Publications by authors named "Theodore L Steck"

24 Publications

  • Page 1 of 1

Active cholesterol 20 years on.

Traffic 2020 11 4;21(11):662-674. Epub 2020 Oct 4.

Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.

This review considers the following hypotheses, some well-supported and some speculative. Almost all of the sterol molecules in plasma membranes are associated with bilayer phospholipids in complexes of varied strength and stoichiometry. These complexes underlie many of the material properties of the bilayer. The small fraction of cholesterol molecules exceeding the binding capacity of the phospholipids is thermodynamically active and serves diverse functions. It circulates briskly among the cell membranes, particularly through contact sites linking the organelles. Active cholesterol provides the upstream feedback signal to multiple mechanisms governing plasma membrane homeostasis, pegging the sterol level to a threshold set by its phospholipids. Active cholesterol could also be the cargo for various inter-organelle transporters and the form excreted from cells by reverse transport. Furthermore, it is integral to the function of caveolae; a mediator of Hedgehog regulation; and a ligand for the binding of cytolytic toxins to membranes. Active cholesterol modulates a variety of plasma membrane proteins-receptors, channels and transporters-at least in vitro.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/tra.12762DOI Listing
November 2020

Transverse distribution of plasma membrane bilayer cholesterol: Picking sides.

Traffic 2018 10 8;19(10):750-760. Epub 2018 Jul 8.

Department of Pathology, Rush University Medical Center, Chicago, Illinois.

The transverse asymmetry (sidedness) of phospholipids in plasma membrane bilayers is well characterized, distinctive, actively maintained and functionally important. In contrast, numerous studies using a variety of techniques have concluded that plasma membrane bilayer cholesterol is either mostly in the outer leaflet or the inner leaflet or is fairly evenly distributed. Sterols might simply partition according to their differing affinities for the asymmetrically disposed phospholipids, but some studies have proposed that it is actively transported to the outer leaflet. Other work suggests that the sterol is enriched in the inner leaflet, driven by either positive interactions with the phosphatidylethanolamine on that side or by its exclusion from the outer leaflet by the long chain sphingomyelin molecules therein. This uncertainty raises three questions: is plasma membrane cholesterol sidedness fixed in a given cell or cell type; is it generally the same among mammalian species; and does it serve specific physiological functions? This review grapples with these issues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/tra.12586DOI Listing
October 2018

Pathway of Maternal Serotonin to the Human Embryo and Fetus.

Endocrinology 2018 04;159(4):1609-1629

Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois.

Serotonin [5-hydroxytryptamine (5-HT)] is essential to intrauterine development, but its source is debated. We used immunocytochemistry to gauge 5-HT, its biosynthetic enzyme tryptophan hydroxylase 1 (TPH1); an importer (serotonin transporter, 5-HTT/SERT/SLC6A); other transporters [P-glycoprotein 1 (P-gp/ABCB1), OCT3/SLC22A3, and gap junction connexin-43]; and the 5-HT degradative enzyme monoamine oxidase A (MAOA) in sections of placentas. In humans, 5-HT was faintly stained only in first-trimester trophoblasts, whereas TPH1 was not seen at any stage. SERT was expressed in syncytiotrophoblasts and, more strongly, in cytotrophoblasts. MAOA was prominent in syncytiotrophoblasts, OCT3 and gap junctions were stained in cytotrophoblasts, and P-gp was present at the apical surfaces of both epithelia. 5-HT added to cultured placental explants accumulated in the trophoblast epithelium and reached the villus core vessels. Trophoblast uptake was blocked by the SERT inhibitor escitalopram. Inhibition of gap junctions with heptanol prevented the accumulation of 5-HT in cytotrophoblasts, whereas blocking OCT3 with decynium-22 and P-gp with mitotane led to its accumulation in cytotrophoblasts. Reducing 5-HT destruction by inhibiting MAOA with clorgyline increased the accumulation of 5-HT throughout the villus. In the mouse fetus, intravascular platelets stained prominently for 5-HT at day 13.5, whereas the placenta and yolk sac endoderm were both negative. TPH1 was not detected, but SERT was prominent in these mouse tissues. We conclude that serotonin is conveyed from the maternal blood stream through syncytiotrophoblasts, cytotrophoblasts and the villus core to the fetus through a physiological pathway that involves at least SERT, gap junctions, P-gp, OCT3, and MAOA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2017-03025DOI Listing
April 2018

Active membrane cholesterol as a physiological effector.

