Publications by authors named "Todd Scheuer"

93 Publications

Molecular Determinants of Brevetoxin Binding to Voltage-Gated Sodium Channels.

Toxins (Basel) 2019 09 3;11(9). Epub 2019 Sep 3.

Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195-7280, USA.

Brevetoxins are produced by dinoflagellates such as in warm-water red tides and cause neurotoxic shellfish poisoning. They bind to voltage-gated sodium channels at neurotoxin receptor 5, making the channels more active by shifting the voltage-dependence of activation to more negative potentials and by slowing the inactivation process. Previous work using photoaffinity labeling identified binding to the IS6 and IVS5 transmembrane segments of the channel α subunit. We used alanine-scanning mutagenesis to identify molecular determinants for brevetoxin binding in these regions as well as adjacent regions IVS5-SS1 and IVS6. Most of the mutant channels containing single alanine substitutions expressed functional protein in tsA-201 cells and bound to the radioligand [42-H]-PbTx3. Binding affinity for the great majority of mutant channels was indistinguishable from wild type. However, transmembrane segments IS6, IVS5 and IVS6 each contained 2 to 4 amino acid positions where alanine substitution resulted in a 2-3-fold reduction in brevetoxin affinity, and additional mutations caused a similar increase in brevetoxin affinity. These findings are consistent with a model in which brevetoxin binds to a protein cleft comprising transmembrane segments IS6, IVS5 and IVS6 and makes multiple distributed interactions with these α helices. Determination of brevetoxin affinity for Na1.2, Na1.4 and Na1.5 channels showed that Na1.5 channels had a characteristic 5-fold reduction in affinity for brevetoxin relative to the other channel isoforms, suggesting the interaction with sodium channels is specific despite the distributed binding determinants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins11090513DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784055PMC
September 2019

Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to long-term potentiation and spatial learning.

Proc Natl Acad Sci U S A 2016 11 31;113(46):13209-13214. Epub 2016 Oct 31.

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280

Many forms of short-term synaptic plasticity rely on regulation of presynaptic voltage-gated Ca type 2.1 (Ca2.1) channels. However, the contribution of regulation of Ca2.1 channels to other forms of neuroplasticity and to learning and memory are not known. Here we have studied mice with a mutation (IM-AA) that disrupts regulation of Ca2.1 channels by calmodulin and related calcium sensor proteins. Surprisingly, we find that long-term potentiation (LTP) of synaptic transmission at the Schaffer collateral-CA1 synapse in the hippocampus is substantially weakened, even though this form of synaptic plasticity is thought to be primarily generated postsynaptically. LTP in response to θ-burst stimulation and to 100-Hz tetanic stimulation is much reduced. However, a normal level of LTP can be generated by repetitive 100-Hz stimulation or by depolarization of the postsynaptic cell to prevent block of NMDA-specific glutamate receptors by Mg The ratio of postsynaptic responses of NMDA-specific glutamate receptors to those of AMPA-specific glutamate receptors is decreased, but the postsynaptic current from activation of NMDA-specific glutamate receptors is progressively increased during trains of stimuli and exceeds WT by the end of 1-s trains. Strikingly, these impairments in long-term synaptic plasticity and the previously documented impairments in short-term synaptic plasticity in IM-AA mice are associated with pronounced deficits in spatial learning and memory in context-dependent fear conditioning and in the Barnes circular maze. Thus, regulation of Ca2.1 channels by calcium sensor proteins is required for normal short-term synaptic plasticity, LTP, and spatial learning and memory in mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1616206113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135313PMC
November 2016

Structural basis for inhibition of a voltage-gated Ca channel by Ca antagonist drugs.

Nature 2016 09 24;537(7618):117-121. Epub 2016 Aug 24.

Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA.

Ca antagonist drugs are widely used in therapy of cardiovascular disorders. Three chemical classes of drugs bind to three separate, but allosterically interacting, receptor sites on Ca1.2 channels, the most prominent voltage-gated Ca (Ca) channel type in myocytes in cardiac and vascular smooth muscle. The 1,4-dihydropyridines are used primarily for treatment of hypertension and angina pectoris and are thought to act as allosteric modulators of voltage-dependent Ca channel activation, whereas phenylalkylamines and benzothiazepines are used primarily for treatment of cardiac arrhythmias and are thought to physically block the pore. The structural basis for the different binding, action, and therapeutic uses of these drugs remains unknown. Here we present crystallographic and functional analyses of drug binding to the bacterial homotetrameric model Ca channel CaAb, which is inhibited by dihydropyridines and phenylalkylamines with nanomolar affinity in a state-dependent manner. The binding site for amlodipine and other dihydropyridines is located on the external, lipid-facing surface of the pore module, positioned at the interface of two subunits. Dihydropyridine binding allosterically induces an asymmetric conformation of the selectivity filter, in which partially dehydrated Ca interacts directly with one subunit and blocks the pore. In contrast, the phenylalkylamine Br-verapamil binds in the central cavity of the pore on the intracellular side of the selectivity filter, physically blocking the ion-conducting pathway. Structure-based mutations of key amino-acid residues confirm drug binding at both sites. Our results define the structural basis for binding of dihydropyridines and phenylalkylamines at their distinct receptor sites on Ca channels and offer key insights into their fundamental mechanisms of action and differential therapeutic uses in cardiovascular diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature19102DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161592PMC
September 2016

Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to short-term synaptic plasticity in hippocampal neurons.

Proc Natl Acad Sci U S A 2016 Jan 11;113(4):1062-7. Epub 2016 Jan 11.

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280;

Short-term synaptic plasticity is induced by calcium (Ca(2+)) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca(2+) channels by Ca(2+) sensor proteins induces facilitation of Ca(2+) currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca(2+) sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼ 50%. In the presence of EGTA-AM to prevent global increases in free Ca(2+), the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca(2+) is dependent upon regulation of CaV2.1 channels by Ca(2+) sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10-20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1524636113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743814PMC
January 2016

Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic CaV2.1 Ca2+ channels.

Proc Natl Acad Sci U S A 2016 Jan 11;113(4):1068-73. Epub 2016 Jan 11.

