Publications by authors named "Ting-Yun Yen"

4 Publications

  • Page 1 of 1

Two septal-entorhinal GABAergic projections differentially control coding properties of spatially tuned neurons in the medial entorhinal cortex.

Cell Rep 2021 03;34(9):108801

Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. Electronic address:

Septal parvalbumin-expressing (PV) and calbindin-expressing (CB) projections inhibit low-threshold and fast-spiking interneurons, respectively, in the medial entorhinal cortex (MEC). We investigate how the two inputs control neuronal activity in the MEC in freely moving mice. Stimulation of PV and CB terminals causes disinhibition of spatially tuned MEC neurons, but exerts differential effects on temporal coding and burst firing. Thus, recruitment of PV projections disrupts theta-rhythmic firing of MEC neurons, while stimulation of CB projections increases burst firing of grid cells and enhances phase precession in a cell-type-specific manner. Inactivation of septal PV or CB neurons differentially affects context, reference, and working memory. Together, our results reveal how specific connectivity of septal GABAergic projections with MEC interneurons translates into differential modulation of MEC neuronal coding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.108801DOI Listing
March 2021

Neurogenesis of medium spiny neurons in the nucleus accumbens continues into adulthood and is enhanced by pathological pain.

Mol Psychiatry 2020 Jul 1. Epub 2020 Jul 1.

Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center, Heidelberg, Germany.

In mammals, most adult neural stem cells (NSCs) are located in the ventricular-subventricular zone (V-SVZ) along the wall of the lateral ventricles and they are the source of olfactory bulb interneurons. Adult NSCs exhibit an apico-basal polarity; they harbor a short apical process and a long basal process, reminiscent of radial glia morphology. In the adult mouse brain, we detected extremely long radial glia-like fibers that originate from the anterior-ventral V-SVZ and that are directed to the ventral striatum. Interestingly, a fraction of adult V-SVZ-derived neuroblasts dispersed in close association with the radial glia-like fibers in the nucleus accumbens (NAc). Using several in vivo mouse models, we show that newborn neurons integrate into preexisting circuits in the NAc where they mature as medium spiny neurons (MSNs), i.e., a type of projection neurons formerly believed to be generated only during embryonic development. Moreover, we found that the number of newborn neurons in the NAc is dynamically regulated by persistent pain, suggesting that adult neurogenesis of MSNs is an experience-modulated process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-0823-4DOI Listing
July 2020

K Channel Kv3.4 Is Essential for Axon Growth by Limiting the Influx of Ca into Growth Cones.

J Neurosci 2017 04 20;37(17):4433-4449. Epub 2017 Mar 20.

Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan

Membrane excitability in the axonal growth cones of embryonic neurons influences axon growth. Voltage-gated K (Kv) channels are key factors in controlling membrane excitability, but whether they regulate axon growth remains unclear. Here, we report that Kv3.4 is expressed in the axonal growth cones of embryonic spinal commissural neurons, motoneurons, dorsal root ganglion neurons, retinal ganglion cells, and callosal projection neurons during axon growth. Our (cultured dorsal spinal neurons of chick embryos) and (developing chick spinal commissural axons and rat callosal axons) findings demonstrate that knockdown of Kv3.4 by a specific shRNA impedes axon initiation, elongation, pathfinding, and fasciculation. In cultured dorsal spinal neurons, blockade of Kv3.4 by blood depressing substance II suppresses axon growth via an increase in the amplitude and frequency of Ca influx through T-type and L-type Ca channels. Electrophysiological results show that Kv3.4, the major Kv channel in the axonal growth cones of embryonic dorsal spinal neurons, is activated at more hyperpolarized potentials and inactivated more slowly than it is in postnatal and adult neurons. The opening of Kv3.4 channels effectively reduces growth cone membrane excitability, thereby limiting excessive Ca influx at subthreshold potentials or during Ca-dependent action potentials. Furthermore, excessive Ca influx induced by an optogenetic approach also inhibits axon growth. Our findings suggest that Kv3.4 reduces growth cone membrane excitability and maintains [Ca] at an optimal concentration for normal axon growth. Accumulating evidence supports the idea that impairments in axon growth contribute to many clinical disorders, such as autism spectrum disorders, corpus callosum agenesis, Joubert syndrome, Kallmann syndrome, and horizontal gaze palsy with progressive scoliosis. Membrane excitability in the growth cone, which is mainly controlled by voltage-gated Ca (Cav) and K (Kv) channels, modulates axon growth. The role of Cav channels during axon growth is well understood, but it is unclear whether Kv channels control axon outgrowth by regulating Ca influx. This report shows that Kv3.4, which is transiently expressed in the axonal growth cones of many types of embryonic neurons, acts to reduce excessive Ca influx through Cav channels and thus permits normal axon outgrowth.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.1076-16.2017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596659PMC
April 2017
-->