Publications by authors named "Tiehui Wang"

102 Publications

Immune response and protective efficacy of two new adjuvants, Montanide™ ISA 763B VG and Montanide™ GEL02, administered with a Streptococcus agalactiae ghost vaccine in Nile tilapia (Oreochromis niloticus).

Fish Shellfish Immunol 2021 Jun 19;116:19-29. Epub 2021 Jun 19.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom. Electronic address:

Streptococcus agalactiae is one of the most important pathogens infecting tilapia worldwide and causes meningoencephalitis, septicemia and high mortalities with considerable losses. Various types of vaccines have been developed against S. agalactiae infection, such as inactivated vaccines, live attenuated vaccines and subunit vaccines. Bacterial ghosts (BGs) are nonliving, empty cell envelopes and have been reported as novel vaccine candidates. Therefore, the main aims of this study were to develop an S. agalactiae ghost vaccine (SAGV) and to evaluate the immune response and protective effect of SAGV against S. agalactiae with two novel adjuvants, Montanide™ ISA 763B VG and Montanide™ GEL02. Nile tilapia, mean weight 50 g, were divided into four groups as follows; 1) fish injected with PBS as control, 2) fish injected with the SAGV alone; 3) fish injected with the SAGV+Montanide™ ISA 763B VG; and 4) fish injected with SAGV+Montanide™ GEL02. Following vaccination, innate immunity parameters including serum lysozyme, myeloperoxidase, catalase, and bactericidal activity were all significantly enhanced. Moreover, specific serum IgM antibodies were induced and reached their highest level 2-8 weeks post vaccination. Importantly, the relative percent survival of tilapia vaccinated against the SAGV formulated with both adjuvants was 80-93%. Furthermore, the transcription of immune-related genes (IgM, TCRβ, IL-1β, IL-8 and TNFα) were up-regulated in tilapia after vaccination, indicating that both cellular and humoral immune responses were induced by these adjuvanted vaccines. In summary, Montanide™ ISA 763B VG and Montanide™ GEL02 can enhance immunoprotection induced by the SAGV vaccine against streptococcosis, demonstrating that both have value as potential adjuvants of fish vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2021.06.014DOI Listing
June 2021

Montanide™ ISA 763A VG and ISA 761 VG induce different immune pathway responses in rainbow trout (Oncorhynchus mykiss) when used as adjuvant for an Aeromonas salmonicida bacterin.

Fish Shellfish Immunol 2021 Jul 30;114:171-183. Epub 2021 Apr 30.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK. Electronic address:

Adjuvants are the helper substances that increase vaccine efficacy by enhancing the potency and longevity of specific immune responses to antigens. Most existing fish vaccines are presented in the form of oil-based emulsions delivered by intraperitoneal injection. The characterization of their mode of action is a valuable aid to future vaccine development, particularly for the potential identification and stimulation of specific immunological pathways related to the desired protective response. This study characterized the expression of selected immune-related genes in the peritoneal cavity, head kidney and spleen following the administration of two adjuvanted-bacterial vaccines thought to induce humoral (Montanide™ ISA 763A VG) or humoral and cell mediated (Montanide™ ISA 761 VG) immune responses, to determine if differences in responsiveness are readily apparent. The most informative site was the spleen, where Montanide™ ISA 763A VG + bacterin gave rise to upregulation of genes driving T-cell/lymphoid responses, namely IL-2, IL-15 and IL-21. This combined with upregulation of IFNγ1 and IFNγ2, IL-4/13B2, p35A1 and p40 (B1 and C) indicated that the induction of Th1 and possibly Th2 immunity was occurring in fish vaccinated with this adjuvant. Perhaps the most intriguing finding was the lack of a detectable Th1 response in fish given Montanide™ ISA 761 VG + bacterin, suggesting some other arm of the immune system is activated to give protection. Whatever the reason for the different responses detected, it is clear from the present study that the adjuvant used has a major impact on the responses elicited. Since these differences are readily detectable it allows, in principle, their use to help select the most appropriate adjuvants for inclusion into fish vaccines, where the type of response elicited may need to be tailored to a particular pathogen to confer protection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2021.04.024DOI Listing
July 2021

Revisiting the Teleost Thymus: Current Knowledge and Future Perspectives.

Biology (Basel) 2020 Dec 25;10(1). Epub 2020 Dec 25.

Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, Estación Central, Santiago 3363, Chile.

The thymus in vertebrates plays a critical role in producing functionally competent T-lymphocytes. Phylogenetically, the thymus emerges early during evolution in jawed cartilaginous fish, and it is usually a bilateral organ placed subcutaneously at the dorsal commissure of the operculum. In this review, we summarize the current understanding of the thymus localization, histology studies, cell composition, and function in teleost fishes. Furthermore, we consider environmental factors that affect thymus development, such as seasonal changes, photoperiod, water temperature fluctuations and hormones. Further analysis of the thymus cell distribution and function will help us understand how key stages for developing functional T cells occur in fish, and how thymus dynamics can be modulated by external factors like photoperiod. Overall, the information presented here helps identify the knowledge gaps and future steps needed for a better understanding of the immunobiology of fish thymus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biology10010008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824517PMC
December 2020

Ancient Cytokine Interleukin 15-Like (IL-15L) Induces a Type 2 Immune Response.

Front Immunol 2020 29;11:549319. Epub 2020 Oct 29.

Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.

Related interleukin-2, -15, and -15-like (IL-2, -15, and -15L) are ancient cytokines, with all three genes surviving in extant fish and some mammals. The present study is the first to identify IL-15L functions, namely in rainbow trout. In isolated trout splenocytes, and , purified recombinant IL-15L+IL-15Rα molecules induced expression of and homologs, which are markers of type 2 immunity. In contrast, trout IL-15 stimulated type 1 immunity markers, thus IL-15 and IL-15L can have opposing functions. Trout IL-15L was more dependent on "in " presentation by the receptor chain IL-15Rα than IL-15, and stimulated CD4CD8(IgM) lymphocytes from thymus and spleen. We propose an important role for IL-15L early in the type 2 immunity cytokine cascade. Trout IL-2 and IL-15 exhibited features reminiscent of their mechanistic and functional dichotomy observed in mammals; for example, IL-15 but not IL-2 required a receptor alpha chain (only IL-15Rα in the case of fish) for its stability, and only IL-15 was efficient in stimulating lymphocytes from mucosal tissues. Data suggest that IL-15L and IL-15 may be particularly effective in stimulating innate lymphocyte type 2 cells (ILC2) and natural killer (NK) cells, respectively, but further identification of the cell types is needed. An interesting finding different from in mammals was the efficient stimulation of CD4CD8 thymocytes by IL-2. In short, this study presents fundamental information on the evolution of the IL-2/15/15L cytokine family.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2020.549319DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658486PMC
May 2021

Type I Interferon Regulates the Survival and Functionality of B Cells in Rainbow Trout.