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280;

Facilitation and inactivation of P/Q-type calcium (Ca(2+)) currents through the regulation of voltage-gated Ca(2+) (CaV) 2.1 channels by Ca(2+) sensor (CaS) proteins contributes to the facilitation and rapid depression of synaptic transmission in cultured neurons that transiently express CaV2.1 channels. To examine the modulation of endogenous CaV2.1 channels by CaS proteins in native synapses, we introduced a mutation (IM-AA) into the CaS protein-binding site in the C-terminal domain of CaV2.1 channels in mice, and tested synaptic facilitation and depression in neuromuscular junction synapses that use exclusively CaV2.1 channels for Ca(2+) entry that triggers synaptic transmission. Even though basal synaptic transmission was unaltered in the neuromuscular synapses in IM-AA mice, we found reduced short-term facilitation in response to paired stimuli at short interstimulus intervals in IM-AA synapses. In response to trains of action potentials, we found increased facilitation at lower frequencies (10-30 Hz) in IM-AA synapses accompanied by slowed synaptic depression, whereas synaptic facilitation was reduced at high stimulus frequencies (50-100 Hz) that would induce strong muscle contraction. As a consequence of altered regulation of CaV2.1 channels, the hindlimb tibialis anterior muscle in IM-AA mice exhibited reduced peak force in response to 50 Hz stimulation and increased muscle fatigue. The IM-AA mice also had impaired motor control, exercise capacity, and grip strength. Taken together, our results indicate that regulation of CaV2.1 channels by CaS proteins is essential for normal synaptic plasticity at the neuromuscular junction and for muscle strength, endurance, and motor coordination in mice in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1524650113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743804PMC
January 2016

Phosphorylation sites in the Hook domain of CaVβ subunits differentially modulate CaV1.2 channel function.

J Mol Cell Cardiol 2015 Oct 10;87:248-56. Epub 2015 Aug 10.

Department of Pharmacology, University of Washington, Seattle, WA 98195, United States. Electronic address:

Regulation of L-type calcium current is critical for the development, function, and regulation of many cell types. Ca(V)1.2 channels that conduct L-type calcium currents are regulated by many protein kinases, but the sites of action of these kinases remain unknown in most cases. We combined mass spectrometry (LC-MS/MS) and whole-cell patch clamp techniques in order to identify sites of phosphorylation of Ca(V)β subunits in vivo and test the impact of mutations of those sites on Ca(V)1.2 channel function in vitro. Using the Ca(V)1.1 channel purified from rabbit skeletal muscle as a substrate for phosphoproteomic analysis, we found that Ser(193) and Thr(205) in the HOOK domain of Ca(V)β1a subunits were both phosphorylated in vivo. Ser(193) is located in a potential consensus sequence for casein kinase II, but it was not phosphorylated in vitro by that kinase. In contrast, Thr(205) is located in a consensus sequence for cAMP-dependent phosphorylation, and it was robustly phosphorylated in vitro by PKA. These two sites are conserved in multiple Ca(V)β subunit isoforms, including the principal Ca(V)β subunit of cardiac Ca(V)1.2 channels, Ca(V)β2b. In order to assess potential modulatory effects of phosphorylation at these sites separately from the effects of phosphorylation of the α11.2 subunit, we inserted phosphomimetic or phosphoinhibitory mutations in Ca(V)β2b and analyzed their effects on Ca(V)1.2 channel function in transfected nonmuscle cells. The phosphomimetic mutation Ca(V)β2b(S152E) decreased peak channel currents and shifted the voltage dependence of both activation and inactivation to more positive membrane potentials. The phosphoinhibitory mutation Ca(V)β2b(S152A) had opposite effects. There were no differences in peak Ca(V)1.2 currents or voltage dependence between the phosphomimetic mutation Ca(V)β2b(T164D) and the phosphoinhibitory mutation Ca(V)β2b(T164A). However, calcium-dependent inactivation was significantly increased for the phosphomimetic mutation Ca(V)β2b(T164D). This effect was subunit-specific, as the corresponding mutation in the palmitoylated isoform, Ca(V)β2a, had no effect. Overall, our data identify two conserved sites of phosphorylation of the Hook domain of Ca(V)β subunits in vivo and reveal differential modulatory effects of phosphomimetic mutations in these sites. These results reveal a new dimension of regulation of Ca(V)1.2 channels through phosphorylation of the Hook domains of their β subunits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2015.08.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637217PMC
October 2015

Dissecting the phenotypes of Dravet syndrome by gene deletion.

Brain 2015 Aug 27;138(Pt 8):2219-33. Epub 2015 May 27.

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280

Neurological and psychiatric syndromes often have multiple disease traits, yet it is unknown how such multi-faceted deficits arise from single mutations. Haploinsufficiency of the voltage-gated sodium channel Nav1.1 causes Dravet syndrome, an intractable childhood-onset epilepsy with hyperactivity, cognitive deficit, autistic-like behaviours, and premature death. Deletion of Nav1.1 channels selectively impairs excitability of GABAergic interneurons. We studied mice having selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons. In brain slices, these deletions cause increased threshold for action potential generation, impaired action potential firing in trains, and reduced amplification of postsynaptic potentials in those interneurons. Selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons increases susceptibility to thermally-induced seizures, which are strikingly prolonged when Nav1.1 is deleted in both interneuron types. Mice with global haploinsufficiency of Nav1.1 display autistic-like behaviours, hyperactivity and cognitive impairment. Haploinsufficiency of Nav1.1 in parvalbumin-expressing interneurons causes autistic-like behaviours, but not hyperactivity, whereas haploinsufficiency in somatostatin-expressing interneurons causes hyperactivity without autistic-like behaviours. Heterozygous deletion in both interneuron types is required to impair long-term spatial memory in context-dependent fear conditioning, without affecting short-term spatial learning or memory. Thus, the multi-faceted phenotypes of Dravet syndrome can be genetically dissected, revealing synergy in causing epilepsy, premature death and deficits in long-term spatial memory, but interneuron-specific effects on hyperactivity and autistic-like behaviours. These results show that multiple disease traits can arise from similar functional deficits in specific interneuron types.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awv142DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022661PMC
August 2015

Sleep impairment and reduced interneuron excitability in a mouse model of Dravet Syndrome.