Chem Phys Lipids 2016 Sep 10;199:74-93. Epub 2016 Feb 10.

Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA. Electronic address:

Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2016.02.003DOI Listing
September 2016

Host-directed antimicrobial drugs with broad-spectrum efficacy against intracellular bacterial pathogens.

mBio 2014 Jul 29;5(4):e01534-14. Epub 2014 Jul 29.

Department of Microbiology, University of Chicago, Chicago, Illinois, USA.

We sought a new approach to treating infections by intracellular bacteria, namely, by altering host cell functions that support their growth. We screened a library of 640 Food and Drug Administration (FDA)-approved compounds for agents that render THP-1 cells resistant to infection by four intracellular pathogens. We identified numerous drugs that are not antibiotics but were highly effective in inhibiting intracellular bacterial growth with limited toxicity to host cells. These compounds are likely to target three kinds of host functions: (i) G protein-coupled receptors, (ii) intracellular calcium signals, and (iii) membrane cholesterol distribution. The compounds that targeted G protein receptor signaling and calcium fluxes broadly inhibited Coxiella burnetii, Legionella pneumophila, Brucella abortus, and Rickettsia conorii, while those directed against cholesterol traffic strongly attenuated the intracellular growth of C. burnetii and L. pneumophila. These pathways probably support intracellular pathogen growth so that drugs that perturb them may be therapeutic candidates. Combining host- and pathogen-directed treatments is a strategy to decrease the emergence of drug-resistant intracellular bacterial pathogens. Importance: Although antibiotic treatment is often successful, it is becoming clear that alternatives to conventional pathogen-directed therapy must be developed in the face of increasing antibiotic resistance. Moreover, the costs and timing associated with the development of novel antimicrobials make repurposed FDA-approved drugs attractive host-targeted therapeutics. This paper describes a novel approach of identifying such host-targeted therapeutics against intracellular bacterial pathogens. We identified several FDA-approved drugs that inhibit the growth of intracellular bacteria, thereby implicating host intracellular pathways presumably utilized by bacteria during infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.01534-14DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128363PMC
July 2014

Essentially all excess fibroblast cholesterol moves from plasma membranes to intracellular compartments.

PLoS One 2014 11;9(7):e98482. Epub 2014 Jul 11.

Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America.

It has been shown that modestly increasing plasma membrane cholesterol beyond its physiological set point greatly increases the endoplasmic reticulum and mitochondrial pools, thereby eliciting manifold feedback responses that return cell cholesterol to its resting state. The question arises whether this homeostatic mechanism reflects the targeting of cell surface cholesterol to specific intracellular sites or its general equilibration among the organelles. We now show that human fibroblast cholesterol can be increased as much as two-fold from 2-hydroxypropyl-β-cyclodextrin without changing the size of the cell surface pool. Rather, essentially all of the added cholesterol disperses rapidly among cytoplasmic membranes, increasing their overall cholesterol content by as much as five-fold. We conclude that the level of plasma membrane cholesterol is normally at capacity and that even small increments above this physiological set point redistribute essentially entirely to intracellular membranes, perhaps down their chemical activity gradients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098482PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094430PMC
March 2015

Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4.

Proc Natl Acad Sci U S A 2014 Apr 31;111(15):E1463-72. Epub 2014 Mar 31.

Program in Biophysical Sciences, Institute for Biophysical Dynamics, Department of Chemistry, and James Franck Institute, The University of Chicago, Chicago, IL 60637.