Front Immunol 2020 9;11:1494. Epub 2020 Jul 9.

Animal Health Research Center (CISA-INIA), Madrid, Spain.

Interferons (IFNs) orchestrate antiviral responses in jawed vertebrates and can be classified into three types based on different aspects of their genomic organization, structure and receptors through which they signal and function. Generally, type I and type III IFNs include cytokines that directly induce an antiviral response, whereas type II IFNs are well-known for their immunomodulatory role during viral infections. In mammals, type I IFNs have been shown to also regulate many aspects of B cell development and differentiation. Yet, these functions have been only faintly investigated for teleost IFNs. Thus, in the current study, we have examined the effects of a model type I rainbow trout IFN molecule (IFNa) on blood naïve (IgMIgD) B cells, comparing them to those exerted by type II IFN (IFNγ). Our results demonstrate that IFNa increases the survival of naïve rainbow trout B cells, in the absence of lymphoproliferative effects, by rescuing them from spontaneous apoptosis. Additionally, IFNa increased the phagocytic capacity of blood IgMIgD B cells and augmented the number of IgM-secreting cells in blood leukocyte cultures. IFNγ, on the other hand, had only minor effects up-regulating IgM secretion, whereas it increased the phagocytic capacity of IgM cells in the cultures. Finally, given the recent identification of 9 genes in rainbow trout, we have also established which of these genes were transcriptionally regulated in blood naïve B cells in response to IFNa. This study points to a previously undescribed role for teleost type I IFNs in the regulation of B cell responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2020.01494DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363951PMC
May 2021

Effective isolation of GALT cells: Insights into the intestine immune response of rainbow trout (Oncorhynchus mykiss) to different bacterin vaccine preparations.

Fish Shellfish Immunol 2020 Oct 29;105:378-392. Epub 2020 Jun 29.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, AB24 2TZ, UK. Electronic address:

The teleost gut is a multifunction complex structure that plays a pivotal immunological role in homeostasis and the maintenance of health, in addition to digestion of food and/or nutrient absorption. In vitro examination of the intestine leucocyte repertoire has the potential to aid our understanding of gut immune competence and allows a rapid screen of host-microorganism interactions in different immunological contexts. To explore this possibility, in the present study we investigated the response of isolated gut leucocytes to 4 bacterins of Aeromonas salmonicida, prepared from different strains, combinations and strains grown in different environments, in comparison to a Yersinia ruckeri bacterin for which a commercial/effective oral booster vaccine has been developed. To aid this study we also optimized further our method of GALT cell isolation from rainbow trout, so as to avoid mechanical clearance of the intestine contents. This drastically increased the cell yield from ~12 × 10 to ~210 × 10/fish with no change in the percent cell viability over time or presence of transcripts typical of the key leucocyte types needed for the study of immune modulation (i.e. T- and B-cells, dendritic cells and macrophages). A wide array of immune transcripts were modulated by the bacterins, demonstrating the diversity of GALT cell responses to bacterial stimulation. Indeed, the GALT leucocyte responses were sensitive enough to distinguish the different bacterial species, strains and membrane proteins, as seen by distinct kinetics of immune gene expression. However, the response of the GALT cells was often relatively slow and of a low magnitude compared to those of PBL. These results enhance our knowledge of the gut biocapacity and help validate the use of this model for screening of oral vaccine candidates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2020.06.051DOI Listing
October 2020

Distinct modes of action of CD40L and adaptive cytokines IL-2, IL-4/13, IL-10 and IL-21 on rainbow trout IgM B cells.

Dev Comp Immunol 2020 10 22;111:103752. Epub 2020 May 22.

Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain. Electronic address:

In mammals, conventional B (B2) cells are activated within lymphoid follicles through a close relationship with T follicular helper (Tfh) cells. The interaction between CD40 expressed on B cells and its ligand (CD40L) expressed on Tfh cells is a key signal that regulates the formation of germinal centers (GCs), B cell survival, proliferation and differentiation to plasma cells (PCs) or memory cells. Additionally, certain soluble cytokines produced by T cells also strongly condition the outcome of this interaction. Despite the many differences found between fish B cells and mammalian B2 cells, and the lack of conventional GCs, rainbow trout IgM B cells have been shown to be stimulated by CD40L, however, whether cytokines commonly produced by T cells can further modulate this response has never been addressed to date. Thus, in this study, we determined the effects of recombinant rainbow trout adaptive cytokines interleukin 2B (IL-2B), IL-4/13A, IL-4/13B, IL-10 and IL-21 (cytokines known to activate B cells in mammals) on splenic IgM B cells alone or in combination with CD40L. We studied how these cytokines and CD40L cooperated to promote IgM B cell survival, proliferation and IgM secretion. The results obtained provide valuable information for the first time in teleost fish on how different T cell signals cooperate to activate B cells in the absence of GCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2020.103752DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397517PMC
October 2020

Evolution of IFN subgroups in bony fish - 2. analysis of subgroup appearance and expansion in teleost fish with a focus on salmonids.

Fish Shellfish Immunol 2020 Mar 27;98:564-573. Epub 2020 Jan 27.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK. Electronic address:

A relatively large repertoire of type I interferon (IFN) genes is apparent in rainbow trout/Atlantic salmon, that includes six different IFN subgroups (IFNa-IFNf) belonging to the three known type I IFN groups (1-3) in bony fish. Whether this is true for other salmonids, and how the various type I subgroups evolved in teleost fish was studied using the extensive genomic resources available for fish. This confirmed that salmonids, at least the Salmoninae, indeed have a complex (in terms of IFN subgroups present) and large (number of genes) IFN repertoire relative to other teleost fish. This is in part a consequence of the salmonid 4 R WGD that duplicated the growth hormone (GH) locus in which type I IFNs are generally located. Divergence of the IFN genes at the two GH loci was apparent but was not seen in common carp, a species that also underwent an independent 4 R WGD. However, expansion of IFN gene number can be found at the CD79b locus of some perciform fish (both freshwater and marine), with expansion of the IFNd gene repertoire. Curiously the primordial gene order of GH-IFNc-IFNb-IFNa-IFNe is largely retained in many teleost lineages and likely reflects the tandem duplications that are taking place to increase IFN gene number. With respect to the evolution of the IFN subgroups, a complex acquisition and/or loss has occurred in different teleost lineages, with complete loss of IFN genes at the GH or CD79b locus in some species, and reduction to a single IFN subgroup in others. It becomes clear that there are many variations to be discovered regarding the mechanisms by which fish elicit protective (antiviral) immune responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2020.01.039DOI Listing
March 2020

Five subfamilies of β-defensin genes are present in salmonids: Evolutionary insights and expression analysis in Atlantic salmon Salmo salar.