Neurobiol Dis 2015 May 10;77:141-54. Epub 2015 Mar 10.

Department of Pharmacology, University of Washington, Seattle, WA 98195, USA. Electronic address:

Dravet Syndrome (DS) is caused by heterozygous loss-of-function mutations in voltage-gated sodium channel NaV1.1. Our mouse genetic model of DS recapitulates its severe seizures and premature death. Sleep disturbance is common in DS, but its mechanism is unknown. Electroencephalographic studies revealed abnormal sleep in DS mice, including reduced delta wave power, reduced sleep spindles, increased brief wakes, and numerous interictal spikes in Non-Rapid-Eye-Movement sleep. Theta power was reduced in Rapid-Eye-Movement sleep. Mice with NaV1.1 deleted specifically in forebrain interneurons exhibited similar sleep pathology to DS mice, but without changes in circadian rhythm. Sleep architecture depends on oscillatory activity in the thalamocortical network generated by excitatory neurons in the ventrobasal nucleus (VBN) of the thalamus and inhibitory GABAergic neurons in the reticular nucleus of the thalamus (RNT). Whole-cell NaV current was reduced in GABAergic RNT neurons but not in VBN neurons. Rebound firing of action potentials following hyperpolarization, the signature firing pattern of RNT neurons during sleep, was also reduced. These results demonstrate imbalance of excitatory vs. inhibitory neurons in this circuit. As predicted from this functional impairment, we found substantial deficit in homeostatic rebound of slow wave activity following sleep deprivation. Although sleep disorders in epilepsies have been attributed to anti-epileptic drugs, our results show that sleep disorder in DS mice arises from loss of NaV1.1 channels in forebrain GABAergic interneurons without drug treatment. Impairment of NaV currents and excitability of GABAergic RNT neurons are correlated with impaired sleep quality and homeostasis in these mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2015.02.016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402280PMC
May 2015

Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation.

Mol Cell Neurosci 2014 Nov;63:124-31

Facilitation and inactivation of P/Q-type Ca2+ currents mediated by Ca2+/calmodulin binding to Ca(V)2.1 channels contribute to facilitation and rapid depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin from its binding site and differentially modulate P/Q-type Ca2 + currents, resulting in diverse patterns of short-term synaptic plasticity. Neuronal calcium sensor-1 (NCS-1, frequenin) has been shown to enhance synaptic facilitation, but the underlying mechanism is unclear. We report here that NCS-1 directly interacts with IQ-like motif and calmodulin-binding domain in the C-terminal domain of Ca(V)2.1 channel. NCS-1 reduces Ca2 +-dependent inactivation of P/Q-type Ca2+ current through interaction with the IQ-like motif and calmodulin-binding domain without affecting peak current or activation kinetics. Expression of NCS-1 in presynaptic superior cervical ganglion neurons has no effect on synaptic transmission, eliminating effects of this calcium sensor protein on endogenous N-type Ca2+ currents and the endogenous neurotransmitter release machinery. However, in superior cervical ganglion neurons expressing wild-type Ca(V)2.1 channels, co-expression of NCS-1 induces facilitation of synaptic transmission in response to paired pulses and trains of depolarizing stimuli, and this effect is lost in Ca(V)2.1 channels with mutations in the IQ-like motif and calmodulin-binding domain. These results reveal that NCS-1 directly modulates Ca(V)2.1 channels to induce short-term synaptic facilitation and further demonstrate that CaS proteins are crucial in fine-tuning short-term synaptic plasticity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2014.11.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293345PMC
November 2014

Basal and β-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700.

Proc Natl Acad Sci U S A 2014 Nov 3;111(46):16598-603. Epub 2014 Nov 3.

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280

L-type calcium (Ca(2+)) currents conducted by voltage-gated Ca(2+) channel CaV1.2 initiate excitation-contraction coupling in cardiomyocytes. Upon activation of β-adrenergic receptors, phosphorylation of CaV1.2 channels by cAMP-dependent protein kinase (PKA) increases channel activity, thereby allowing more Ca(2+) entry into the cell, which leads to more forceful contraction. In vitro reconstitution studies and in vivo proteomics analysis have revealed that Ser-1700 is a key site of phosphorylation mediating this effect, but the functional role of this amino acid residue in regulation in vivo has remained uncertain. Here we have studied the regulation of calcium current and cell contraction of cardiomyocytes in vitro and cardiac function and homeostasis in vivo in a mouse line expressing the mutation Ser-1700-Ala in the CaV1.2 channel. We found that preventing phosphorylation at this site decreased the basal L-type CaV1.2 current in both neonatal and adult cardiomyocytes. In addition, the incremental increase elicited by isoproterenol was abolished in neonatal cardiomyocytes and was substantially reduced in young adult myocytes. In contrast, cellular contractility was only moderately reduced compared with wild type, suggesting a greater reserve of contractile function and/or recruitment of compensatory mechanisms. Mutant mice develop cardiac hypertrophy by the age of 3-4 mo, and maximal stress-induced exercise tolerance is reduced, indicating impaired physiological regulation in the fight-or-flight response. Our results demonstrate that phosphorylation at Ser-1700 alone is essential to maintain basal Ca(2+) current and regulation by β-adrenergic activation. As a consequence, blocking PKA phosphorylation at this site impairs cardiovascular physiology in vivo, leading to reduced exercise capacity in the fight-or-flight response and development of cardiac hypertrophy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1419129111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246329PMC
November 2014

Genetic background modulates impaired excitability of inhibitory neurons in a mouse model of Dravet syndrome.

Neurobiol Dis 2015 Jan 2;73:106-17. Epub 2014 Oct 2.