Recognition of phosphatidylserine (PS) lipids exposed on the extracellular leaflet of plasma membranes is implicated in both apoptotic cell removal and immune regulation. The PS receptor T cell immunoglobulin and mucin-domain-containing molecule 4 (Tim4) regulates T-cell immunity via phagocytosis of both apoptotic (high PS exposure) and nonapoptotic (intermediate PS exposure) activated T cells. The latter population must be removed at lower efficiency to sensitively control immune tolerance and memory cell population size, but the molecular basis for how Tim4 achieves this sensitivity is unknown. Using a combination of interfacial X-ray scattering, molecular dynamics simulations, and membrane binding assays, we demonstrate how Tim4 recognizes PS in the context of a lipid bilayer. Our data reveal that in addition to the known Ca(2+)-coordinated, single-PS binding pocket, Tim4 has four weaker sites of potential ionic interactions with PS lipids. This organization makes Tim4 sensitive to PS surface concentration in a manner capable of supporting differential recognition on the basis of PS exposure level. The structurally homologous, but functionally distinct, Tim1 and Tim3 are significantly less sensitive to PS surface density, likely reflecting the differences in immunological function between the Tim proteins. These results establish the potential for lipid membrane parameters, such as PS surface density, to play a critical role in facilitating selective recognition of PS-exposing cells. Furthermore, our multidisciplinary approach overcomes the difficulties associated with characterizing dynamic protein/membrane systems to reveal the molecular mechanisms underlying Tim4's recognition properties, and thereby provides an approach capable of providing atomic-level detail to uncover the nuances of protein/membrane interactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1320174111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992656PMC
April 2014

Stability and stoichiometry of bilayer phospholipid-cholesterol complexes: relationship to cellular sterol distribution and homeostasis.

Biochemistry 2013 Oct 24;52(40):6950-9. Epub 2013 Sep 24.

Department of Pathology, Rush University Medical Center , Chicago, Illinois 60612, United States.

Is cholesterol distributed among intracellular compartments by passive equilibration down its chemical gradient? If so, its distribution should reflect the relative cholesterol affinity of the constituent membrane phospholipids as well as their capacity for association with the sterol. We examined this issue by analyzing the reactivity to cholesterol oxidase of large unilamellar vesicles (LUVs) containing phospholipids and varied levels of cholesterol. The rates of cholesterol oxidation differed among the various phospholipid environments by roughly 4 orders of magnitude. Furthermore, accessibility to the enzyme increased by orders of magnitude at cholesterol thresholds that suggested cholesterol:phospholipid association ratios of 1:1, 2:3, or 1:2 (moles:moles). The accessibility of cholesterol above these thresholds was still constrained by its particular phospholipid environment. One phospholipid, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine, exhibited no threshold. The analysis suggested values for the stoichiometries of the putative cholesterol-phospholipid complexes, their relative stabilities, and the fractions of bilayer cholesterol not in complexes at the threshold equivalence points. Predictably, the saturated phosphorylcholine species had the lowest apparent stoichiometric ratios and the strongest associations with cholesterol. These results are in general agreement with the equilibrium distribution of cholesterol between the various LUVs and methyl-β-cyclodextrin. In addition, the behavior of the cholesterol in intact human red blood cells matched predictions made from LUVs of the corresponding composition. These results support a passive mechanism for the intracellular distribution of cholesterol that can provide a signal for its homeostatic regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi400862qDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859718PMC
October 2013

Activation mobilizes the cholesterol in the late endosomes-lysosomes of Niemann Pick type C cells.

PLoS One 2012 20;7(1):e30051. Epub 2012 Jan 20.

Department of Pathology, Rush University Medical Center, Chicago, Illinois, United States of America.