Dev Comp Immunol 2020 03 20;104:103560. Epub 2019 Nov 20.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK. Electronic address:

β-defensins (BD) are the largest family of vertebrate defensins with potent antimicrobial, chemotactic and immune-regulatory activities. Four BD genes (BD1-4) have been cloned previously in rainbow trout but none have been reported in other salmonids. In this study seven BD genes (BD1a-b, 2-4, 5a-b) are characterised in Atlantic salmon and additional BD genes (BD1b and BD5) in rainbow trout. Bioinformatic analysis revealed up to seven BD genes in the genomes of other salmonids that belong to five subfamilies (BD1-5) due to whole genome duplications. BD1-2 and BD4-5 are also present in basal teleosts but only BD1 and/or BD5 are present in advanced teleosts due to loss of one chromosomal locus. BD3 is salmonid specific. Fish BD have a unique three-coding exon structure. Fish BD are highly divergent between subfamilies but conserved within each subfamily. Atlantic salmon BD genes are differentially expressed in tissues, often with low level expression in systemic immune organs (head kidney and spleen) yet with at least one BD gene highly expressed in mucosal tissues, heart, blood and liver. This suggests an important role of these BD genes in innate immunity in mucosa, liver and blood in Atlantic salmon.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2019.103560DOI Listing
March 2020

Identification, molecular characterization and functional analysis of interleukin (IL)-2 and IL-2like (IL-2L) cytokines in sea bass (Dicentrarchus labrax L.).

Cytokine 2020 02 6;126:154898. Epub 2019 Nov 6.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.

In mammals, interleukin (IL)-2, initially known as a T-cell grow factor, is an immunomodulatory cytokine involved in the proliferation of T cells upon antigen activation. In bony fish, some IL-2 orthologs have been identified, but, recently, an additional IL-2like (IL-2L) gene has been found. In this paper, we report the presence of these two divergent IL-2 isoforms in sea bass (Dicentrarchus labrax L.). Genomic analyses revealed that they originated from a gene duplication event, as happened in most percomorphs. These two IL-2 paralogs show differences in the amino acid sequence and in the exon 4 size, and these features could be an indication that they bind preferentially to different specific IL-2 receptors. Sea bass IL-2 paralogs are highly expressed in gut and spleen, which are tissues and organs involved in fish T cell immune functions, and the two cytokines could be up-regulated by both PHA stimulation and vaccination with a bacterial vaccine, with IL-2L being more inducible. To investigate the functional activities of sea bass IL-2 and IL-2L we produced the corresponding recombinant molecules in E. coli and used them to in vitro stimulate HK and spleen leukocytes. IL-2L is able to up-regulate the expression of markers related to different T cell subsets (Th1, Th2 and Th17) and to Treg cells in HK, whereas it has little effect in spleen. IL-2 is not active on these markers in HK, but shows an effect on Th1 markers in spleen. Finally, the stimulation with recombinant IL-2 and IL-2L is also able to induce in vitro proliferation of HK- and spleen-derived leukocytes. In conclusion, we have demonstrated that sea bass possess two IL-2 paralogs that likely have an important role in regulating T cell development in this species and that show distinct bioactivities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cyto.2019.154898DOI Listing
February 2020

Expansion of fish CCL20_like chemokines by genome and local gene duplication: Characterisation and expression analysis of 10 CCL20_like chemokines in rainbow trout (Oncorhynchus mykiss).

Dev Comp Immunol 2020 02 27;103:103502. Epub 2019 Sep 27.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom. Electronic address:

Mammalian CCL20, or macrophage inflammatory protein-3α, can function as a homeostatic and inflammatory chemokine. In relation to the latter, it is responsible for the chemoattraction of lymphocytes and dendritic cells to mucosal immune sites under inflammatory and pathological conditions. CK1, CK8A and CK8B are rainbow trout (Oncorhynchus mykiss) CC chemokines that were reported previously to be phylogenetically related to mammalian CCL20. In the current study, an additional seven CCL20_L paralogues in rainbow trout are reported, that are divided into three subgroups and have been designated here as: CCL20_L1a (also referred to as CK1), CCL20_L1b1-2, CCL20_L2a (CK8A), CCL20_L2b (CK8B), CCL20_L3a, and CCL20_L3b1-4. Multiple CCL20_L genes were also identified in other salmonids that arose from both whole genome duplication and local gene duplication. Phylogenetic tree, homology and synteny analysis support that CCL20_L1-3 found in salmonids are also present in most teleosts arose from the 3 R whole genome duplication and in some species, local gene duplication. Like mammalian CCL20, rainbow trout CCL20_L molecules possess a high positive net charge with a pI of 9.34-10.16, that is reported to be important for antimicrobial activity. Rainbow trout CCL20_L paralogues are differentially expressed and in general highly expressed in mucosal tissues, such as gills, thymus and intestine. The expression levels of rainbow trout CCL20_L paralogues are increased during development and following PAMP/cytokine stimulation. For example, in RTS-11 cells CCL20_L3b1 and CCL20_L3b2 are highly up-regulated by LPS, Poly I:C, recombinant(r) IFNa and rIL-1β. Trout CCL20_L paralogues are also increased after Yersinia ruckeri infection or Poly I:C stimulation in vivo, with CCL20_L3b1 and CCL20_L3b2 again highly up-regulated. Overall, this is the first report of the complete CCL20 chemokine subfamily in rainbow trout, and the analysis of their expression and modulation in vitro and in vivo. These results suggest that teleosts possess divergent CCL20_L molecules that may have important roles in anti-viral/anti-bacterial defence and in mucosal immunity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2019.103502DOI Listing
February 2020

An insight into piscidins: The discovery, modulation and bioactivity of greater amberjack, Seriola dumerili, piscidin.