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA. Electronic address:

Dominant loss-of-function mutations in voltage-gated sodium channel NaV1.1 cause Dravet Syndrome, an intractable childhood-onset epilepsy. NaV1.1(+/-) Dravet Syndrome mice in C57BL/6 genetic background exhibit severe seizures, cognitive and social impairments, and premature death. Here we show that Dravet Syndrome mice in pure 129/SvJ genetic background have many fewer seizures and much less premature death than in pure C57BL/6 background. These mice also have a higher threshold for thermally induced seizures, fewer myoclonic seizures, and no cognitive impairment, similar to patients with Genetic Epilepsy with Febrile Seizures Plus. Consistent with this mild phenotype, mutation of NaV1.1 channels has much less physiological effect on neuronal excitability in 129/SvJ mice. In hippocampal slices, the excitability of CA1 Stratum Oriens interneurons is selectively impaired, while the excitability of CA1 pyramidal cells is unaffected. NaV1.1 haploinsufficiency results in increased rheobase and threshold for action potential firing and impaired ability to sustain high-frequency firing. Moreover, deletion of NaV1.1 markedly reduces the amplification and integration of synaptic events, further contributing to reduced excitability of interneurons. Excitability is less impaired in inhibitory neurons of Dravet Syndrome mice in 129/SvJ genetic background. Because specific deletion of NaV1.1 in forebrain GABAergic interneuons is sufficient to cause the symptoms of Dravet Syndrome in mice, our results support the conclusion that the milder phenotype in 129/SvJ mice is caused by lesser impairment of sodium channel function and electrical excitability in their forebrain interneurons. This mild impairment of excitability of interneurons leads to a milder disease phenotype in 129/SvJ mice, similar to Genetic Epilepsy with Febrile Seizures Plus in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2014.09.017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254180PMC
January 2015

Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac.

J Gen Physiol 2014 Aug;144(2):147-57

Department of Pharmacology, University of Washington, Seattle, WA 98195

Voltage-gated sodium channels mediate the initiation and propagation of action potentials in excitable cells. Transmembrane segment S4 of voltage-gated sodium channels resides in a gating pore where it senses the membrane potential and controls channel gating. Substitution of individual S4 arginine gating charges (R1-R3) with smaller amino acids allows ionic currents to flow through the mutant gating pore, and these gating pore currents are pathogenic in some skeletal muscle periodic paralysis syndromes. The voltage dependence of gating pore currents provides information about the transmembrane position of the gating charges as S4 moves in response to membrane potential. Here we studied gating pore current in mutants of the homotetrameric bacterial sodium channel NaChBac in which individual arginine gating charges were replaced by cysteine. Gating pore current was observed for each mutant channel, but with different voltage-dependent properties. Mutating the first (R1C) or second (R2C) arginine to cysteine resulted in gating pore current at hyperpolarized membrane potentials, where the channels are in resting states, but not at depolarized potentials, where the channels are activated. Conversely, the R3C gating pore is closed at hyperpolarized membrane potentials and opens with channel activation. Negative conditioning pulses revealed time-dependent deactivation of the R3C gating pore at the most hyperpolarized potentials. Our results show sequential voltage dependence of activation of gating pore current from R1 to R3 and support stepwise outward movement of the substituted cysteines through the narrow portion of the gating pore that is sealed by the arginine side chains in the wild-type channel. This pattern of voltage dependence of gating pore current is consistent with a sliding movement of the S4 helix through the gating pore. Through comparison with high-resolution models of the voltage sensor of bacterial sodium channels, these results shed light on the structural basis for pathogenic gating pore currents in periodic paralysis syndromes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1085/jgp.201411210DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113903PMC
August 2014

Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome.

Proc Natl Acad Sci U S A 2014 Jul 14;111(30):E3139-48. Epub 2014 Jul 14.

Department of Pharmacology, University of Washington, Seattle, WA 98195; and

Haploinsufficiency of the voltage-gated sodium channel NaV1.1 causes Dravet syndrome, an intractable developmental epilepsy syndrome with seizure onset in the first year of life. Specific heterozygous deletion of NaV1.1 in forebrain GABAergic-inhibitory neurons is sufficient to cause all the manifestations of Dravet syndrome in mice, but the physiological roles of specific subtypes of GABAergic interneurons in the cerebral cortex in this disease are unknown. Voltage-clamp studies of dissociated interneurons from cerebral cortex did not detect a significant effect of the Dravet syndrome mutation on sodium currents in cell bodies. However, current-clamp recordings of intact interneurons in layer V of neocortical slices from mice with haploinsufficiency in the gene encoding the NaV1.1 sodium channel, Scn1a, revealed substantial reduction of excitability in fast-spiking, parvalbumin-expressing interneurons and somatostatin-expressing interneurons. The threshold and rheobase for action potential generation were increased, the frequency of action potentials within trains was decreased, and action-potential firing within trains failed more frequently. Furthermore, the deficit in excitability of somatostatin-expressing interneurons caused significant reduction in frequency-dependent disynaptic inhibition between neighboring layer V pyramidal neurons mediated by somatostatin-expressing Martinotti cells, which would lead to substantial disinhibition of the output of cortical circuits. In contrast to these deficits in interneurons, pyramidal cells showed no differences in excitability. These results reveal that the two major subtypes of interneurons in layer V of the neocortex, parvalbumin-expressing and somatostatin-expressing, both have impaired excitability, resulting in disinhibition of the cortical network. These major functional deficits are likely to contribute synergistically to the pathophysiology of Dravet syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1411131111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121787PMC
July 2014

Reciprocal changes in phosphorylation and methylation of mammalian brain sodium channels in response to seizures.

J Biol Chem 2014 May 15;289(22):15363-73. Epub 2014 Apr 15.