A variety of intercalating amphipaths increase the chemical activity of plasma membrane cholesterol. To test whether intracellular cholesterol can be similarly activated, we examined NPC1 and NPC2 fibroblasts, since they accumulate large amounts of cholesterol in their late endosomes and lysosomes (LE/L). We gauged the mobility of intracellular sterol from its appearance at the surface of the intact cells, as determined by its susceptibility to cholesterol oxidase and its isotope exchange with extracellular 2-(hydroxypropyl)-β-cyclodextrin-cholesterol. The entire cytoplasmic cholesterol pool in these cells was mobile, exchanging with the plasma membrane with an apparent half-time of ∼3-4 hours, ∼4-5 times slower than that for wild type human fibroblasts (half-time ∼0.75 hours). The mobility of the intracellular cholesterol was increased by the membrane-intercalating amphipaths chlorpromazine and 1-octanol. Chlorpromazine also promoted the net transfer of LE/L cholesterol to serum and cyclodextrin. Surprisingly, the mobility of LE/L cholesterol was greatly stimulated by treating intact NPC cells with glutaraldehyde or formaldehyde. Similar effects were seen with wild type fibroblasts in which the LE/L cholesterol pool had been expanded using U18666A. We also showed that the cholesterol in the intracellular membranes of fixed wild-type fibroblasts was mobile; it was rapidly oxidized by cholesterol oxidase and was rapidly replenished by exogenous sterol. We conclude that a) the cholesterol in NPC cells can exit the LE/L (and the extensive membranous inclusions therein) over a few hours; b) this mobility is stimulated by the activation of the cholesterol with intercalating amphipaths; c) intracellular cholesterol is even more mobile in fixed cells; and d) amphipaths that activate cholesterol might be useful in treating NPC disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030051PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262792PMC
June 2012

Cell cholesterol homeostasis: mediation by active cholesterol.

Trends Cell Biol 2010 Nov 16;20(11):680-7. Epub 2010 Sep 16.

Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.

Recent evidence suggests that the major pathways mediating cell cholesterol homeostasis respond to a common signal: active membrane cholesterol. Active cholesterol is the fraction that exceeds the complexing capacity of the polar bilayer lipids. Increments in plasma membrane cholesterol exceeding this threshold have an elevated chemical activity (escape tendency) and redistribute via diverse transport proteins to both circulating plasma lipoproteins and intracellular organelles. Active cholesterol thereby prompts several feedback responses. It is the substrate for its own esterification and for the synthesis of regulatory side-chain oxysterols. It also stimulates manifold pathways that down-regulate the biosynthesis, curtail the ingestion and increase the export of cholesterol. Thus, the abundance of cell cholesterol is tightly coupled to that of its polar lipid partners through active cholesterol.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tcb.2010.08.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967630PMC
November 2010

Activation of membrane cholesterol by 63 amphipaths.

Biochemistry 2009 Sep;48(36):8505-15

Department of Pathology, Rush University Medical Center, Chicago, Illinois 60612, USA.

A few membrane-intercalating amphipaths have been observed to stimulate the interaction of cholesterol with cholesterol oxidase, saponin and cyclodextrin, presumably by displacing cholesterol laterally from its phospholipid complexes. We now report that this effect, referred to as cholesterol activation, occurs with dozens of other amphipaths, including alkanols, saturated and cis- and trans-unsaturated fatty acids, fatty acid methyl esters, sphingosine derivatives, terpenes, alkyl ethers, ketones, aromatics and cyclic alkyl derivatives. The apparent potency of the agents tested ranged from 3 microM to 7 mM and generally paralleled their octanol/water partition coefficients, except that relative potency declined for compounds with >10 carbons. Some small amphipaths activated cholesterol at a membrane concentration of approximately 3 mol per 100 mol of bilayer lipids, about equimolar with the cholesterol they displaced. Lysophosphatidylserine countered the effects of all these agents, consistent with its ability to reduce the pool of active membrane cholesterol. Various amphipaths stabilized red cells against the hemolysis elicited by cholesterol depletion, presumably by substituting for the extracted sterol. The number and location of cis and trans fatty acid unsaturations and the absolute stereochemistry of enantiomer pairs had only small effects on amphipath potency. Nevertheless, potency varied approximately 7-fold within a group of diverse agents with similar partition coefficients. We infer that a wide variety of amphipaths can displace membrane cholesterol by competing stoichiometrically but with only limited specificity for weak association with phospholipids. Any number of other drugs and experimental agents might do the same.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi900951rDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739890PMC
September 2009

Regulation of fibroblast mitochondrial 27-hydroxycholesterol production by active plasma membrane cholesterol.