Mol Immunol 2019 10 23;114:378-388. Epub 2019 Aug 23.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK. Electronic address:

Antimicrobial peptides (AMPs) play an important role in the innate immune response of vertebrates by creating a hostile environment for any invading pathogens. Piscidins are potent teleost specific AMPs, which have a broad spectrum activity. We have identified a novel piscidin active peptide, in the greater amberjack, Seriola dumerili, that consists of 25 aa, which forms an amphipathic helix with distinct hydrophobic and positively charged regions. Following homology and phylogenetic analysis the greater amberjack piscidin was deemed to belong to the group 3 family of piscidins. Piscidin was expressed constitutively at immune sites, with transcript level highest in the spleen and gut, at an intermediate level in the gills and lowest in the head kidney. Following in vivo stimulation with PAMPs (poly I:C, LPS and flagellin) piscidin transcript level increased in gills in response to flagellin, in gut and spleen in response to poly I:C, and in head kidney in response to poly I:C, LPS and flagellin. Head kidney and spleen cells were then isolated from greater amberjack and incubated with each of the PAMPs for 4, 12 and 24 h. Piscidin expression was unchanged at 4 and 12 h post PAMP stimulation in head kidney cells but at 24 h transcript level was markedly upregulated compared to control (unstimulated) cells, especially with the bacterial PAMPs. In contrast, spleen cells upregulated piscidin expression by 4 h post stimulation with poly I:C and flagellin, and remained upregulated to 24 h with flagellin exposure, but had returned to baseline levels by 12 h using poly I:C. To determine if piscidin expression could be modulated by diet, greater amberjack were fed diets supplemented with MOS and cMOS for 30 days when transcript level was determined. It was found that MOS supplemented diets increased expression in the spleen, cMOS supplemented diets upregulated transcript levels in the gills and head kidney, whilst a diet containing both MOS and cMOS upregulated transcript in the gut, when compared to fish fed the control diet. Finally, a synthetic greater amberjack piscidin was produced and showed bacteriostatic activity against a number of bacterial strains, including both Gram positive and Gram negative fish pathogens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2019.08.005DOI Listing
October 2019

Distinct response of immune gene expression in peripheral blood leucocytes modulated by bacterin vaccine candidates in rainbow trout Oncorhynchus mykiss: A potential in vitro screening and batch testing system for vaccine development in aquaculture.

Fish Shellfish Immunol 2019 Oct 1;93:631-640. Epub 2019 Aug 1.

Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK. Electronic address:

Fish aquaculture is the world's fastest growing food production industry and infectious diseases are a major limiting factor. Vaccination is the most appropriate method for controlling infectious diseases and a key reason for the success of salmonid cultivation and has reduced the use of antibiotics. The development of fish vaccines requires the use of a great number of experimental animals that are challenged with virulent pathogens. In vitro cell culture systems have the potential to replace in vivo pathogen exposure for initial screening and testing of novel vaccine candidates/preparations, and for batch potency and safety tests. PBL contain major immune cells that enable the detection of both innate and adaptive immune responses in vitro. Fish PBL can be easily prepared using a hypotonic method and is the only way to obtain large numbers of immune cells non-lethally. Distinct gene expression profiles of innate and adaptive immunity have been observed between bacterins prepared from different bacterial species, as well as from different strains or culturing conditions of the same bacterial species. Distinct immune pathways are activated by pathogens or vaccines in vivo that can be detected in PBL in vitro. Immune gene expression in PBL after stimulation with vaccine candidates may shed light on the immune pathways involved that lead to vaccine-mediated protection. This study suggests that PBL are a suitable platform for initial screening of vaccine candidates, for evaluation of vaccine-induced immune responses, and a cheap alternative for potency testing to reduce animal use in aquaculture vaccine development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2019.08.002DOI Listing
October 2019

Identification and characterization of three CXC chemokines in Asian swamp eel (Monopterus albus) uncovers a third CXCL11_like group in fish.

Dev Comp Immunol 2019 12 19;101:103454. Epub 2019 Jul 19.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom. Electronic address:

Chemokines direct cell migration in development and immune defense, and bridge between innate and adaptive immune responses. The chemokine gene family has been rapidly evolving and has undergone species/lineage-specific expansion. Mammals possess inflammatory CXC chemokines CXCL1-8/15 and CXCL9-11 sub-groups, and homeostatic CXCL12-14, 16-17. Orthologues of mammalian CXCL12-14, three chemokines related to CXCL1-8/15 (CXCL8_L1-3), two chemokines related to CXC9-11 (CXCL11_L1-2), and five fish-specific chemokines (CXCL_F1-5) have been described in teleosts. In this study, we reported three novel CXC chemokines in Asian swamp eel Monopterus albus, a commercially important freshwater fish species in China. Two of them belong to the fish-specific CXCL_F2 group, named CXCL_F2a/b, that share 89.5% amino acid identity. The other (CXCL11_L3) belongs to a third CXCL11_L related to the mammalian CXCL9-11 subfamily found only in percomorph fish species, and is the only CXCL9-11 related molecules in this lineage. Mammalian CXCL9-11 attract Th1 cells, and block the migration of Th2 cells in an immune response. This study suggests that all major lineages of teleosts have a CXCL9-11 related chemokine that will aid future functional investigation of CXCL11_L in fish. Cxcl_f2a is highly expressed constitutively in the skin of swamp eels that may attract immune cells to protect the skin in the absence of scales. Cxcl11_l3 and cxcl_f2b are highly expressed in immune tissues/organs and are up-regulated by the viral mimic poly I:C, but not bacterial infection in vivo, suggesting their role in anti-viral defense. The two cxcl_f2 paralogues are differentially expressed and modulated, indicating sub- and/or neo-functionalization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2019.103454DOI Listing
December 2019

Induction of IL-22 protein and IL-22-producing cells in rainbow trout Oncorhynchus mykiss.

Dev Comp Immunol 2019 12 12;101:103449. Epub 2019 Jul 12.

Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK. Electronic address:

IL-22 is a critical cytokine which is involved in modulating tissue responses during inflammation, and is produced mainly by T cells and innate leucocytes. In mammals, IL-22 is a key component in mucosal defences, tissue repair, epithelial cell survival and proliferation. In teleosts, IL-22 has been cloned and studied in several species, and the transcript is highly expressed in mucosal tissues and induced by pathogen associated molecular patterns (PAMPs), suggesting IL-22 also functions as an important component of the innate immune response in fish. To investigate these immune responses further, we have validated and characterised two monoclonal antibodies (mAbs) which were raised against two different peptide immunogens of salmonid IL-22. Our results show that both mAbs specifically react to their own peptide immunogens and recombinant IL-22, and are able to detect the induction of native protein expression after stimulation. In flow cytometry, an increase in IL-22 positive cells was detected after stimulation in vitro with cytokines and PAMPs and in vivo after bacterial challenge. The immunohistochemistry results showed that IL-22 is highly upregulated in the gills after challenge, both in cells within the gill filaments and in the interbranchial lymphoid tissue. Such results suggest IL-22 may have a role in triggering local antimicrobial defences in fish that may facilitate efficient microbial clearance. Hence monitoring IL-22 producing cells/protein secretion may provide an alternative mean to assess the effectiveness of mucosal vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2019.103449DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873780PMC
December 2019

Different origins of paralogues of salmonid TNR1 and TNFR2: Characterisation and expression analysis of four TNF receptor genes in rainbow trout Oncorhynchus mykiss.