From the Department of Neurobiology, Physiology, and Behavior and the Department of Physiology and Membrane Biology, University of California, Davis, California 95616 and

Voltage-gated sodium (Nav) channels initiate action potentials in brain neurons and are primary therapeutic targets for anti-epileptic drugs controlling neuronal hyperexcitability in epilepsy. The molecular mechanisms underlying abnormal Nav channel expression, localization, and function during development of epilepsy are poorly understood but can potentially result from altered posttranslational modifications (PTMs). For example, phosphorylation regulates Nav channel gating, and has been proposed to contribute to acquired insensitivity to anti-epileptic drugs exhibited by Nav channels in epileptic neurons. However, whether changes in specific brain Nav channel PTMs occur acutely in response to seizures has not been established. Here, we show changes in PTMs of the major brain Nav channel, Nav1.2, after acute kainate-induced seizures. Mass spectrometry-based proteomic analyses of Nav1.2 purified from the brains of control and seizure animals revealed a significant down-regulation of phosphorylation at nine sites, primarily located in the interdomain I-II linker, the region of Nav1.2 crucial for phosphorylation-dependent regulation of activity. Interestingly, Nav1.2 in the seizure samples contained methylated arginine (MeArg) at three sites. These MeArgs were adjacent to down-regulated sites of phosphorylation, and Nav1.2 methylation increased after seizure. Phosphorylation and MeArg were not found together on the same tryptic peptide, suggesting reciprocal regulation of these two PTMs. Coexpression of Nav1.2 with the primary brain arginine methyltransferase PRMT8 led to a surprising 3-fold increase in Nav1.2 current. Reciprocal regulation of phosphorylation and MeArg of Nav1.2 may underlie changes in neuronal Nav channel function in response to seizures and also contribute to physiological modulation of neuronal excitability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M114.562785DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140893PMC
May 2014

Bacterial sodium channels: models for eukaryotic sodium and calcium channels.

Authors:
Todd Scheuer

Handb Exp Pharmacol 2014 ;221:269-91

Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA,

Eukaryotic sodium and calcium channels are made up of four linked homologous but different transmembrane domains. Bacteria express sodium channels comprised of four identical subunits, each being analogous to a single homologous domain of their eukaryotic counterparts. Key elements of primary structure are conserved between bacterial and eukaryotic sodium and calcium channels. The simple protein structure of the bacterial channels has allowed extensive structure-function probes of key regions as well as allowing determination of several X-ray crystallographic structures of these channels. The structures have revealed novel features of sodium and calcium channel pores and elucidated the structural importance of many of the conserved features of primary sequence. The structural information has also formed the basis for computational studies probing the basis for sodium and calcium selectivity and gating.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-642-41588-3_13DOI Listing
July 2014

Enhancement of inhibitory neurotransmission by GABAA receptors having α2,3-subunits ameliorates behavioral deficits in a mouse model of autism.

Neuron 2014 Mar;81(6):1282-1289

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA. Electronic address:

Autism spectrum disorder (ASD) may arise from increased ratio of excitatory to inhibitory neurotransmission in the brain. Many pharmacological treatments have been tested in ASD, but only limited success has been achieved. Here we report that BTBR T(+)Itpr3(tf)/J (BTBR) mice, a model of idiopathic autism, have reduced spontaneous GABAergic neurotransmission. Treatment with low nonsedating/nonanxiolytic doses of benzodiazepines, which increase inhibitory neurotransmission through positive allosteric modulation of postsynaptic GABAA receptors, improved deficits in social interaction, repetitive behavior, and spatial learning. Moreover, negative allosteric modulation of GABAA receptors impaired social behavior in C57BL/6J and 129SvJ wild-type mice, suggesting that reduced inhibitory neurotransmission may contribute to social and cognitive deficits. The dramatic behavioral improvement after low-dose benzodiazepine treatment was subunit specific-the α2,3-subunit-selective positive allosteric modulator L-838,417 was effective, but the α1-subunit-selective drug zolpidem exacerbated social deficits. Impaired GABAergic neurotransmission may contribute to ASD, and α2,3-subunit-selective positive GABAA receptor modulation may be an effective treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2014.01.016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079471PMC
March 2014

Differential regulation of CaV1.2 channels by cAMP-dependent protein kinase bound to A-kinase anchoring proteins 15 and 79/150.

J Gen Physiol 2014 Mar;143(3):315-24

Department of Pharmacology, University of Washington, Seattle, WA 98195.

The CaV1.1 and CaV1.2 voltage-gated calcium channels initiate excitation-contraction coupling in skeletal and cardiac myocytes, excitation-transcription coupling in neurons, and many other cellular processes. Up-regulation of their activity by the β-adrenergic-PKA signaling pathway increases these physiological responses. PKA up-regulation of CaV1.2 activity can be reconstituted in a transfected cell system expressing CaV1.2Δ1800 truncated at the in vivo proteolytic processing site, the distal C-terminal domain (DCT; CaV1.2[1801-2122]), the auxiliary α2δ and β subunits of CaV1.2 channels, and A-kinase anchoring protein-15 (AKAP15), which binds to a site in the DCT. AKAP79/150 binds to the same site in the DCT as AKAP15. Here we report that AKAP79 is ineffective in supporting up-regulation of CaV1.2 channel activity by PKA, even though it binds to the same site in the DCT and inhibits the up-regulation of CaV1.2 channel activity supported by AKAP15. Mutation of the calcineurin-binding site in AKAP79 (AKAP79ΔPIX) allows it to support PKA-dependent up-regulation of CaV1.2 channel activity, suggesting that calcineurin bound to AKAP79 rapidly dephosphorylates CaV1.2 channels, thereby preventing their regulation by PKA. Both AKAP15 and AKAP79ΔPIX exert their regulatory effects on CaV1.2 channels in transfected cells by interaction with the modified leucine zipper motif in the DCT. Our results introduce an unexpected mode of differential regulation by AKAPs, in which binding of different AKAPs at a single site can competitively confer differential regulatory effects on the target protein by their association with different signaling proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1085/jgp.201311075DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933935PMC
March 2014

Structural basis for Ca2+ selectivity of a voltage-gated calcium channel.

Nature 2014 Jan 24;505(7481):56-61. Epub 2013 Nov 24.

Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA.

