Publications by authors named "Tina Eyre"

7 Publications

  • Page 1 of 1

The zebrafish reference genome sequence and its relationship to the human genome.

Nature 2013 Apr 17;496(7446):498-503. Epub 2013 Apr 17.

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.

Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature12111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703927PMC
April 2013

The genome of the blood fluke Schistosoma mansoni.

Nature 2009 Jul;460(7253):352-8

Wellcome Trust Sanger Institute, Cambridge CB10 1SD, UK.

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature08160DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756445PMC
July 2009

HCOP: a searchable database of human orthology predictions.

Brief Bioinform 2007 Jan 2;8(1):2-5. Epub 2006 Sep 2.

HUGO Gene Nomenclature Committee (HGNC), Department of Biology, University College London, Wolfson House, 4 Stephenson Way, London.

The HUGO Gene Nomenclature Committee (HGNC) Comparison of Orthology Predictions (HCOP) search tool combines the human, mouse, rat and chicken orthology assertions made by PhIGs, HomoloGene, Ensembl, Inparanoid, Mouse Genome Informatics (MGI) and HGNC, enabling users to identify predicted ortholog pairs for a specified gene or genes. The HCOP resource provides a useful method to integrate, compare and access a variety of disparate sources of human orthology data. The HCOP search tool, data and documentation are available at http://www.gene.ucl.ac.uk/hcop.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbl030DOI Listing
January 2007

The HUGO Gene Nomenclature Database, 2006 updates.

Nucleic Acids Res 2006 Jan;34(Database issue):D319-21

Department of Biology, HUGO Gene Nomenclature Committee (HGNC), University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK.

The HUGO Gene Nomenclature Committee (HGNC) aims to give every human gene a unique and ideally meaningful name and symbol. The HGNC database, previously known as Genew, contains over 22,000 public records with approved human gene nomenclature and associated information. The database has undergone major improvements throughout the last year, is publicly available for online searching at http://www.gene.ucl.ac.uk/cgi-bin/nomenclature/searchgenes.pl and has a new custom downloads interface at http://www.gene.ucl.ac.uk/cgi-bin/nomenclature/gdlw.pl.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gkj147DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1347509PMC
January 2006

HCOP: the HGNC comparison of orthology predictions search tool.

Mamm Genome 2005 Nov 11;16(11):827-8. Epub 2005 Nov 11.

HUGO Gene Nomenclature Committee, The Galton Laboratory, Department of Biology, University College London, Wolfson House, 4, Stephenson Way, London, UK.

The HGNC Comparison of Orthology Predictions search tool, HCOP (http://www.gene.ucl.ac.uk/cgi-bin/nomenclature/hcop.pl ), enables users to compare predicted human and mouse orthologs for a specified gene, or set of genes, from either species according to the ortholog assertions from the Ensembl, HGNC, Homologene, Inparanoid, MGI and PhIGs databases. Users can assess the reliability of the prediction from the number of these different sources that identify a particular orthologous pair. HCOP provides a useful one-stop resource to summarise, compare and access various sources of human and mouse orthology data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00335-005-0103-2DOI Listing
November 2005

Computational analysis of alpha-helical membrane protein structure: implications for the prediction of 3D structural models.

Protein Eng Des Sel 2004 Aug 23;17(8):613-24. Epub 2004 Sep 23.

Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT.

Relatively little has been known about the structure of alpha-helical membrane proteins, since until recently few structures had been crystallized. These limited data have restricted structural analyses to the prediction of secondary structure, rather than tertiary folds. In order to address this, this paper describes an analysis of the 23 available membrane protein structures. A number of findings are made that are of particular relevance to transmembrane helix packing: (1) on average lipid-tail-accessible transmembrane residues are significantly more hydrophobic, less conserved and contain different residue types to buried residues; (2) charged residues are not always buried and, when accessible to membrane lipid tails, few are paired with another charge and instead they often interact with phospholipid head-groups or with other residue types; (3) a significant proportion of lipid-tail-accessible charged and polar residues form hydrogen bonds only with residues one turn away in the same helix (intra-helix); (4) pore-lining residues are usually hydrophobic and it is difficult to distinguish them from buried residues in terms of either residue type or conservation; and (5) information was gained about the proportion of helices that tend to contribute to lining a pore and the resulting pore diameter. These findings are discussed with relevance to the prediction of membrane protein 3D structure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/protein/gzh072DOI Listing
August 2004

The role of the 5-HT1D receptor as a presynaptic autoreceptor in the guinea pig.

Eur J Pharmacol 2004 Jun;493(1-3):85-93

Eli Lilly and Company Limited, Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK.

The present study investigated the role of the 5-hydroxytryptamine (5-HT, serotonin)1D receptor as a presynaptic autoreceptor in the guinea pig. In keeping with the literature, the 5-HT1B selective antagonist, 1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydrospiro [furo[2,3-f]indole-3,4'-piperidine]oxalate (SB224289) potentiated [3H]5-HT outflow from pre-labelled slices of guinea pig cerebral cortex confirming its role as a presynaptic autoreceptor in this species. In addition, the 5-HT1D receptor-preferring antagonists, 1-[2-[4-(6-fluoro-1H-indol-3-yl)-3,6-dihydro-2H-pyridin-1-yl]-ethyl]-3-pyridin-4-yl-methyl-tetrahydro-pyrimidin-2-one (LY367642), (R)-1-[2-(4-(6-fluoro-1H-indol-3-yl-)-3,6-dihydro-1(2H)-pyridinyl)ethyl]-3,4-dihydro-1H-2-benzopyran-6-carboxamide (LY456219), (S)-1-[2-(4-(6-fluoro-1H-indol-3-yl-)-3,6-dihydro-1(2H)-pyridinyl)ethyl]-3,4-dihydro-1H-2-benzopyran-6-carboxamide (LY456220) and 1-[2-[4-(4-fluoro-benzoyl)-piperidin-1-yl]-ethyl]-3,3-dimethyl-1,2-dihydro-indol-2-one (LY310762), potentiated [3H]5-HT outflow from this preparation with potencies (EC50 values=31-140 nM) in the same range as their affinities for the guinea pig 5-HT1D receptor (Ki values=100-333 nM). The selective 5-HT1D receptor agonist, R-2-(4-fluoro-phenyl)-2-[1-[3-(5-[1,2,4]triazol-4-yl-1H-indol-3-yl)-propyl]-piperidin-4-ylamino]-ethanol dioxylate (L-772,405), inhibited [3H]5-HT outflow. In microdialysis studies, administration of either SB224289 or LY310762 at 10 mg/kg by the intraperitoneal (i.p.) route, potentiated the increase in extracellular 5-HT concentration produced by a maximally effective dose of the selective serotonin re-uptake inhibitor, fluoxetine (at 20 mg/kg i.p.). In addition, the 5-HT1D receptor-preferring antagonist and 5-HT transporter inhibitor, LY367642 (at 10 mg/kg i.p.), elevated extracellular 5-HT concentrations to a greater extent than a maximally effective dose of fluoxetine. It is concluded that the 5-HT1D receptor, like the 5-HT1B receptor, may be a presynaptic autoreceptor in the guinea pig.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2004.04.029DOI Listing
June 2004
-->