Publications by authors named "Thomas J Rosol"

135 Publications

International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Dog.

Toxicol Pathol 2021 Jan;49(1):5-109

Novartis Pharmaceutical Corporation, East Hanover, NJ, USA.

The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions) Project (www.toxpath.org/inhand.asp) is a joint initiative of the societies of toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying lesions observed in most tissues and organs from the dog used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions, lesions induced by exposure to test materials, and relevant infectious and parasitic lesions. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/0192623320968181DOI Listing
January 2021

Adversity Considerations for Thyroid Follicular Cell Hypertrophy and Hyperplasia in Nonclinical Toxicity Studies: Results From the 6th ESTP International Expert Workshop.

Toxicol Pathol 2020 12;48(8):920-938

Food Safety Commission of Japan, Tokyo, Japan.

The European Society of Toxicologic Pathology organized an expert workshop in May 2018 to address adversity considerations related to thyroid follicular cell hypertrophy and/or hyperplasia (FCHH), which is a common finding in nonclinical toxicity studies that can have important implications for risk assessment of pharmaceuticals, food additives, and environmental chemicals. The broad goal of the workshop was to facilitate better alignment in toxicologic pathology and regulatory sciences on how to determine adversity of FCHH. Key objectives were to describe common mechanisms leading to thyroid FCHH and potential functional consequences; provide working criteria to assess adversity of FCHH in context of associated findings; and describe additional methods and experimental data that may influence adversity determinations. The workshop panel was comprised of representatives from the European Union, Japan, and the United States. Participants shared case examples illustrating issues related to adversity assessments of thyroid changes. Provided here are summary discussions, key case presentations, and panel recommendations. This information should increase consistency in the interpretation of adverse changes in the thyroid based on pathology findings in nonclinical toxicity studies, help integrate new types of biomarker data into the review process, and facilitate a more systematic approach to communicating adversity determinations in toxicology reports.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/0192623320972009DOI Listing
December 2020

Inter-Institutional Partnerships to Develop Veterinarian-Investigators through the NIH Comparative Biomedical Scientist Training Program Benefit One Health Goals.

J Vet Med Educ 2020 Oct;47(5):619-631

Limitations in workforce size and access to resources remain perennial challenges to greater progress in academic veterinary medicine and engagement between human and veterinary medicine (One Health). Ongoing resource constraints occur in part due to limited public understanding of the role veterinarians play in improving human health. One Health interactions, particularly through interdisciplinary collaborations in biomedical research, present constructive opportunities to inform resource policies and advance health care. To this end, inter-institutional partnerships between individual veterinary medical education programs (VMEPs) and several National Institutes of Health (NIH) intramural research programs have created synergies beyond those provided by individual programs. In the NIH Comparative Biomedical Scientist Training Program (CBSTP), interdisciplinary cross-training of veterinarians consisting of specialty veterinary medicine coupled with training in human disease research leading to a PhD, occurs collaboratively on both VMEP and NIH campuses. Pre-doctoral veterinary student research opportunities have also been made available. Through the CBSTP, NIH investigators and national biomedical science policy makers gain access to veterinary perspective and expertise, while veterinarians obtain additional opportunities for NIH-funded research training. CBSTP Fellows serve as de facto ambassadors enhancing visibility for the profession while in residence at NIH, and subsequently through a variety of university, industry, and government research appointments, as graduates. Thus, the CBSTP represents an inter-institutional opportunity that not only addresses critical needs for veterinarian-scientists in the biomedical workforce, but also simultaneously exposes national policy makers to veterinarian-scientists' specialized training, leading to more effective realization of One Health goals to benefit human and animal health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3138/jvme.2019-0091DOI Listing
October 2020

In Vivo Tumorigenesis, Osteolytic Sarcomas, and Tumorigenic Cell Lines from Transgenic Mice Expressing the Human T-Lymphotropic Virus Type 1 (HTLV-1) Tax Viral Oncogene.

Am J Pathol 2021 02 9;191(2):335-352. Epub 2020 Nov 9.

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio. Electronic address:

Human T-lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia, a disease commonly associated with hypercalcemia and osteolysis. There is no effective treatment for HTLV-1, and the osteolytic mechanisms are not fully understood. Mice expressing the HTLV-1 oncogene Tax, driven by the human granzyme B promoter (Tax), develop osteolytic tumors. To investigate the progression of the bone-invasive malignancies, wild-type, Tax, and Tax/interferon-γ mice were assessed using necropsy, histologic examination, IHC analysis, flow cytometry, and advanced imaging. Tax and Tax/interferon-γ malignancies of the ear, tail, and foot comprised poorly differentiated, round to spindle-shaped cells with prominent neutrophilic infiltrates. Tail tumors originated from muscle, nerve, and/or tendon sheaths, with frequent invasion into adjacent bone. F4/80 and anti-mouse CD11b (Mac-1) histiocytic cells predominated within the tumors. Three Tax/interferon-γ cell lines were generated for in vivo allografts, in vitro gene expression and bone resorption assays. Two cell lines were of monocyte/macrophage origin, and tumors formed in vivo in all three. Differences in Pthrp, Il6, Il1a, Il1b, and Csf3 expression in vitro were correlated with differences in in vivo plasma calcium levels, tumor growth, metastasis, and neutrophilic inflammation. Tax mouse tumors were classified as bone-invasive histiocytic sarcomas. The cell lines are ideal for further examination of the role of HTLV-1 Tax in osteolytic tumor formation and the development of hypercalcemia and tumor-associated inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2020.10.014DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863134PMC
February 2021

Cy3-tilmanocept labeling of macrophages in joints of mice with antibody-induced arthritis and synovium of human patients with rheumatoid arthritis.