Dev Comp Immunol 2019 10 29;99:103403. Epub 2019 May 29.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK. Electronic address:

Mammalian TNFR1 and TNFR2 bind TNFα and TNFβ, and provide key communication signals to a variety of cell types during development and immune responses that are crucial for cell survival, proliferation and apoptosis. In teleost fish TNFβ is absent but TNFα has been expanded by the third whole genome duplication (3R WGD) and again by a 4R WGD in some lineages, leading to the four TNFα paralogues known in salmonids. Two paralogues for each of TNFR1 and TNFR2 have been cloned in rainbow trout in this study and are present in other salmonid genomes. Whilst the TNFR2 paralogues were generated via the 4R salmonid WGD, the TNFR1 paralogues arose from a local en bloc duplication. Functional diversification of TNFR paralogues was evidenced by differential gene expression and modulation, upstream ATGs affecting translation, ATTTA motifs in the 3'-UTR regulating mRNA stability, and post-translational modification by N-glycosylation. Trout TNFR are highly expressed in immune tissues/organs, and other tissues, in a gene- and tissue-specific manner. Furthermore, their expression is differentially modulated by PAMPs and cytokines in a cell type- and stimulant-specific manner. Such findings suggest an important role of the TNF/TNFR axis in the immune response and other physiological processes in fish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2019.103403DOI Listing
October 2019

Lineage/species-specific expansion of the Mx gene family in teleosts: Differential expression and modulation of nine Mx genes in rainbow trout Oncorhynchus mykiss.

Fish Shellfish Immunol 2019 Jul 4;90:413-430. Epub 2019 May 4.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK. Electronic address:

Myxovirus resistance (Mx) proteins are interferon (IFN)-inducible Dynamin-like GTPases, which play an important role in antiviral immunity. Three Mx genes (Mx1-3) have been cloned previously in rainbow trout. In this study, an additional six Mx genes were cloned that reside in four chromosomal loci. Further bioinformatics analysis suggests the presence of three teleost Mx groups (TMG) each with a characteristic gene organisation. Salmonid Mx belong to TMG1 and TMG2. The increased salmonid Mx gene copies are due mainly to local gene duplications that happened before and after salmonid speciation, in a lineage/species specific manner. Trout Mx molecules have been diversified in the loop 1 and 4 regions, and in the nuclear localisation signal in loop 4. The trout Mx genes were shown to be differentially expressed in tissues, with high levels of expression of TMG1 (Mx1-4) in blood and TMG2 (Mx5-9) in intestine. The expression of the majority of the trout Mx genes was induced by poly IC in vitro and in vivo, and increased during development. In addition, induction by antiviral (IFN) and proinflammatory cytokines was studied, and showed that type I IFN, IFNγ and IL-1β can induce Mx gene expression in an Mx gene-, cytokine- and cell line-dependent manner. These results show that salmonids possess a large number Mx genes as well as complex regulatory pathways, which may contribute to their success in an anadromous life style.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2019.04.303DOI Listing
July 2019

Studies on the Use of Flagellin as an Immunostimulant and Vaccine Adjuvant in Fish Aquaculture.

Front Immunol 2018 9;9:3054. Epub 2019 Jan 9.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.

Immunostimulants and vaccines are important for controlling infectious diseases in fish aquaculture. In this study we assess the potential of flagellin to be used for such purposes in rainbow trout (). A recombinant flagellin from the salmonid pathogen (YRF) has been produced previously by us and shown to be a potent activator of inflammatory cytokines, acute phase proteins and antimicrobial peptides . Here we show that YRF is the most potent inflammatory activator of three bacterial PAMPs (LPS, peptidoglycan and flagellin) tested. The host response to flagellin was next studied . The YRF modulated gene expression was examined in two systemic (spleen and liver) and two mucosa-associated (gills and skin) tissues. YRF injection initiated a transient systemic inflammatory response with key pro-inflammatory cytokines (IL-1β, TNFα, IL-6, and IL-11 etc.) and chemokines (CXCL_F4 and CXCL-8) induced rapidly (by 6 h) but subsiding quickly (by 24 h) in multiple tissues. Consequently, a variety of anti-microbial pathways were activated systemically with heightened expression of acute phase proteins, antimicrobial peptides and complement genes in multiple tissues, which was sustained to 24 h in the liver and mucosal tissues. The Th17 cytokine IL-17A/F1 was also induced in the spleen and liver, and Th2 cytokine IL-4/13 was induced in the liver. However, the anti-inflammatory IL-10 and the Th1 cytokine IFNγ were refractory. A secreted form of TLR5 (TLR5s) was induced by flagellin in all tissues examined whilst the membrane form was refractory, suggesting that TLR5s may function as a negative feedback regulator. Trout liver appeared to be an important organ responding to flagellin stimulation, with marked induction of IL-11, IL-23P19, IL-17C1, SAA, and cathelicidin-2. YRF induced a strong antibody response. These antibodies reacted against the middle domain of YRF and were able to decrease YRF bioactivity. Intact YRF was necessary for its bioactivity, as deletion of the N-terminal, C terminal or middle domain of YRF led to functional loss. This study suggests that flagellin could be a potent immunostimulant and vaccine adjuvant for fish aquaculture.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2018.03054DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333709PMC
October 2019

Four selenoprotein P genes exist in salmonids: Analysis of their origin and expression following Se supplementation and bacterial infection.

PLoS One 2018 20;13(12):e0209381. Epub 2018 Dec 20.

Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.

The following research was conducted to elucidate the evolution and expression of salmonid selenoprotein P (SelP), a selenoprotein that is unique in having multiple selenocysteine (Sec) residues, following supranutritional selenium supplementation and infection in rainbow trout. We show that in salmonids SelP is present as four paralogues and that the diversification of SelP genes during vertebrate evolution relates to whole genome duplication events. With 17 and 16 selenocysteine residues for rainbow trout (Oncorhynchus mykiss)/Atlantic salmon (Salmo salar) SelPa1 and SelPa2 proteins respectively and 1 or 2 (trout or salmon) and 4 or 3 (trout or salmon) selenocysteine residues for salmonid SelPb1 and SelPb2 proteins respectively, this is the highest number of (predicted) multiple selenocysteine containing SelP proteins reported for any vertebrate species to date. To investigate the effects of selenium form on SelP expression we added different concentrations (1 nM- 10 μM) of organic or inorganic selenium to a trout cell line (RTG-2 cells) and analysed changes in mRNA abundance. We next studied the impact of supplementation on the potential modulation of these transcripts by PAMPs and proinflammatory cytokines in RTG-2 and RTS-11 cells. These experiments revealed that selenium type influenced the responses, and that SelP gene subfunctionalisation was apparent. To get an insight into the expression patterns in vivo we conducted a feeding trial with 2 diets differing in selenium content and 5 weeks later challenged the trout with a bacterial pathogen (Aeromonas salmonicida). Four tissues were analysed for SelP paralogue expression. The results show a significant induction of SelPa1 in gills and intestine following infection in selenium supplemented fish and for SelPa2 in gills. SelPb1 was significantly reduced in head kidney of both diet groups following infection, whilst SelPb2 was significantly upregulated in skin of both diet groups post infection. Overall these findings reveal differential expression profiles for the SelPa/SelPb paralogues in trout, influenced by selenium supply, cell type/tissue and stimulant. The increase of multiple Sec containing SelP proteins in salmonids could indicate an enhanced requirement for selenium in this lineage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209381PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301783PMC
May 2019

Insights into the Evolution of the Suppressors of Cytokine Signaling (SOCS) Gene Family in Vertebrates.