J Lipid Res 2009 Sep 28;50(9):1881-8. Epub 2009 Apr 28.

Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA.

Side chain oxysterols are cholesterol derivatives thought to signal the abundance of cell cholesterol to homeostatic effector proteins. Here, we investigated how plasma membrane (PM) cholesterol might regulate 27-hydroxycholesterol (HC) biosynthesis in cultured fibroblasts. We showed that PM cholesterol was a major substrate for 27-HC production. Biosynthesis commenced within minutes of loading depleted cells with cholesterol, concurrent with the rapid inactivation of hydroxy-3-methylglutaryl CoA reductase (HMGR). 27-HC production rose approximately 30-fold in normal and Niemann-Pick C1 fibroblasts when PM cholesterol was increased by approximately 60%. 27-HC production was also stimulated by 1-octanol, which displaces PM cholesterol from its phospholipid complexes and thereby increases its activity (escape tendency) and elevates its intracellular abundance. Conversely, lysophosphatidylserine and U18666A inhibited 27-HC biosynthesis and the inactivation of HMGR, presumably by reducing the activity of PM cholesterol and, therefore, its circulation to mitochondria. We conclude that, in this in vitro system, excess (active) PM cholesterol rapidly reaches mitochondria where, as the rate-limiting substrate, it stimulates 27-HC biosynthesis. The oxysterol product then promotes the rapid degradation of HMGR, along with other homeostatic effects. The regulation of 27-HC production by the active excess of PM cholesterol can thus provide a feedback mechanism in the homeostasis of PM cholesterol.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1194/jlr.M900116-JLR200DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724788PMC
September 2009

Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol.

Prog Lipid Res 2008 Sep 29;47(5):319-32. Epub 2008 Mar 29.

Department of Pathology, Rush University Medical Center, Chicago, IL 60612, United States.

We review evidence that sterols can form stoichiometric complexes with certain bilayer phospholipids, and sphingomyelin in particular. These complexes appear to be the basis for the formation of condensed and ordered liquid phases, (micro)domains and/or rafts in both artificial and biological membranes. The sterol content of a membrane can exceed the complexing capacity of its phospholipids. The excess, uncomplexed membrane sterol molecules have a relatively high escape tendency, also referred to as fugacity or chemical activity (and, here, simply activity). Cholesterol is also activated when certain membrane intercalating amphipaths displace it from the phospholipid complexes. Active cholesterol projects from the bilayer and is therefore highly susceptible to attack by cholesterol oxidase. Similarly, active cholesterol rapidly exits the plasma membrane to extracellular acceptors such as cyclodextrin and high-density lipoproteins. For the same reason, the pool of cholesterol in the ER (endoplasmic reticulum) increases sharply when cell surface cholesterol is incremented above the physiological set-point; i.e., equivalence with the complexing phospholipids. As a result, the escape tendency of the excess cholesterol not only returns the plasma membrane bilayer to its set-point but also serves as a feedback signal to intracellular homeostatic elements to down-regulate cholesterol accretion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plipres.2008.03.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659507PMC
September 2008

Effectors of rapid homeostatic responses of endoplasmic reticulum cholesterol and 3-hydroxy-3-methylglutaryl-CoA reductase.

J Biol Chem 2008 Jan 16;283(3):1445-1455. Epub 2007 Nov 16.

Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637.