J Orthop Res 2020 Oct 27. Epub 2020 Oct 27.

Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.

γ-Tilmanocept ( Tc-tilmanocept) is a receptor-directed, radiolabeled tracer that is FDA-approved for guiding sentinel lymph node biopsy. Tilmanocept binds the C-type lectin mannose receptor (MR, CD206) on macrophages. In this study, nonradioactive, fluorescently-labeled Cy3-tilmanocept was used to detect CD206 mononuclear cells in the cartilage of mice with antibody-induced arthritis and in the synovial fluid and tissue of human subjects with rheumatoid arthritis (RA) for comparison with osteoarthritis (OA), and healthy volunteer (HV) controls. Murine arthritis was induced by injection of monoclonal anti-cartilage antibody followed by injection of Escherichia coli lipopolysaccharide. Post-arthritis development (7-11 days), the mice were injected intravenously with Cy3-tilmanocept followed by in vivo and ex vivo epifluorescence imaging. Two-photon imaging, immunofluorescence, and immunohistochemistry were used to identify articular and synovial macrophages (CD206, F4/80, and Cy3-tilmanocept binding) in murine tissues. Cy3-tilmanocept epifluorescence was present in arthritic knees and elbows of murine tissues; no radiographic changes were noted in the skeletons. However, inflammatory arthritic changes were apparent by histopathology and immunohistochemistry (F4/80), immunofluorescence (CD206) and Cy3-tilmanocept binding. In human RA synovial fluid, Cy3-tilmanocept staining correlated with CD206 /CD16 cells; negligible labeling was observed in OA samples. Cy3-tilmanocept colocalized with CD206 and staining was significantly higher in RA synovial tissue compared to OA or HV. Our results demonstrate that imaging with Cy3-tilmanocept can detect in vivo inflammatory, CD206 macrophages in an early arthritis animal model and in human RA patients. These data establish a novel tool for preclinical research of early arthritis and have implications for early RA detection and monitoring of therapeutic efficacy in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.24900DOI Listing
October 2020

FEMA GRAS assessment of natural flavor complexes: Clove, cinnamon leaf and West Indian bay leaf-derived flavoring ingredients.

Food Chem Toxicol 2020 Nov 21;145:111585. Epub 2020 Jul 21.

Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC 20036, USA. Electronic address:

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association initiated the safety re-evaluation of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, 4th in a series focusing on the safety evaluation of NFCs, presents an evaluation of NFCs rich in hydroxyallylbenzene and hydroxypropenylbenzene constituents using a procedure initially published in 2005 and updated in 2018 that evaluates the safety of naturally occurring mixtures for their intended use as flavoring ingredients. The procedure requires the characterization of the chemical composition for each NFC and subsequent organization of the constituents into defined congeneric groups. The safety of each NFC is evaluated using the conservative threshold of toxicological concern (TTC) approach together with studies on absorption, metabolism and toxicology of the NFC and its constituent congeneric groups. By the application of this procedure, seven NFCs, derived from clove, cinnamon leaf and West Indian bay leaf were affirmed as "generally recognized as safe (GRAS)" under their conditions of intended use as flavor ingredients. An eighth NFC, an oleoresin of West Indian bay leaf, was affirmed based on its estimated intake, which is below the TTC of 0.15 μg/person per day for compounds with structural alerts for genotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2020.111585DOI Listing
November 2020

FEMA GRAS assessment of natural flavor complexes: Lavender, Guaiac Coriander-derived and related flavoring ingredients.

Food Chem Toxicol 2020 Nov 16;145:111584. Epub 2020 Jul 16.

Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC 20036, USA. Electronic address:

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, fifth in the series, evaluates the safety of NFCs containing linalool and/or other characteristic mono- and sesquiterpenoid tertiary alcohols and esters using the safety evaluation procedure published by the FEMA Expert Panel in 2005 and updated in 2018. The procedure relies on a complete chemical characterization of the NFC intended for commerce and organization of the chemical constituents of each NFC into well-defined congeneric groups. The safety of each NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of both the constituent congeneric groups and the NFCs. Sixteen NFCs, derived from the Lavandula, Aniba, Elettaria, Daucus, Salvia, Coriandrum, Ribes, Guaiacum/Bulnesia, Citrus, Pogostemon, Melaleuca and Michelia genera, were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2020.111584DOI Listing
November 2020

Canine prostatic cancer cell line (LuMa) with osteoblastic bone metastasis.

Prostate 2020 06 29;80(9):698-714. Epub 2020 Apr 29.

Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio.

Background: Osteoblastic bone metastasis represents the most common complication in men with prostate cancer (PCa). During progression and bone metastasis, PCa cells acquire properties similar to bone cells in a phenomenon called osteomimicry, which promotes their ability to metastasize, proliferate, and survive in the bone microenvironment. The mechanism of osteomimicry resulting in osteoblastic bone metastasis is unclear.