Voltage-gated calcium (CaV) channels catalyse rapid, highly selective influx of Ca(2+) into cells despite a 70-fold higher extracellular concentration of Na(+). How CaV channels solve this fundamental biophysical problem remains unclear. Here we report physiological and crystallographic analyses of a calcium selectivity filter constructed in the homotetrameric bacterial NaV channel NaVAb. Our results reveal interactions of hydrated Ca(2+) with two high-affinity Ca(2+)-binding sites followed by a third lower-affinity site that would coordinate Ca(2+) as it moves inward. At the selectivity filter entry, Site 1 is formed by four carboxyl side chains, which have a critical role in determining Ca(2+) selectivity. Four carboxyls plus four backbone carbonyls form Site 2, which is targeted by the blocking cations Cd(2+) and Mn(2+), with single occupancy. The lower-affinity Site 3 is formed by four backbone carbonyls alone, which mediate exit into the central cavity. This pore architecture suggests a conduction pathway involving transitions between two main states with one or two hydrated Ca(2+) ions bound in the selectivity filter and supports a 'knock-off' mechanism of ion permeation through a stepwise-binding process. The multi-ion selectivity filter of our CaVAb model establishes a structural framework for understanding the mechanisms of ion selectivity and conductance by vertebrate CaV channels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature12775DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877713PMC
January 2014

Phosphorylation sites required for regulation of cardiac calcium channels in the fight-or-flight response.

Proc Natl Acad Sci U S A 2013 Nov 11;110(48):19621-6. Epub 2013 Nov 11.

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280.

L-type Ca(2+) currents conducted by CaV1.2 channels initiate excitation-contraction coupling in the heart. Their activity is increased by β-adrenergic/cAMP signaling via phosphorylation by PKA in the fight-or-flight response, but the sites of regulation are unknown. We describe the functional role of phosphorylation of Ser1700 and Thr1704-sites of phosphorylation by PKA and casein kinase II at the interface between the proximal and distal C-terminal regulatory domains. Mutation of both residues to Ala in STAA mice reduced basal L-type Ca(2+) currents, due to a small decrease in expression and a substantial decrease in functional activity. The increase in L-type Ca(2+) current caused by isoproterenol was markedly reduced at physiological levels of stimulation (3-10 nM). Maximal increases in calcium current at nearly saturating concentrations of isoproterenol (100 nM) were also significantly reduced, but the mutation effects were smaller, suggesting that alternative regulatory mechanisms are engaged at maximal levels of stimulation. The β-adrenergic increase in cell contraction was also diminished. STAA ventricular myocytes exhibited arrhythmic contractions in response to isoproterenol, and up to 20% of STAA cells failed to sustain contractions when stimulated at 1 Hz. STAA mice have reduced exercise capacity, and cardiac hypertrophy is evident at 3 mo. We conclude that phosphorylation of Ser1700 and Thr1704 is essential for regulation of basal activity of CaV1.2 channels and for up-regulation by β-adrenergic signaling at physiological levels of stimulation. Disruption of phosphorylation at those sites leads to impaired cardiac function in vivo, as indicated by reduced exercise capacity and cardiac hypertrophy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1319421110DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845157PMC
November 2013

Localization of sodium channel subtypes in mouse ventricular myocytes using quantitative immunocytochemistry.

J Mol Cell Cardiol 2013 Nov 24;64:69-78. Epub 2013 Aug 24.

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA. Electronic address:

Voltage-gated sodium channels are responsible for the rising phase of the action potential in cardiac muscle. Previously, both TTX-sensitive neuronal sodium channels (NaV1.1, NaV1.2, NaV1.3, NaV1.4 and NaV1.6) and the TTX-resistant cardiac sodium channel (NaV1.5) have been detected in cardiac myocytes, but relative levels of protein expression of the isoforms were not determined. Using a quantitative approach, we analyzed z-series of confocal microscopy images from individual mouse myocytes stained with either anti-NaV1.1, anti-NaV1.2, anti-NaV1.3, anti-NaV1.4, anti-NaV1.5, or anti-NaV1.6 antibodies and calculated the relative intensity of staining for these sodium channel isoforms. Our results indicate that the TTX-sensitive channels represented approximately 23% of the total channels, whereas the TTX-resistant NaV1.5 channel represented 77% of the total channel staining in mouse ventricular myocytes. These ratios are consistent with previous electrophysiological studies in mouse ventricular myocytes. NaV1.5 was located at the cell surface, with high density at the intercalated disc, but was absent from the transverse (t)-tubular system, suggesting that these channels support surface conduction and inter-myocyte transmission. Low-level cell surface staining of NaV1.4 and NaV1.6 channels suggest a minor role in surface excitation and conduction. Conversely, NaV1.1 and NaV1.3 channels are localized to the t-tubules and are likely to support t-tubular transmission of the action potential to the myocyte interior. This quantitative immunocytochemical approach for assessing sodium channel density and localization provides a more precise view of the relative importance and possible roles of these individual sodium channel protein isoforms in mouse ventricular myocytes and may be applicable to other species and cardiac tissue types.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2013.08.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851329PMC
November 2013

A gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb.

J Gen Physiol 2013 Sep;142(3):181-90

Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.

Voltage-gated sodium channels undergo slow inactivation during repetitive depolarizations, which controls the frequency and duration of bursts of action potentials and prevents excitotoxic cell death. Although homotetrameric bacterial sodium channels lack the intracellular linker-connecting homologous domains III and IV that causes fast inactivation of eukaryotic sodium channels, they retain the molecular mechanism for slow inactivation. Here, we examine the functional properties and slow inactivation of the bacterial sodium channel NavAb expressed in insect cells under conditions used for structural studies. NavAb activates at very negative membrane potentials (V1/2 of approximately -98 mV), and it has both an early phase of slow inactivation that arises during single depolarizations and reverses rapidly, and a late use-dependent phase of slow inactivation that reverses very slowly. Mutation of Asn49 to Lys in the S2 segment in the extracellular negative cluster of the voltage sensor shifts the activation curve ∼75 mV to more positive potentials and abolishes the late phase of slow inactivation. The gating charge R3 interacts with Asn49 in the crystal structure of NavAb, and mutation of this residue to Cys causes a similar positive shift in the voltage dependence of activation and block of the late phase of slow inactivation as mutation N49K. Prolonged depolarizations that induce slow inactivation also cause hysteresis of gating charge movement, which results in a requirement for very negative membrane potentials to return gating charges to their resting state. Unexpectedly, the mutation N49K does not alter hysteresis of gating charge movement, even though it prevents the late phase of slow inactivation. Our results reveal an important molecular interaction between R3 in S4 and Asn49 in S2 that is crucial for voltage-dependent activation and for late slow inactivation of NavAb, and they introduce a NavAb mutant that enables detailed functional studies in parallel with structural analysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1085/jgp.201311012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753604PMC
September 2013

Distribution and function of sodium channel subtypes in human atrial myocardium.