Mol Biol Evol 2019 02;36(2):393-411

Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.

The SOCS family are key negative regulators of cytokine and growth factor signaling. Typically, 8-17 SOCS genes are present in vertebrate species with eight known in mammals, classified as type I (SOCS4-7) and type II (CISH and SOCS1-3) SOCS. It was believed that the type II SOCS were expanded through the two rounds of whole genome duplication (1R and 2R WGDs) from a single CISH/SOCS1-3 precursor. Previously, 12 genes were identified in rainbow trout but here we report 15 additional loci are present, and confirm 26 of the genes are expressed, giving rainbow trout the largest SOCS gene repertoire identified to date. The discovery of the additional SOCS genes in trout has led to a novel model of SOCS family evolution, whereby the vertebrate SOCS gene family was derived from CISH/SOCS2, SOCS1/SOCS3, SOCS4/5, SOCS6, and SOCS7 ancestors likely present before the two WGD events. It is also apparent that teleost SOCS2b, SOCS4, and SOCS5b molecules are not true orthologues of mammalian SOCS2, SOCS4, and SOCS5, respectively. The rate of SOCS gene structural changes increased from 2R vertebrates, to 4R rainbow trout, and the genes with structural changes show large differences and low correlation coefficient of expression levels relative to their paralogues, suggesting a role of structural changes in expression and functional diversification. This study has important impacts in the functional prediction and understanding of the SOCS gene family in different vertebrates, and provides a framework for determining how many SOCS genes could be expected in a particular vertebrate species/lineage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msy230DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368001PMC
February 2019

Effects of repeated anaesthesia on gill and general health of Atlantic salmon, Salmo salar.

J Fish Biol 2018 Dec 28;93(6):1069-1081. Epub 2018 Nov 28.

Marine Laboratory, Marine Scotland Science, Aberdeen, UK.

Fish are the second most widely utilized vertebrate group used for scientific procedures in the United Kingdom, but the development and application of 3Rs (the principles of replacement, reduction, and refinement) in aquaculture disease research lags behind methodologies in place for mammalian studies. With a need for individual monitoring and non-lethal sampling, the effect of repeat anaesthesia on experimental fish needs to be better understood. This study analyses the effect of repeat anaesthesia with MS-222, metomidate and AQUI-S upon the gill and general health of post-smolt Atlantic salmon Salmo salar. A single, lethal dose of anaesthetic was compared with seven anaesthetizing time points over 28 days, terminating in a lethal dose. No anaesthetic showed significant differences in accumulation in the muscle tissue, or changes in plasma glucose after repeated or single dosing. Fish repeatedly anaesthetized with MS-222 or AQUI-S exhibited upregulation of osmoregulatory genes in the gill and AQUI-S-treated individuals showed, histologically, epithelial lifting from the lamellae capillary irrespective of whether they had a single or repeated dose history. No significant changes were seen in inflammatory or stress genes in the head kidney of fish repeatedly anaesthetized with AQUI-S or metomidate, however MS-222 treatment resulted in upregulation of tnfα3. Repeated anaesthesia with MS-222 and metomidate gave a significant decrease and increase in peripheral blood neutrophils, respectively. This study concludes that no increase in cumulative stress or inflammation is induced by the repeated anaesthetization of S. salar with any of the tested anaesthetics, however gill osmotic regulation and blood parameters may be affected.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfb.13803DOI Listing
December 2018

Interleukin (IL)-2 Is a Key Regulator of T Helper 1 and T Helper 2 Cytokine Expression in Fish: Functional Characterization of Two Divergent Paralogs in Salmonids.

Front Immunol 2018 26;9:1683. Epub 2018 Jul 26.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.

Mammalian interleukin (IL)-2 is a cytokine centrally involved in the differentiation and survival of CD4+ T helper subsets and CD4+ T regulatory cells and in activation of cytotoxic effector lymphocytes. In bony fish, orthologs have been identified with an additional divergent gene on the same locus present in several fish species. We report here two divergent paralogs, and , in salmonids that originated from the whole genome duplication event in this fish lineage. The salmonid paralogs differ not only in sequence but also in exon sizes. The IL-2 isoforms that are encoded have disparate pI values and may have evolved to preferentially bind specific IL-2 receptors. Rainbow trout paralogs are highly expressed in thymus, spleen, gills, kidney and intestine, important tissues/organs in fish T cell development and function. Their expression in peripheral blood leukocytes (PBL) is low constitutively but can be upregulated by the mixed leukocyte reaction, by the T cell mitogen phytohemagglutinin and by signal mimics of T cell activation (phorbol 12-myristate 13-acetate and calcium ionophore). Both trout IL-2 isoforms promoted PBL proliferation and sustained high-level expression of and , suggesting that trout IL-2 isoforms are T cell growth/survival factors mainly expressed by activated T cells. The recombinant proteins for these two trout paralogs have been produced in and possess shared but also distinct bioactivities. IL-2A, but not IL-2B, induced and expression in PBL. IL-2B had a stronger effect on upregulation of the T helper 1 (Th1) cytokine () and could sustain and expression levels. Nevertheless, both cytokines upregulated key Th1 ( and ) and T helper 2 (Th2) cytokines ( and ), cytokine and chemokine receptors and the antimicrobial peptide but had limited effects on T helper 17 cytokines and in PBL. They could also enhance PBL phagocytosis. These results suggest, for the first time in fish, that IL-2 isoforms may have an important role in regulating Th1 and Th2 cell development, and innate and adaptive host defenses in fish, and shed light on lineage-specific expansion, evolution, and functional diversification of in vertebrates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2018.01683DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070626PMC
September 2019

Characterisation of rainbow trout peripheral blood leucocytes prepared by hypotonic lysis of erythrocytes, and analysis of their phagocytic activity, proliferation and response to PAMPs and proinflammatory cytokines.