Methods: We developed and characterized a novel canine prostatic cancer cell line (LuMa) that will be useful to investigate the relationship between osteoblastic bone metastasis and osteomimicry in PCa. The LuMa cell line was established from a primary prostate carcinoma of a 13-year old mixed breed castrated male dog. Cell proliferation and gene expression of LuMa were measured and compared to three other canine prostatic cancer cell lines (Probasco, Ace-1, and Leo) in vitro. The effect of LuMa cells on calvaria and murine preosteoblastic (MC3T3-E1) cells was measured by quantitative reverse-transcription polymerase chain reaction and alkaline phosphatase assay. LuMa cells were transduced with luciferase for monitoring in vivo tumor growth and metastasis using different inoculation routes (subcutaneous, intratibial [IT], and intracardiac [IC]). Xenograft tumors and metastases were evaluated using radiography and histopathology.

Results: After left ventricular injection, LuMa cells metastasized to bone, brain, and adrenal glands. IT injections induced tumors with intramedullary new bone formation. LuMa cells had the highest messenger RNA levels of osteomimicry genes (RUNX2, RANKL, and Osteopontin [OPN]), CD44, E-cadherin, and MYOF compared to Ace-1, Probasco, and Leo cells. LuMa cells induced growth in calvaria defects and modulated gene expression in MC3T3-E1 cells.

Conclusions: LuMa is a novel canine PCa cell line with osteomimicry and stemness properties. LuMa cells induced osteoblastic bone formation in vitro and in vivo. LuMa PCa cells will serve as an excellent model for studying the mechanisms of osteomimicry and osteoblastic bone and brain metastasis in prostate cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.23983DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291846PMC
June 2020

The safety evaluation of food flavoring substances: the role of genotoxicity studies.

Crit Rev Toxicol 2020 01 12;50(1):1-27. Epub 2020 Mar 12.

Flavor and Extract Manufacturers Association, Washington, DC, USA.

The Flavor and Extract Manufacturers Association (FEMA) Expert Panel relies on the weight of evidence from all available data in the safety evaluation of flavoring substances. This process includes data from genotoxicity studies designed to assess the potential of a chemical agent to react with DNA or otherwise cause changes to DNA, either or . The Panel has reviewed a large number of and genotoxicity studies during the course of its ongoing safety evaluations of flavorings. The adherence of genotoxicity studies to standardized protocols and guidelines, the biological relevance of the results from those studies, and the human relevance of these studies are all important considerations in assessing whether the results raise specific concerns for genotoxic potential. The Panel evaluates genotoxicity studies not only for evidence of genotoxicity hazard, but also for the probability of risk to the consumer in the context of exposure from their use as flavoring substances. The majority of flavoring substances have given no indication of genotoxic potential in studies evaluated by the FEMA Expert Panel. Examples illustrating the assessment of genotoxicity data for flavoring substances and the consideration of the factors noted above are provided. The weight of evidence approach adopted by the FEMA Expert Panel leads to a rational assessment of risk associated with consumer intake of flavoring substances under the conditions of use.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408444.2020.1712589DOI Listing
January 2020

Canine Thyroid Cancer: Molecular Characterization and Cell Line Growth in Nude Mice.

Vet Pathol 2020 03 21;57(2):227-240. Epub 2020 Feb 21.

Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.

Thyroid cancer is the most common endocrine malignancy in dogs. Dogs and humans are similar in the spontaneous development of thyroid cancer and metastasis to lungs; however, thyroid cancer has a higher incidence of metastasis in dogs. This study developed a preclinical nude mouse model of canine thyroid cancer using a canine thyroid adenocarcinoma cell line (CTAC) and measured the expression of important invasion and metastasis genes in spontaneous canine thyroid carcinomas and CTAC cells. CTAC cells were examined by electron microscopy. Short tandem repeat analysis was performed for both the original neoplasm and CTAC cells. CTAC cells were transduced with luciferase and injected subcutaneously and into the tail vein. Tumors and metastases were monitored using bioluminescent imaging and confirmed with gross necropsy and histopathology. Invasion and metastasis genes were characterized in 8 follicular thyroid carcinomas (FTCs), 4 C-cell thyroid carcinomas, 3 normal thyroids, and CTAC cells. CTAC cells grew well as xenografts in the subcutis, and they resembled the primary neoplasm. Metastasis to the kidney and lung occurred infrequently following subcutaneous and tail vein injection of CTAC cells. STR analysis confirmed that CTAC cells were derived from the original neoplasm and were of canine origin. Finally, 24 genes were differentially expressed in spontaneous canine thyroid carcinomas, CTAC, and normal thyroids. This study demonstrated the usefulness of a nude mouse model of experimental canine thyroid carcinoma and identified potential molecular targets of canine follicular and C-cell thyroid carcinoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/0300985819901120DOI Listing
March 2020

Mouse model recapitulates the phenotypic heterogeneity of human adult T-cell leukemia/lymphoma in bone.

J Bone Oncol 2019 Dec 20;19:100257. Epub 2019 Aug 20.

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.