The cholesterol content of the endoplasmic reticulum (ER) and the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) imbedded therein respond homeostatically within minutes to changes in the level of plasma membrane cholesterol. We have now examined the roles of sterol regulatory element-binding protein (SREBP)-dependent gene expression, side chain oxysterol biosynthesis, and cholesterol precursors in the short term regulation of ER cholesterol levels and HMGR activity. We found that SREBP-dependent gene expression is not required for the response to changes in cell cholesterol of either the pool of ER cholesterol or the rate of cholesterol esterification. It was also found that the acute proteolytic inactivation of HMGR triggered by cholesterol loading required the conversion of cholesterol to 27-hydroxycholesterol. High levels of exogenous 24,25-dihydrolanosterol drove the inactivation of HMGR; lanosterol did not. However, purging endogenous 24,25-dihydrolanosterol, lanosterol, and other biosynthetic sterol intermediates by treating cells with NB-598 did not greatly affect either the setting of their ER cholesterol pool or the inactivation of their HMGR. In summary, neither SREBP-regulated genes nor 27-hydroxycholesterol is involved in setting the ER cholesterol pool. On the other hand, 27-hydroxycholesterol, rather than cholesterol itself or biosynthetic precursors of cholesterol, stimulates the rapid inactivation of HMGR in response to high levels of cholesterol.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M706967200DOI Listing
January 2008

Cholesterol displacement from membrane phospholipids by hexadecanol.

Biophys J 2007 Sep 25;93(6):2038-47. Epub 2007 May 25.

Department of Physics, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA.

Adding cholesterol to monolayers of certain phospholipids drives the separation of liquid-ordered from liquid-disordered domains. The ordered phases appear to contain stoichiometric complexes of cholesterol and phospholipid. Furthermore, it has been suggested that the cholesterol in these complexes has a low chemical activity compared to that of the free sterol; i.e., that in excess of the phospholipid binding capacity. We have now tested the hypothesis that the membrane intercalator 1-hexadecanol (HD) similarly associates with phospholipids and thereby displaces the complexed cholesterol. HD introduced into monolayers of pure dimyristoylphosphatidylcholine generated highly condensed (stable and solid) domains. In contrast, the phase behavior of mixed monolayers of the phospholipid, sterol, and alcohol suggested that HD could substitute for cholesterol mole for mole in promoting liquid-ordered domains. We also found that the transfer of cholesterol from mixed monolayers to aqueous cyclodextrin was greatly stimulated by the presence of HD, but only at levels sufficient to competitively displace the sterol from the phospholipid. This enhanced efflux was interpreted to reflect an increase in uncomplexed cholesterol. We conclude that HD forms complexes with dimyristoylphosphatidylcholine that are surprisingly similar to those of cholesterol. HD competitively displaces cholesterol from the phospholipid and thereby increases its chemical activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1529/biophysj.107.109553DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1959532PMC
September 2007

Scrambling of phospholipids activates red cell membrane cholesterol.

Biochemistry 2007 Feb 2;46(8):2233-8. Epub 2007 Feb 2.

Department of Pathology, Rush University Medical Center, Chicago, Illinois 60612, USA.

Cholesterol is predicted to associate more strongly with the outer than the inner leaflet of plasma membrane bilayers based on the relative in vitro affinities of their phospholipids. Complex formation with the high-affinity species (especially saturated sphingomyelins) is said to reduce the chemical activity (escape potential or fugacity) of the sterol. We therefore tested the hypothesis that scrambling the sidedness of plasma membrane phospholipids of intact cells will increase the chemical activity of outer surface cholesterol. Upon activating the plasma membrane scramblase in intact human red cells by introducing ionomycin to raise cytoplasmic Ca++, phosphatidylserine became exposed and, concomitantly, the chemical activity of exofacial cholesterol was increased. (This was gauged by its susceptibility to cholesterol oxidase and its rate of transfer to cyclodextrin.) Similar behavior was observed in human fibroblasts. Two other treatments known to activate cell surface cholesterol (namely, exposure to glutaraldehyde and to low-ionic-strength buffer) also brought phosphatidylserine to the cell surface but by a Ca++-independent mechanism. Given that phospholipid scrambling is important in blood coagulation and apoptosis, the concomitant activation of cell surface cholesterol could contribute to these and other pathophysiological signaling processes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi6023397DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533100PMC
February 2007

Activation of membrane cholesterol by displacement from phospholipids.