J Mol Cell Cardiol 2013 Aug 20;61:133-141. Epub 2013 May 20.

Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany.

Voltage-gated sodium channels composed of a pore-forming α subunit and auxiliary β subunits are responsible for the upstroke of the action potential in cardiac muscle. However, their localization and expression patterns in human myocardium have not yet been clearly defined. We used immunohistochemical methods to define the level of expression and the subcellular localization of sodium channel α and β subunits in human atrial myocytes. Nav1.2 channels are located in highest density at intercalated disks where β1 and β3 subunits are also expressed. Nav1.4 and the predominant Nav1.5 channels are located in a striated pattern on the cell surface at the z-lines together with β2 subunits. Nav1.1, Nav1.3, and Nav1.6 channels are located in scattered puncta on the cell surface in a pattern similar to β3 and β4 subunits. Nav1.5 comprised approximately 88% of the total sodium channel staining, as assessed by quantitative immunohistochemistry. Functional studies using whole cell patch-clamp recording and measurements of contractility in human atrial cells and tissue showed that TTX-sensitive (non-Nav1.5) α subunit isoforms account for up to 27% of total sodium current in human atrium and are required for maximal contractility. Overall, our results show that multiple sodium channel α and β subunits are differentially localized in subcellular compartments in human atrial myocytes, suggesting that they play distinct roles in initiation and conduction of the action potential and in excitation-contraction coupling. TTX-sensitive sodium channel isoforms, even though expressed at low levels relative to TTX-sensitive Nav1.5, contribute substantially to total cardiac sodium current and are required for normal contractility. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2013.05.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906922PMC
August 2013

Sudden unexpected death in a mouse model of Dravet syndrome.

J Clin Invest 2013 Apr 25;123(4):1798-808. Epub 2013 Mar 25.

Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA.

Sudden unexpected death in epilepsy (SUDEP) is the most common cause of death in intractable epilepsies, but physiological mechanisms that lead to SUDEP are unknown. Dravet syndrome (DS) is an infantile-onset intractable epilepsy caused by heterozygous loss-of-function mutations in the SCN1A gene, which encodes brain type-I voltage-gated sodium channel NaV1.1. We studied the mechanism of premature death in Scn1a heterozygous KO mice and conditional brain- and cardiac-specific KOs. Video monitoring demonstrated that SUDEP occurred immediately following generalized tonic-clonic seizures. A history of multiple seizures was a strong risk factor for SUDEP. Combined video-electroencephalography-electrocardiography revealed suppressed interictal resting heart-rate variability and episodes of ictal bradycardia associated with the tonic phases of generalized tonic-clonic seizures. Prolonged atropine-sensitive ictal bradycardia preceded SUDEP. Similar studies in conditional KO mice demonstrated that brain, but not cardiac, KO of Scn1a produced cardiac and SUDEP phenotypes similar to those found in DS mice. Atropine or N-methyl scopolamine treatment reduced the incidence of ictal bradycardia and SUDEP in DS mice. These findings suggest that SUDEP is caused by apparent parasympathetic hyperactivity immediately following tonic-clonic seizures in DS mice, which leads to lethal bradycardia and electrical dysfunction of the ventricle. These results have important implications for prevention of SUDEP in DS patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI66220DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613924PMC
April 2013

Synergistic GABA-enhancing therapy against seizures in a mouse model of Dravet syndrome.

J Pharmacol Exp Ther 2013 May 19;345(2):215-24. Epub 2013 Feb 19.

Department of Neurology, University of Washington, Seattle, Washington, USA.

Seizures remain uncontrolled in 30% of patients with epilepsy, even with concurrent use of multiple drugs, and uncontrolled seizures result in increased morbidity and mortality. An extreme example is Dravet syndrome (DS), an infantile-onset severe epilepsy caused by heterozygous loss of function mutations in SCN1A, the gene encoding the brain type-I voltage-gated sodium channel NaV1.1. Studies in Scn1a heterozygous knockout mice demonstrate reduced excitability of GABAergic interneurons, suggesting that enhancement of GABA signaling may improve seizure control and comorbidities. We studied the efficacy of two GABA-enhancing drugs, clonazepam and tiagabine, alone and in combination, against thermally evoked myoclonic and generalized tonic-clonic seizures. Clonazepam, a positive allosteric modulator of GABA-A receptors, protected against myoclonic and generalized tonic-clonic seizures. Tiagabine, a presynaptic GABA reuptake inhibitor, was protective against generalized tonic-clonic seizures but only minimally protective against myoclonic seizures and enhanced myoclonic seizure susceptibility at high doses. Combined therapy with clonazepam and tiagabine was synergistic against generalized tonic-clonic seizures but was additive against myoclonic seizures. Toxicity determined by rotorod testing was additive for combination therapy. The synergistic actions of clonazepam and tiagabine gave enhanced seizure protection and reduced toxicity, suggesting that combination therapy may be well tolerated and effective for seizures in DS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.113.203331DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629796PMC
May 2013

Ca2+-independent activation of Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain of CaV2.1 calcium channels.

J Biol Chem 2013 Feb 19;288(7):4637-48. Epub 2012 Dec 19.

Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA.

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of Ca(V)2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca(2+)/CaM stimulus. Autophosphorylated CaMKII can bind the Ca(V)2.1 channel and synapsin-1 simultaneously. CaMKII binding to Ca(V)2.1 channels induces Ca(2+)-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of Ca(V)2.1 channels by binding of Ca(2+)/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to Ca(V)2.1 channels. These results define the functional properties of a signaling complex of CaMKII and Ca(V)2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M112.369058DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576069PMC
February 2013

Increased intracellular magnesium attenuates β-adrenergic stimulation of the cardiac Ca(V)1.2 channel.