Adult T-cell leukemia/lymphoma has a unique relationship to bone including latency in the marrow, and development of bone invasion, osteolytic tumors and humoral hypercalcemia of malignancy. To study these conditions, we established and characterized a novel mouse model of ATL bone metastasis. Patient-derived ATL cell lines including three that do not express HTLV-1 oncoprotein Tax (ATL-ED, RV-ATL, TL-Om1), an transformed human T-cell line with high Tax expression (HT-1RV), and an HTLV-1 negative T-cell lymphoma (Jurkat) were injected intratibially into NSG mice, and were capable of proliferating and modifying the bone microenvironment. Radiography, μCT, histopathology, immunohistochemistry, plasma calcium concentrations, and qRT-PCR for several tumor-bone signaling mRNAs were performed. Luciferase-positive ATL-ED bone tumors allowed for imaging and visualization of bone tumor growth and metastasis over time. ATL-ED and HT-1RV cells caused mixed osteolytic/osteoblastic bone tumors, TL-Om1 cells exhibited minimal bone involvement and aggressive local invasion into the adjacent soft tissues, Jurkat cells proliferated within bone marrow and induced minimal bone cell response, and RV-ATL cells caused marked osteolysis. This mouse model revealed important mechanisms of human ATL bone neoplasms and will be useful to investigate biological interactions, potential therapeutic targets, and new bone-targeted agents for the prevention of ATL metastases to bone.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbo.2019.100257DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911918PMC
December 2019

FEMA GRAS assessment of natural flavor complexes: Cinnamomum and Myroxylon-derived flavoring ingredients.

Food Chem Toxicol 2020 Jan 18;135:110949. Epub 2019 Nov 18.

Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC 20036, USA. Electronic address:

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, third in the series, considers NFCs composed primarily of constituents with the 3-phenyl-2-propenyl or a cinnamyl functional group, using the procedure outlined in 2005 and updated in 2018 to evaluate the safety of naturally-occurring mixtures for their intended use as flavor ingredients. The procedure relies on a complete chemical characterization of the NFC intended for commerce and organization of each NFC's chemical constituents into well-defined congeneric groups. The safety of the NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of members of the congeneric groups and the NFC under evaluation. Six NFCs from the Myroxylon and Cinnamomum genera, Balsam Oil, Peru (FEMA 2117), Tolu Balsam Extract (FEMA 3069), Cassia Bark Extract (FEMA 2257), Cassia Bark Oil (FEMA 2258), Cinnamon Bark Extract (FEMA 2290) and Cinnamon Bark Oil (FEMA 2291) were evaluated and affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2019.110949DOI Listing
January 2020

Parathyroid hormone-related protein promotes bone loss in T-cell leukemia as well as in solid tumors.

Leuk Lymphoma 2020 02 8;61(2):409-419. Epub 2019 Oct 8.

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.

Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) are important factors that increase bone resorption and hypercalcemia in adult T-cell leukemia (ATL). We investigated the role of PTHrP and MIP-1α in the development of local osteolytic lesions in T-cell leukemia through overexpression in Jurkat T-cells. Injections of Jurkat-PTHrP and Jurkat-MIP-1α into the tibia and the left ventricle of NSG mice were performed to evaluate tumor growth and metastasis . Jurkat-pcDNA tibial neoplasms grew at a significantly greater rate and total tibial tumor burden was significantly greater than Jurkat-PTHrP neoplasms. Despite the lower tibial tumor burden, Jurkat-PTHrP bone neoplasms had significantly greater osteolysis than Jurkat-pcDNA and Jurkat-MIP-1α neoplasms. Jurkat-PTHrP and Jurkat-pcDNA cells preferentially metastasized to bone following intracardiac injection, though the overall metastatic burden was lower in Jurkat-PTHrP mice. These findings demonstrate that PTHrP induced pathologic osteolysis in T-cell leukemia but did not increase the incidence of skeletal metastasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/10428194.2019.1672055DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032642PMC
February 2020

HTLV-1 viral oncogene HBZ drives bone destruction in adult T cell leukemia.

JCI Insight 2019 10 3;4(19). Epub 2019 Oct 3.

Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA.

Osteolytic bone lesions and hypercalcemia are common, serious complications in adult T cell leukemia/lymphoma (ATL), an aggressive T cell malignancy associated with human T cell leukemia virus type 1 (HTLV-1) infection. The HTLV-1 viral oncogene HBZ has been implicated in ATL tumorigenesis and bone loss. In this study, we evaluated the role of HBZ on ATL-associated bone destruction using HTLV-1 infection and disease progression mouse models. Humanized mice infected with HTLV-1 developed lymphoproliferative disease and continuous, progressive osteolytic bone lesions. HTLV-1 lacking HBZ displayed only modest delays to lymphoproliferative disease but significantly decreased disease-associated bone loss compared with HTLV-1-infected mice. Gene expression array of acute ATL patient samples demonstrated increased expression of RANKL, a critical regulator of osteoclasts. We found that HBZ regulated RANKL in a c-Fos-dependent manner. Treatment of HTLV-1-infected humanized mice with denosumab, a monoclonal antibody against human RANKL, alleviated bone loss. Using patient-derived xenografts from primary human ATL cells to induce lymphoproliferative disease, we also observed profound tumor-induced bone destruction and increased c-Fos and RANKL gene expression. Together, these data show the critical role of HBZ in driving ATL-associated bone loss through RANKL and identify denosumab as a potential treatment to prevent bone complications in ATL patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/jci.insight.128713DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795409PMC
October 2019

The role of microRNA-148a and downstream DLGAP1 on the molecular regulation and tumor progression on human glioblastoma.

Oncogene 2019 11 2;38(47):7234-7248. Epub 2019 Sep 2.

Department of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, 410013, China.

Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Currently, the prognosis of the patients with GBM is very poor and new molecular targets and treatment strategies are urgently needed to combat it. MicroRNA-148a (miR-148a) has been shown to be dysregulated in certain tumor types. However, the role of miR-148a in the pathogenesis of GBM is not fully understood. Here we comprehensively analyzed the roles of miR-148a, downstream DLGAP1, and their molecular pathways in GBM. We showed that miR-148a promote the proliferation and growth of GBM cells both in vitro and in vivo, and also induced the migration, invasion, and EMT (epithelial-mesenchymal transition) program of GBM cells by directly targeting DLGAP1. Furthermore, we identified 31 new miR-148a targets and found that miR-148a function was mainly involved in the cell adhesion signaling pathway and was associated with nervous system diseases. Our findings provide a new mechanism for miR-148a-mediated GBM cell invasion and reveal previously unreported targets of miR-148a as well as novel miR-148a-mediated regulatory networks in GBM. These results increase the understanding of the role of miR-148a in GBM and may lead to novel therapeutic strategies for GBM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-019-0922-3DOI Listing
November 2019

Eomes partners with PU.1 and MITF to Regulate Transcription Factors Critical for osteoclast differentiation.

iScience 2019 Jan 27;11:238-245. Epub 2018 Dec 27.

Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA. Electronic address:

Bone-resorbing osteoclasts (OCs) are derived from myeloid precursors (MPs). Several transcription factors are implicated in OC differentiation and function; however, their hierarchical architecture and interplay are not well known. Analysis for enriched motifs in PU.1 and MITF chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) data from differentiating OCs identified eomesodermin (EOMES) as a potential novel binding partner of PU.1 and MITF at genes critical for OC differentiation and function. We were able to demonstrate using co-immunoprecipitation and sequential ChIP analysis that PU.1, MITF, and EOMES are in the same complex and present as a complex at OC genomic loci. Furthermore, EOMES knockdown in MPs led to osteopetrosis associated with decreased OC differentiation and function both in vitro and in vivo. Although EOMES is associated with embryonic development and other hematopoietic lineages, this is the first study demonstrating the requirement of EOMES in the myeloid compartment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isci.2018.12.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6327072PMC
January 2019

Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth.

Life Sci Alliance 2018 Oct 26;1(5):e201800190. Epub 2018 Oct 26.

Hollings Cancer Center and Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.

The contribution of the tumor microenvironment to pancreatic ductal adenocarcinoma (PDAC) development is currently unclear. We therefore examined the consequences of disrupting paracrine Hedgehog (HH) signaling in PDAC stroma. Herein, we show that ablation of the key HH signaling gene () in stromal fibroblasts led to increased proliferation of pancreatic tumor cells. Furthermore, deletion resulted in proteasomal degradation of the tumor suppressor PTEN and activation of oncogenic protein kinase B (AKT) in fibroblasts. An unbiased proteomic screen identified RNF5 as a novel E3 ubiquitin ligase responsible for degradation of phosphatase and tensin homolog (PTEN) in -null fibroblasts. () knockdown or pharmacological inhibition of glycogen synthase kinase 3β (GSKβ), the kinase that marks PTEN for ubiquitination, rescued PTEN levels and reversed the oncogenic phenotype, identifying a new node of PTEN regulation. In PDAC patients, low stromal PTEN correlated with reduced overall survival. Mechanistically, PTEN loss decreased hydraulic permeability of the extracellular matrix, which was reversed by hyaluronidase treatment. These results define non-cell autonomous tumor-promoting mechanisms activated by disruption of the HH/PTEN axis and identifies new targets for restoring stromal tumor-suppressive functions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.26508/lsa.201800190DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238420PMC
October 2018

Nonproliferative and Proliferative Lesions of the Rat and Mouse Endocrine System.

J Toxicol Pathol 2018 28;31(3 Suppl):1S-95S. Epub 2018 Jul 28.

Ohio University, Department of Biomedical Sciences, Athens, Ohio, USA.

The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) Project (www.toxpath.org/inhand.asp) is a joint initiative among the Societies of Toxicological Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in the endocrine organs (pituitary gland, pineal gland, thyroid gland, parathyroid glands, adrenal glands and pancreatic islets) of laboratory rats and mice, with color photomicrographs illustrating examples of the lesions. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous and aging lesions as well as lesions induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for endocrine lesions in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1293/tox.31.1SDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108091PMC
July 2018

CD147 and Cyclooxygenase Expression in Feline Oral Squamous Cell Carcinoma.

Vet Sci 2018 Aug 13;5(3). Epub 2018 Aug 13.

Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.

Feline oral squamous cell carcinoma (OSCC) is a highly invasive form of cancer in cats. In human OSCC, cluster of differentiation 147 (CD147) contributes to inflammation and tumor invasiveness. CD147 is a potential therapeutic target, but the expression of CD147 in feline OSCC has not been examined. Immunohistochemistry was used to determine if cyclooxygenase 2 (COX-2) and CD147 expression in feline OSCC biopsies was coordinated. Tumor cells were more likely to express COX-2 (22/43 cases or 51%) compared to stroma (8/43 or 19%) and adjacent oral epithelium (9/31 cases or 29%) ( < 0.05). CD147 was also more likely to occur in tumor cells compared to stroma and adjacent mucosa, with 21/43 (49%) of cases having >50% tumor cells with mild or moderate CD147 expression, compared to 9/28 (32%) in adjacent epithelium and only 5/43 (12%) in adjacent stroma ( < 0.05). In feline OSCC cell lines (SCCF1, SCCF2, and SCCF3), CD147 gene expression was more consistently expressed compared to COX-2, which was 60-fold higher in SCCF2 cells compared to SCCF1 cells ( < 0.05). CD147 expression did not correlate with COX-2 expression and prostaglandin E2 (PGE2) secretion, indicating that they may be independently regulated. CD147 potentially represents a novel therapeutic target for the treatment of feline OSCC and further study of CD147 is warranted.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/vetsci5030072DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163611PMC
August 2018

Stromal PTEN determines mammary epithelial response to radiotherapy.