J Biol Chem 2005 Oct 29;280(43):36126-31. Epub 2005 Aug 29.

Department of Pathology, Rush University Medical Center, Chicago, Illinois 60612, USA.

We tested the hypothesis that certain membrane-intercalating agents increase the chemical activity of cholesterol by displacing it from its low activity association with phospholipids. Octanol, 1,2-dioctanoyl-sn-glycerol (a diglyceride), and N-hexanoyl-D-erythrosphingosine (a ceramide) were shown to increase both the rate of transfer and the extent of equilibrium partition of human red blood cell cholesterol to methyl-beta-cyclodextrin. These agents also promoted the interaction of the sterol with two cholesterol-specific probes, cholesterol oxidase and saponin. Expanding the pool of bilayer phospholipids with lysophosphatides countered these effects. The three intercalators also protected the red cells against lysis by cholesterol depletion as if substituting for the extracted sterol. As is the case for excess plasma membrane cholesterol, treating human fibroblasts with octanol, diglyceride, or ceramide stimulated the rapid inactivation of their hydroxymethylglutaryl-CoA reductase, presumably through an increase in the pool of endoplasmic reticulum cholesterol. These data supported the stated hypothesis and point to competition between cholesterol and endogenous and exogenous intercalators for association with membrane phospholipids. We also describe simple screens using red cells in a microtiter well format to identify intercalating agents that increase or decrease the activity of membrane cholesterol.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M507149200DOI Listing
October 2005

How cholesterol homeostasis is regulated by plasma membrane cholesterol in excess of phospholipids.

Proc Natl Acad Sci U S A 2004 Aug 2;101(32):11664-7. Epub 2004 Aug 2.

Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA.

How do cells sense and control their cholesterol levels? Whereas most of the cell cholesterol is located in the plasma membrane, the effectors of its abundance are regulated by a small pool of cholesterol in the endoplasmic reticulum (ER). The size of the ER compartment responds rapidly and dramatically to small changes in plasma membrane cholesterol around the normal level. Consequently, increasing plasma membrane cholesterol in vivo from just below to just above the basal level evoked an acute (<2 h) and profound ( approximately 20-fold) decrease in ER 3-hydroxy-3-methylglutaryl-CoA reductase activity in vitro. We tested the hypothesis that the sharply inflected ER response to cholesterol is governed by the thermodynamic activity (fugacity) of plasma membrane cholesterol. The following two independent measures of plasma membrane cholesterol activity in human red cells and fibroblasts were used: susceptibility to cholesterol oxidase and cholesterol transfer to cyclodextrin. Both indicators revealed a threshold at the physiologic set point of plasma membrane cholesterol. Incrementing the phospholipid compartment in the plasma membrane with lysophosphatidylcholine, previously shown to decrease cholesterol oxidase susceptibility, reduced the transfer of plasma membrane cholesterol to cyclodextrin and to the ER. Conversely, the membrane intercalator, n-octanol, increased cholesterol oxidation, transfer, and ER pool size, perhaps by displacing cholesterol from plasma membrane phospholipids. We conclude that the activity of the fraction of cholesterol in excess of other plasma membrane lipids sets the cholesterol level in the ER. Cholesterol-sensitive elements therein respond by nulling the active plasma membrane pool, thereby keeping the cholesterol matched to the other plasma membrane lipids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.0404766101DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC511035PMC
August 2004

SCAP, an ER sensor that regulates cell cholesterol.

Dev Cell 2002 Sep;3(3):306-8

Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.