Dev Comp Immunol 2018 11 18;88:104-113. Epub 2018 Jul 18.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom. Electronic address:

Rapid and high quality preparation of peripheral blood leucocytes (PBL) is important in fish immunology research and in particular for fish vaccine development, where multiple immune parameters can be monitored on the same fish over time. Fish PBL are currently prepared by density separation using Percoll or Hispaque-1.077, which is time consuming, costly and prone to erythrocyte contamination. We present here a modified PBL preparation method that includes a 20 s hypotonic lysis of erythrocytes and a subsequent separation of PBL from cell debris by a cell strainer. This method is simple, rapid and cost effective. The PBL obtained are similar in cellular composition to those prepared by density separation but have less erythrocyte contamination as demonstrated by FACS analysis and the expression of cell marker genes. Marker gene analysis also suggested that PBL prepared by hypotonic lysis are superior to those obtained by the gradient method in that some high-density cells (certain B cell types and neutrophils) might be lost using the latter. The PBL prepared in this way can proliferate in response to the T cell mitogen PHA, and both lymphoid and myeloid cells can phagocytose fluorescent beads and bacteria, with the latter enhanced by treatment with pro-inflammatory cytokines (IL-1β and IL-6). Furthermore, the PBL can respond to stimulation with PAMPs (LPS, poly I:C) and cytokines (IL-1β and IFNγ) in terms of upregulation of proinflammatory cytokine gene expression. Such data demonstrate the utility of this approach (hypotonic lysis of erythrocytes) for PBL isolation and will enable more studies of their role in disease protection in future immunological and vaccine development research in fish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2018.07.010DOI Listing
November 2018

Immune-modulation of two BATF3 paralogues in rainbow trout Oncorhynchus mykiss.

Mol Immunol 2018 07 7;99:104-114. Epub 2018 May 7.

Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK; International Research Center for Marine Biosciences, College of Aquaculture and Life Science, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China. Electronic address:

Basic leucine zipper transcription factor ATF-like (BATF) -3 is a member of the activator protein 1 (AP‑1) family of transcription factors and is known to play a vital role in regulating differentiation of antigen-presenting cells in mammals. In this study, two BATF3 homologues (termed BATF3a and BATF3b) have been identified in rainbow trout (Oncorhynchus mykiss). Both genes were constitutively expressed in tissues, with particularly high levels of BATF3a in spleen, liver, pyloric caecae and head kidney. BATF3a was also more highly induced by PAMPs and cytokines in cultured cells, with type II IFN a particularly potent inducer. In rIL-4/13 pre-stimulated cells, the viral PAMPS polyI:C and R848 had the most pronounced effect on BATF3 expression. BATF3 expression could also be modulated in vivo, following infection with Yersinia ruckeri, a bacterial pathogen causing redmouth disease in salmonids, or with the rhabdovirus IHNV. The results suggest that BATF3 may be functionally conserved in regulating the differentiation and activation of immune cells in lower vertebrates and could be explored as a potential marker for comparative investigation of leucocyte lineage commitment across the vertebrate phyla.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2018.04.016DOI Listing
July 2018

Rainbow trout (Oncorhynchus mykiss) adipose tissue undergoes major changes in immune gene expression following bacterial infection or stimulation with pro-inflammatory molecules.

Dev Comp Immunol 2018 04 7;81:83-94. Epub 2017 Nov 7.

Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK. Electronic address:

In mammals, visceral adipose is increasingly seen as playing an important role in immune function with numerous pro-inflammatory, anti-inflammatory and immune-modulating proteins and peptides being identified in adipocytes. Adipose is also now known as a tissue that has an important role in the regulation of peritoneal immune responses. Despite this, only lately has consideration been given to visceral adipose as an important immune tissue in fish, especially in the context of intraperitoneal vaccination. The present study demonstrates that fish visceral adipose is capable of expressing a large range of immune molecules in response to stimulation with a live bacterium (A. salmonicida), a bacterial PAMP (Y. ruckeri flagellin), and the pro-inflammatory cytokines IL-1β, TNF-α3 and IFN-γ. Following infection and stimulation with flagellin and IL-1β a large upregulation of pro-inflammatory and antimicrobial molecules was seen, with a high degree of overlap. TNF-α treatment affected relatively few genes and the effects were more modest. IFN-γ had the smallest impact on adipose but IFN-γ inducible genes showed some of the largest effects. Overall, it is clear that adipose tissue should be considered an active immune site in fish, capable of participating in and influencing immune responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2017.11.001DOI Listing
April 2018

Dissecting the immune pathways stimulated following injection vaccination of rainbow trout (Oncorhynchus mykiss) against enteric redmouth disease (ERM).

Fish Shellfish Immunol 2019 Feb 27;85:18-30. Epub 2017 Jul 27.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK. Electronic address:

Enteric redmouth disease (ERM or yersiniosis) is one of the most important diseases of salmonids and leads to significant economic losses. It is caused by the Gram-negative bacterium Yersinia ruckeri but can be controlled by bacterin vaccination. The first commercial ERM vaccine was licenced in 1976 and is one of the most significant and successful health practices within the aquaculture industry. Although ERM vaccination provides complete protection, knowledge of the host immune response to the vaccine and the molecular mechanisms that underpin the protection elicited is limited. In this report, we analysed the expression in spleen and gills of a large set of genes encoding for cytokines, acute phase proteins (APPs) and antimicrobial peptides (AMPs) in response to ERM vaccination in rainbow trout, Oncorhynchus mykiss. Many immune genes in teleost fish are known to have multiple paralogues that can show differential responses to ERM vaccination, highlighting the necessity to determine whether all of the genes present react in a similar manner. ERM vaccination immediately activated a balanced inflammatory response with correlated expression of both pro- and anti-inflammatory cytokines (eg IL-1β1-2, TNF-α1-3, IL-6, IL-8 and IL-10A etc.) in the spleen. The increase of pro-inflammatory cytokines may explain the systemic upregulation of APPs (eg serum amyloid A protein and serum amyloid protein P) and AMPs (eg cathelicidins and hepcidin) seen in both spleen and gills. We also observed an upregulation of all the α-chains but only one β-chain (p40B2) of the IL-12 family cytokines, that suggests specific IL-12 and IL-23 isoforms with distinct functions might be produced in the spleen of vaccinated fish. Notably the expression of Th1 cytokines (IFN-γ1-2) and a Th17 cytokine (IL-17A/F1a) was also up-regulated and correlated with enhanced expression of the IL-12 family α-chains, and the majority of pro- and anti-inflammatory cytokines, APPs and AMPs. These expression profiles may suggest that ERM vaccination activates host innate immunity and expression of specific IL-12 and IL-23 isoforms leading to a Th1 and Th17 biased immune response. A late induction of Th2 cytokines (IL-4/13B1-2) was also observed, that may have a homeostatic role and/or involvement in antibody production. This study has increased our understanding of the host immune response to ERM vaccination and the adaptive pathways involved. The early responses of a set of genes established in this study may provide essential information and function as biomarkers in future vaccine development in aquaculture.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2017.07.056DOI Listing
February 2019

Molecular characterization and expression analysis of four fish-specific CC chemokine receptors CCR4La, CCR4Lc1, CCR4Lc2 and CCR11 in rainbow trout (Oncorhynchus mykiss).