Nat Commun 2018 07 17;9(1):2783. Epub 2018 Jul 17.

Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.

The importance of the tumor-associated stroma in cancer progression is clear. However, it remains uncertain whether early events in the stroma are capable of initiating breast tumorigenesis. Here, we show that in the mammary glands of non-tumor bearing mice, stromal-specific phosphatase and tensin homolog (Pten) deletion invokes radiation-induced genomic instability in neighboring epithelium. In these animals, a single dose of whole-body radiation causes focal mammary lobuloalveolar hyperplasia through paracrine epidermal growth factor receptor (EGFR) activation, and EGFR inhibition abrogates these cellular changes. By analyzing human tissue, we discover that stromal PTEN is lost in a subset of normal breast samples obtained from reduction mammoplasty, and is predictive of recurrence in breast cancer patients. Combined, these data indicate that diagnostic or therapeutic chest radiation may predispose patients with decreased stromal PTEN expression to secondary breast cancer, and that prophylactic EGFR inhibition may reduce this risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-05266-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050339PMC
July 2018

Development of an orthotopic canine prostate cancer model expressing human GRPr.

Prostate 2018 Jul 11. Epub 2018 Jul 11.

Deptartment of Biomedical Sciences, Ohio University, Athens, Ohio.

Background: Ace-1 canine prostate cancer cells grow orthotopically in cyclosporine immunosuppressed laboratory beagles. We previously transfected (human Gastrin-Releasing Peptide Receptor, huGRPr) into Ace-1 cells and demonstrated receptor-targeted NIRF imaging with IR800-G-Abz4-t-BBN, an agonist to huGRPr. Herein, we used the new cell line to develop the first canine prostate cancer model expressing a human growth factor receptor.

Methods: Dogs were immunosuppressed with cyclosporine, azathioprine, prednisolone, and methylprednisolone. Their prostate glands were implanted with Ace-1 cells. The implantation wounds were sealed with a cyanoacrylic adhesive to prevent extraprostatic tumor growth. Intraprostatic tumors grew in 4-5 week. A lobar prostatic artery was then catheterized via the carotid artery and 25-100 nmol IR800-Abz4-t-BBN was infused in 2 mL followed by euthanasia in dogs 1-2, and recovery for 24 h before euthanasia in dogs 3-6. Excised tissues were imaged optically imaged, and histopathology performed.

Results: Dog1 grew no tumors with cyclosporine alone. Using the four drug protocol, Dogs 2-6 grew abundant 1-2 mm intracapsular and 1-2 cm intraglandular tumors. Tumors grew >5 cm when the prostate cancer cells became extracapsular. Dogs 4-6 with sealed prostatic capsule implantation sites had growth of intracapsular and intraglandular tumors and LN metastases at 5 weeks. High tumor to background BPH signal in the NIRF images of sectioned prostate glands resulted from the 100 nmol dose (∼8 nmol/kg) in dogs 2-4 and 50 nmol dose in dog 5, but not from the 25 nmol dose in Dog 6. Imaging of mouse Ace-1 tumors required an intravenous dose of 500 nmol/kg body wt. A lymph node that drained the prostate gland was detectable in Dog 4. Histologic findings confirmed the imaging data.

Conclusion: Ace-1 cells created viable, huGRPr-expressing tumors when implanted orthotopically into immune-suppressed dogs. Local delivery of an imaging agent through the prostatic artery allowed a very low imaging dose, suggesting that therapeutic agents could be used safely for treatment of early localized intraglandular prostate cancer as adjuvant therapy for active surveillance or focal ablation therapies, or for treating multifocal intraglandular disease where focal ablation therapies are not indicated or ineffective.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.23686DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409197PMC
July 2018

Enhancer variants reveal a conserved transcription factor network governed by PU.1 during osteoclast differentiation.

Bone Res 2018 28;6. Epub 2018 Mar 28.

1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.

Genome-wide association studies (GWASs) have been instrumental in understanding complex phenotypic traits. However, they have rarely been used to understand lineage-specific pathways and functions that contribute to the trait. In this study, by integrating lineage-specific enhancers from mesenchymal and myeloid compartments with bone mineral density loci, we were able to segregate osteoblast- and osteoclast (OC)-specific functions. Specifically, in OCs, a PU.1-dependent transcription factor (TF) network was revealed. Deletion of PU.1 in OCs in mice resulted in severe osteopetrosis. Functional genomic analysis indicated PU.1 and MITF orchestrated a TF network essential for OC differentiation. Several of these TFs were regulated by cooperative binding of PU.1 with BRD4 to form superenhancers. Further, PU.1 is essential for conformational changes in the superenhancer region of Nfatc1. In summary, our study demonstrates that combining GWASs with genome-wide binding studies and model organisms could decipher lineage-specific pathways contributing to complex disease states.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41413-018-0011-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874256PMC
March 2018

Animal Models of Cancer-Associated Hypercalcemia.

Vet Sci 2017 Apr 13;4(2). Epub 2017 Apr 13.

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.

