatory compound that reduces relapse rate, brain atrophy and disability progression in multiple sclerosis (MS). LAQ has well-documented effects on inflammation in the periphery, but little is known about its direct activity within the central nervous system (CNS). To elucidate the impact of LAQ on CNS-intrinsic inflammation, we investigated the effects of LAQ on cuprizone-induced demyelination in mice in vivo and on primary CNS cells in vitro. Demyelination, inflammation, axonal damage and glial pathology were evaluated in LAQ-treated wild type and Rag-1-deficient mice after cuprizone challenge. Using primary cells we tested for effects of LAQ on oligodendroglial survival as well as on cytokine secretion and NF-κB activation in astrocytes and microglia. LAQ prevented cuprizone-induced demyelination, microglial activation, axonal transections, reactive gliosis and oligodendroglial apoptoses in wild type and Rag-1-deficient mice. LAQ significantly decreased pro-inflammatory factors in stimulated astrocytes, but not in microglia. Oligodendroglial survival was not affected by LAQ in vitro. Astrocytic, but not microglial, NF-κB activation was markedly reduced by LAQ as evidenced by NF-κB reporter assay. LAQ also significantly decreased astrocytic NF-κB activation in cuprizone-treated mice. Our data indicate that LAQ prevents cuprizone-induced demyelination by attenuating astrocytic NF-κB activation. These effects are CNS-intrinsic and not mediated by peripheral immune cells. Therefore, LAQ downregulation of the astrocytic pro-inflammatory response may be an important mechanism underlying its protective effects on myelin, oligodendrocytes and axons. Modulation of astrocyte activation may be an attractive therapeutic target to prevent tissue damage in MS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-012-1009-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422618PMC
September 2012

Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis.

J Cell Sci 2011 Feb;124(Pt 3):447-58

Max-Planck Institute for Experimental Medicine, Hermann-Rein-Str., D-37075 Göttingen, Germany.

The transfer of antigens from oligodendrocytes to immune cells has been implicated in the pathogenesis of autoimmune diseases. Here, we show that oligodendrocytes secrete small membrane vesicles called exosomes, which are specifically and efficiently taken up by microglia both in vitro and in vivo. Internalisation of exosomes occurs by a macropinocytotic mechanism without inducing a concomitant inflammatory response. After stimulation of microglia with interferon-γ, we observe an upregulation of MHC class II in a subpopulation of microglia. However, exosomes are preferentially internalised in microglia that do not seem to have antigen-presenting capacity. We propose that the constitutive macropinocytotic clearance of exosomes by a subset of microglia represents an important mechanism through which microglia participate in the degradation of oligodendroglial membrane in an immunologically 'silent' manner. By designating the capacity for macropinocytosis and antigen presentation to distinct cells, degradation and immune function might be assigned to different subtypes of microglia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.074088DOI Listing
February 2011