Fish Shellfish Immunol 2017 Sep 18;68:411-427. Epub 2017 Jul 18.

Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK. Electronic address:

The chemokine and chemokine receptor networks regulate leukocyte trafficking, inflammation, immune cell differentiation, cancer and other biological processes. Comparative immunological studies have revealed that both chemokines and their receptors have expanded greatly in a species/lineage specific way. Of the 10 human CC chemokine receptors (CCR1-10) that bind CC chemokines, orthologues only to CCR6, 7, 9 and 10 are present in teleost fish. In this study, four fish-specific CCRs, termed as CCR4La, CCR4Lc1, CCR4Lc2 and CCR11, with a close link to human CCR1-5 and 8, in terms of amino acid homology and syntenic conservation, have been identified and characterized in rainbow trout (Oncorhynchus mykiss). These CCRs were found to possess the conserved features of the G protein-linked receptor family, including an extracellular N-terminal, seven TM domains, three extracellular loops and three intracellular loops, and a cytoplasmic carboxyl tail with multiple potential serine/threonine phosphorylation sites. Four cysteine residues known to be involved in forming two disulfide bonds are present in the extracellular domains and a DRY motif is present in the second intracellular loop. Signaling mediated by these receptors might be regulated by N-glycosylation, tyrosine sulfation, S-palmitoylation, a PDZ ligand motif and di-leucine motifs. Studies of intron/exon structure revealed distinct fish-specific CCR gene organization in different fish species/lineages that might contribute to the diversification of the chemokine ligand-receptor networks in different fish lineages. Fish-specific trout CCRs are highly expressed in immune tissues/organs, such as thymus, spleen, head kidney and gills. Their expression can be induced by the pro-inflammatory cytokines, IL-1β, IL-6 and IFNγ, by the pathogen associated molecular patterns, PolyIC and peptidoglycan, and by bacterial infection. These data suggest that fish-specific CCRs are likely to have an important role in immune regulation in fish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2017.07.031DOI Listing
September 2017

Analysis of adipose tissue immune gene expression after vaccination of rainbow trout with adjuvanted bacterins reveals an association with side effects.

Mol Immunol 2017 08 13;88:89-98. Epub 2017 Jun 13.

Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK. Electronic address:

Most existing fish vaccines are presented in the form of oil-based emulsions delivered by intraperitoneal injection. Whilst very effective they are frequently associated with inflammatory responses that can result in clinically significant side-effects often involving the adipose tissue that is in direct contact with the vaccine. To explore the potential of immune gene expression changes in the adipose tissue of fish to be markers of vaccination efficacy or development of side-effects we have studied the response to a bacterial (Aeromonas salmonicida) vaccine administered with two different adjuvants. The first adjuvant was Montanide™ ISA 763A VG, thought to induce a mostly humoral response, and the second was Montanide™ ISA 761 VG that gives a more balanced humoral and cell mediated response. Following vaccination tissue samples were collected at days 3, 14 and 28 for RTqPCR analysis. Fifty immune genes were studied with a focus on a) pro-inflammatory associated molecules and b) adaptive immune response related molecules linked with possible Th1, Th2, Th17 and T-regulatory pathways, with the expression data analysed for associations with Speilberg post-vaccination side effect scores. The results showed that the adipose tissue is a particularly sensitive and discriminatory tissue for studying adjuvant effects. A clear upregulation of many immune genes occurred in response to both vaccine groups, which persisted over time and overlapped with the appearance of visible adhesions. Our analysis revealed a relationship between adipose tissue immune function and the development of vaccine-induced adhesions giving the potential to use immune gene expression profiling in this tissue to predict the side-effects seen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2017.05.026DOI Listing
August 2017

Evolution of Th2 responses: characterization of IL-4/13 in sea bass (Dicentrarchus labrax L.) and studies of expression and biological activity.

Sci Rep 2017 05 22;7(1):2240. Epub 2017 May 22.

Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo (VT), Italy.

Th2 immunity is a primary host defence against metazoan pathogens and two of the important cytokines involved in this immune response in mammals are IL-4 and IL-13. Recently the origin and evolution of Th2 immune responses have been investigated in fish where a molecule with relatedness to both IL-4 and IL-13 is present, termed IL-4/13. Different IL-4/13 paralogues (IL-4/13 A and IL-4/13B) exist in teleost fish. In this paper, we have focused on the IL-4/13 isoforms found in the European sea bass (Dicentrarchus labrax L.). Two tandem duplicated but divergent IL-4/13 A isoforms and one IL-4/13B are present, a unique situation compared to other teleosts. These genes were studied in terms of their in vitro and in vivo transcript levels after different treatments and their biological activities after production of the recombinant isoforms. The results show that the presence of these three paralogues is associated with different activities, both in terms of their expression profiles and the ability of the proteins to modulate the expression of immune genes in head kidney leukocytes. It is clear that the initiation and control of type-2 responses in seabass is complex due to the presence of multiple IL-4/13 isoforms with overlapping but distinct activities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-02472-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440397PMC
May 2017

Characterisation of arginase paralogues in salmonids and their modulation by immune stimulation/ infection.

Fish Shellfish Immunol 2017 Feb 23;61:138-151. Epub 2016 Dec 23.

Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK. Electronic address:

In this study we show that four arginase isoforms (arg1a, arg1b, arg2a, arg2b) exist in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). We have characterised these molecules in terms of a) sequence analysis, b) constitutive expression in different tissues, and modulated expression following c) stimulation of head kidney macrophages in vitro, or d) vaccination/infection with Yersinia ruckeri and e) parasite infection (AGD caused by Paramoeba perurans and PKD caused by Tetracapsuloides bryosalmonae). Synteny analysis suggested that these arginase genes are paralogues likely from the Ss4R duplication event, and amino acid identity/similarity analyses showed that the proteins are relatively well conserved across species. In rainbow trout constitutive expression of one or both paralogues was seen in most tissues but different constitutive expression patterns were observed for the different isoforms. Stimulation of rainbow trout head kidney macrophages with PAMPs and cytokines also revealed isoform specific responses and kinetics, with arg1a being particularly highly modulated by the PAMPs and pro-inflammatory cytokines. In contrast the type II arginase paralogues were induced by rIl-4/13, albeit to a lesser degree. Vaccination and infection with Y. ruckeri also revealed isoform specific responses, with variation in tissue expression level and kinetics. Lastly, the impact of parasite infection was studied, where down regulation of arg1a and arg1b was seen in two different models (AGD in salmon and PKD in trout) and of arg2a in AGD. The differential responses seen are discussed in the context of markers of type II responses in fish and paralogue subfunctionalization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2016.12.024DOI Listing
February 2017
-->