Cancer-associated hypercalcemia (CAH) is a frequently-occurring paraneoplastic syndrome that contributes to substantial patient morbidity and occurs in both humans and animals. Patients with CAH are often characterized by markedly elevated serum calcium concentrations that result in a range of clinical symptoms involving the nervous, gastrointestinal and urinary systems. CAH is caused by two principle mechanisms; humorally-mediated and/or through local osteolytic bone metastasis resulting in excessive calcium release from resorbed bone. Humoral hypercalcemia of malignancy (HHM) is the most common mechanism and is due to the production and release of tumor-associated cytokines and humoral factors, such as parathyroid hormone-related protein (PTHrP), that act at distant sites to increase serum calcium concentrations. Local osteolytic hypercalcemia (LOH) occurs when primary or metastatic bone tumors act locally by releasing factors that stimulate osteoclast activity and bone resorption. LOH is a less frequent cause of CAH and in some cases can induce hypercalcemia in concert with HHM. Rarely, ectopic production of parathyroid hormone has been described. PTHrP-mediated hypercalcemia is the most common mechanism of CAH in human and canine malignancies and is recognized in other domestic species. Spontaneous and experimentally-induced animal models have been developed to study the mechanisms of CAH. These models have been essential for the evaluation of novel approaches and adjuvant therapies to manage CAH. This review will highlight the comparative aspects of CAH in humans and animals with a discussion of the available animal models used to study the pathogenesis of this important clinical syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/vetsci4020021DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606604PMC
April 2017

HTLV-1 viral oncogene HBZ induces osteolytic bone disease in transgenic mice.

Oncotarget 2017 Sep 27;8(41):69250-69263. Epub 2017 Aug 27.

Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA.

Adult T-cell leukemia/lymphoma (ATL) is an aggressive T cell malignancy that occurs in HTLV-1 infected patients. Most ATL patients develop osteolytic lesions and hypercalcemia of malignancy, causing severe skeletal related complications and reduced overall survival. The HTLV-1 virus encodes 2 viral oncogenes, Tax and HBZ. Tax, a transcriptional activator, is critical to ATL development, and has been implicated in pathologic osteolysis. HBZ, HTLV-1 basic leucine zipper transcription factor, promotes tumor cell proliferation and disrupts Wnt pathway modulators; however, its role in ATL induced osteolytic bone loss is unknown. To determine if HBZ is sufficient for the development of bone loss, we established a transgenic Granzyme B HBZ (Gzmb-HBZ) mouse model. Lymphoproliferative disease including tumors, enlarged spleens and/or abnormal white cell counts developed in two-thirds of Gzmb-HBZ mice at 18 months. HBZ positive cells were detected in tumors, spleen and bone marrow. Importantly, pathologic bone loss and hypercalcemia were present at 18 months. Bone-acting factors were present in serum and RANKL, PTHrP and DKK1, key mediators of hypercalcemia and bone loss, were upregulated in Gzmb-HBZ T cells. These data demonstrate that Gzmb-HBZ mice model ATL bone disease and express factors that are current therapeutic targets for metastatic and bone resident tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.20565DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642476PMC
September 2017

Bilateral patellar fractures and increased cortical bone thickness associated with long-term oral alendronate treatment in a cat.

JFMS Open Rep 2017 Jul-Dec;3(2):2055116917727137. Epub 2017 Aug 29.

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.

Case Summary: A 14-year-old cat presented with bilateral patellar fractures and radiographically thickened tibial cortices. This cat had been treated with alendronate for 8 years prior to presentation. To remove the subjectivity of the radiographic evaluation, tibial radiographs from 35 apparently healthy geriatric cats were used for comparison. Cortical and diaphyseal thickness were measured at the proximal and distal thirds of the tibia. Our cat had increased cortical bone thickness compared to that of the control cats.

Relevance And Novel Information: Treatment with bisphosphonates can lead to brittle bones and fractures after prolonged use in humans. This is the first description of fractures and cortical bone changes that may have been associated with prolonged bisphosphonate use in a cat. Radiographic measurements of cortical bone thickness may identify cats that are at increased risk for bone pathology secondary to prolonged alendronate use.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/2055116917727137DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5580850PMC
August 2017

Discovery and characterization of the feline miRNAome.

Sci Rep 2017 08 23;7(1):9263. Epub 2017 Aug 23.

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.

The domestic cat is an important human companion animal that can also serve as a relevant model for ~250 genetic diseases, many metabolic and degenerative conditions, and forms of cancer that are analogous to human disorders. MicroRNAs (miRNAs) play a crucial role in many biological processes and their dysregulation has a significant impact on important cellular pathways and is linked to a variety of diseases. While many species already have a well-defined and characterized miRNAome, miRNAs have not been carefully studied in cats. As a result, there are no feline miRNAs present in the reference miRNA databases, diminishing the usefulness of medical research on spontaneous disease in cats for applicability to both feline and human disease. This study was undertaken to define and characterize the cat miRNAome in normal feline tissues. High-throughput sequencing was performed on 12 different normal cat tissues. 271 candidate feline miRNA precursors, encoding a total of 475 mature sequences, were identified, including several novel cat-specific miRNAs. Several analyses were performed to characterize the discovered miRNAs, including tissue distribution of the precursors and mature sequences, genomic distribution of miRNA genes and identification of clusters, and isomiR characterization. Many of the miRNAs were regulated in a tissue/organ-specific manner.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-10164-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5569061PMC
August 2017

The Effect of a Histone Deacetylase Inhibitor (AR-42) on Canine Prostate Cancer Growth and Metastasis.