J Gen Physiol 2013 Jan 17;141(1):85-94. Epub 2012 Dec 17.

Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.

Increases in intracellular Mg(2+) (Mg(2+)(i)), as observed in transient cardiac ischemia, decrease L-type Ca(2+) current of mammalian ventricular myocytes (VMs). However, cardiac ischemia is associated with an increase in sympathetic tone, which could stimulate L-type Ca(2+) current. Therefore, the effect of Mg(2+)(i) on L-type Ca(2+) current in the context of increased sympathetic tone was unclear. We tested the impact of increased Mg(2+)(i) on the β-adrenergic stimulation of L-type Ca(2+) current. Exposure of acutely dissociated adult VMs to higher Mg(2+)(i) concentrations decreased isoproterenol stimulation of the L-type Ca(2+) current from 75 ± 13% with 0.8 mM Mg(2+)(i) to 20 ± 8% with 2.4 mM Mg(2+)(i). We activated this signaling cascade at different steps to determine the site or sites of Mg(2+)(i) action. Exposure of VMs to increased Mg(2+)(i) attenuated the stimulation of L-type Ca(2+) current induced by activation of adenylyl cyclase with forskolin, inhibition of cyclic nucleotide phosphodiesterases with isobutylmethylxanthine, and inhibition of phosphoprotein phosphatases I and IIA with calyculin A. These experiments ruled out significant effects of Mg(2+)(i) on these upstream steps in the signaling cascade and suggested that Mg(2+)(i) acts directly on Ca(V)1.2 channels. One possible site of action is the EF-hand in the proximal C-terminal domain, just downstream in the signaling cascade from the site of regulation of Ca(V)1.2 channels by protein phosphorylation on the C terminus. Consistent with this hypothesis, Mg(2+)(i) had no effect on enhancement of Ca(V)1.2 channel activity by the dihydropyridine agonist (S)-BayK8644, which activates Ca(V)1.2 channels by binding to a site formed by the transmembrane domains of the channel. Collectively, our results suggest that, in transient ischemia, increased Mg(2+)(i) reduces stimulation of L-type Ca(2+) current by the β-adrenergic receptor by directly acting on Ca(V)1.2 channels in a cell-autonomous manner, effectively decreasing the metabolic stress imposed on VMs until blood flow can be reestablished.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1085/jgp.201210864DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536518PMC
January 2013

Fine-tuning synaptic plasticity by modulation of Ca(V)2.1 channels with Ca2+ sensor proteins.

Proc Natl Acad Sci U S A 2012 Oct 1;109(42):17069-74. Epub 2012 Oct 1.

Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA.

Modulation of P/Q-type Ca(2+) currents through presynaptic voltage-gated calcium channels (Ca(V)2.1) by binding of Ca(2+)/calmodulin contributes to short-term synaptic plasticity. Ca(2+)-binding protein-1 (CaBP1) and Visinin-like protein-2 (VILIP-2) are neurospecific calmodulin-like Ca(2+) sensor proteins that differentially modulate Ca(V)2.1 channels, but how they contribute to short-term synaptic plasticity is unknown. Here, we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels by CaBP1 and VILIP-2 has opposing effects on short-term synaptic plasticity in superior cervical ganglion neurons. Expression of CaBP1, which blocks Ca(2+)-dependent facilitation of P/Q-type Ca(2+) current, markedly reduced facilitation of synaptic transmission. VILIP-2, which blocks Ca(2+)-dependent inactivation of P/Q-type Ca(2+) current, reduced synaptic depression and increased facilitation under conditions of high release probability. These results demonstrate that activity-dependent regulation of presynaptic Ca(V)2.1 channels by differentially expressed Ca(2+) sensor proteins can fine-tune synaptic responses to trains of action potentials and thereby contribute to the diversity of short-term synaptic plasticity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1215172109DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479455PMC
October 2012

Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission.

Nature 2012 Sep 22;489(7416):385-90. Epub 2012 Aug 22.

Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, Washington 98195, USA.

Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel Na(V)1.1 causes Dravet's syndrome, a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit and autism-spectrum behaviours. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome are poorly understood. Here we report that mice with Scn1a haploinsufficiency exhibit hyperactivity, stereotyped behaviours, social interaction deficits and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odours and social odours are aversive to Scn1a(+/-) mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of Na(V)1.1 channels in forebrain interneurons is sufficient to cause these behavioural and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABA(A) receptors, completely rescued the abnormal social behaviours and deficits in fear memory in the mouse model of Dravet's syndrome, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for Na(V)1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature11356DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448848PMC
September 2012

Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels.

J Biol Chem 2012 Aug 2;287(36):30719-28. Epub 2012 Jul 2.

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA.

Activation of voltage-gated sodium (Na(v)) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of Na(V) channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIV(E15A). Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on Na(V) channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on Na(V) channels acts synergistically to modify channel gating and paralyze prey.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M112.370742DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436316PMC
August 2012

Crystal structure of a voltage-gated sodium channel in two potentially inactivated states.

Nature 2012 May 20;486(7401):135-9. Epub 2012 May 20.

Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA.

In excitable cells, voltage-gated sodium (Na(V)) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance. Inactivation is a hallmark of Na(V) channel function and is critical for control of membrane excitability, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type Na(V)Ab channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2 Å resolution. Compared to previous structures of Na(V)Ab channels with cysteine mutations in the pore-lining S6 helices (ref. 4), the S6 helices and the intracellular activation gate have undergone significant rearrangements: one pair of S6 helices has collapsed towards the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type Na(V)Ab models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues that are analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains have also shifted around the perimeter of the pore module in wild-type Na(V)Ab, compared to the mutant channel, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in Na(V) channel gating and inactivation. These potential inactivated-state structures provide new insights into Na(V) channel gating and novel avenues to drug development and therapy for a range of debilitating Na(V) channelopathies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature11077DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552482PMC
May 2012