Prostate 2017 May 9;77(7):776-793. Epub 2017 Feb 9.

Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio.

Background: Canine prostate cancer (PCa) is an excellent preclinical model for human PCa. AR-42 is a histone deacetylase inhibitor (HDACi) developed at The Ohio State University that inhibits the proliferation of several cancers, including multiple myeloma, lung, and hepatocellular cancer. In this study, we investigated whether AR-42 would prevent or decrease. The growth and metastasis of a canine PCa (Ace-1 cells) to bone in vitro and in vivo.

Methods: Proliferation, cell viability, invasion, and metastasis of a canine prostate cancer cell line (Ace-1) were measured following treatment with AR-42. Expression of anoikis resistance, epithelial-to-mesenchymal transition (EMT), and stem cell-related markers were also evaluated. To assess the efficacy of AR-42 on prevention of PCa metastasis to bone, Ace-1 cells were injected in the left cardiac ventricle of nude mice, mice were treated with AR-42, and the incidence and growth of bone metastasis were measured. Bioluminescence was performed to monitor the bone metastases in nude mice.

Results: AR-42 inhibited the in vitro proliferation of Ace-1 cells in a time- and dose-dependent manner. The IC concentration of AR-42 for Ace-1 cells was 0.42 μM after 24 hr of treatment. AR-42 induced apoptosis, decreased cell migration, and increased the stem cell properties of Ace-1 cells in vitro. AR-42 downregulated E-cadherin, N-cadherin, TWIST, MYOF, anoikis resistance, and osteomimicry genes, while it upregulated SNAIL, PTEN, FAK, and ZEB1 gene expression in Ace-1 cells. Importantly, AR-42 decreased the bioluminescence and incidence of bone metastasis in nude mice. In addition, AR-42 induced apoptosis and altered the tumor cell morphology to an irregular cell phenotype with condensed chromatin in the bone metastases.

Conclusion: AR-42 decreased PCa growth and bone metastasis, induced apoptosis, and downregulated osteomimicry genes in PCa cells in the bone microenvironment. Prostate 77:776-793, 2017. © 2017 Wiley Periodicals, Inc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.23318DOI Listing
May 2017

Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma.

J Clin Invest 2017 Mar 30;127(3):830-842. Epub 2017 Jan 30.

Disruption of the retinoblastoma (RB) tumor suppressor pathway, either through genetic mutation of upstream regulatory components or mutation of RB1 itself, is believed to be a required event in cancer. However, genetic alterations in the RB-regulated E2F family of transcription factors are infrequent, casting doubt on a direct role for E2Fs in driving cancer. In this work, a mutation analysis of human cancer revealed subtle but impactful copy number gains in E2F1 and E2F3 in hepatocellular carcinoma (HCC). Using a series of loss- and gain-of-function alleles to dial E2F transcriptional output, we have shown that copy number gains in E2f1 or E2f3b resulted in dosage-dependent spontaneous HCC in mice without the involvement of additional organs. Conversely, germ-line loss of E2f1 or E2f3b, but not E2f3a, protected mice against HCC. Combinatorial mapping of chromatin occupancy and transcriptome profiling identified an E2F1- and E2F3B-driven transcriptional program that was associated with development and progression of HCC. These findings demonstrate a direct and cell-autonomous role for E2F activators in human cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI87583DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330731PMC
March 2017

Pharmacokinetics and derivation of an anticancer dosing regimen for the novel anti-cancer agent isobutyl-deoxynyboquinone (IB-DNQ), a NQO1 bioactivatable molecule, in the domestic felid species.

Invest New Drugs 2017 04 14;35(2):134-144. Epub 2016 Dec 14.

Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.

Isobutyl-deoxynyboquinone (IB-DNQ) is a selective substrate for NAD(P)H:quinone oxidoreductase (NQO1), an enzyme overexpressed in many solid tumors. Following activation by NQO1, IB-DNQ participates in a catalytic futile reduction/reoxidation cycle with consequent toxic reactive oxygen species generation within the tumor microenvironment. To elucidate the potential of IB-DNQ to serve as a novel anticancer agent, in vitro studies coupled with in vivo pharmacokinetic and toxicologic investigations in the domestic felid species were conducted to investigate the tractability of IB-DNQ as a translationally applicable anticancer agent. First, using feline oral squamous cell carcinoma (OSCC) as a comparative cancer model, expressions of NQO1 were characterized in not only human, but also feline OSCC tissue microarrays. Second, IB-DNQ mediated cytotoxicity in three immortalized feline OSCC cell lines were studied under dose-dependent and sequential exposure conditions. Third, the feasibility of administering IB-DNQ at doses predicted to achieve cytotoxic plasma concentrations and biologically relevant durations of exposure were investigated through pharmacokinetic and tolerability studies in healthy research felines. Intravenous administration of IB-DNQ at 1.0-2.0 mg/kg achieved peak plasma concentrations and durations of exposure reaching or exceeding predicted in vitro cytotoxic concentrations. Clinical adverse side effects including ptyalism and tachypnea exhibited during and post-IV infusion of IB-DNQ were transient and tolerable. Additionally, IB-DNQ administration did not produce acute or delayed-onset unacceptable hematologic, non-hematologic, or off-target oxidative toxicities. Collectively, the findings reported here within provide important safety and pharmacokinetic data to support the continued development of IB-DNQ as a novel anticancer strategy for NQO1 expressing cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10637-016-0414-zDOI Listing
April 2017