Cells keep their cholesterol in balance by sensing its level in the endoplasmic reticulum and transducing this information into the expression of multiple homeostatic genes. Two recent papers from the Brown and Goldstein laboratory provide important new insights into how an integral ER protein, SCAP, mediates this process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1534-5807(02)00263-0DOI Listing
September 2002

Probing red cell membrane cholesterol movement with cyclodextrin.

Biophys J 2002 Oct;83(4):2118-25

Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637, USA.

We probed the kinetics with which cholesterol moves across the human red cell bilayer and exits the membrane using methyl-beta-cyclodextrin as an acceptor. The fractional rate of cholesterol transfer (% s(-1)) was unprecedented, the half-time at 37 degrees C being ~1 s. The kinetics observed under typical conditions were independent of donor concentration and directly proportional to acceptor concentration. The rate of exit of membrane cholesterol fell hyperbolically to zero with increasing dilution. The energy of activation for cholesterol transfer was the same at high and low dilution; namely, 27-28 Kcal/mol. This behavior is not consistent with an exit pathway involving desorption followed by aqueous diffusion to acceptors nor with a simple one-step collision mechanism. Rather, it is that predicted for an activation-collision mechanism in which the reversible partial projection of cholesterol molecules out of the bilayer precedes their collisional capture by cyclodextrin. Because the entire membrane pool was transferred in a single first-order process under all conditions, we infer that the transbilayer diffusion (flip-flop) of cholesterol must have proceeded faster than its exit, i.e., with a half-time of <1 s at 37 degrees C.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302300PMC
http://dx.doi.org/10.1016/S0006-3495(02)73972-6DOI Listing
October 2002

Dynamics of lysosomal cholesterol in Niemann-Pick type C and normal human fibroblasts.

J Lipid Res 2002 Feb;43(2):198-204

Department of Pathology, Rush-Presbyterian-St. Luke's Medical Center, 1653 W. Congress Parkway, Chicago, IL 60612, USA.

The dynamics of endolysosomal cholesterol were investigated in Niemann-Pick type C (NPC) cells and in human fibroblasts treated with class 2 amphiphiles to mimic NPC cells. We showed through new approaches that the massive pools of endolysosomal cholesterol in these cells are not trapped but, rather, circulate to the cell surface at about the normal rate. This flux spared NPC and amphiphile-treated cells from disruption by the extraction of their plasma membrane cholesterol with cyclodextrin. Nocodazole, a microtubule-depolymerizing agent, reversed the resistance of NPC and U18666A-treated cells to cholesterol depletion, apparently by reducing the flux of endolysosomal cholesterol to the plasma membrane. Neither nocodazole nor bafilomycin A1 (an inhibitor of the vacuolar proton pump) acted in the same way as the NPC mutation or class 2 amphiphiles: both agents decreased plasma membrane cholesterol at the expense of the endolysosomal pool and both blocked the actions of the amphiphile, U18666A. Finally, the resistance of NPC cells to lysis by amphotericin B was shown not to reflect a reduction in plasma membrane cholesterol arising from a block in lysosomal cholesterol export but rather the diversion of the amphotericin B to cholesterol-rich endolysosomes. We conclude that the large pool of endolysosomal cholesterol in NPC and amphiphile-treated fibroblasts is dynamic and that its turnover, as in normal cells, is dependent on microtubules.
View Article and Find Full Text PDF

Download full-text PDF

Source
February 2002

RNAi in Dictyostelium: the role of RNA-directed RNA polymerases and double-stranded RNase.

Mol Biol Cell 2002 Feb;13(2):445-53

Abt. Genetik, Universität Kassel, D-34132 Kassel, Germany.

We show that in Dictyostelium discoideum an endogenous gene as well as a transgene can be silenced by introduction of a gene construct that is transcribed into a hairpin RNA. Gene silencing was accompanied by the appearance of sequence-specific RNA about 23mers and seemed to have a limited capacity. The three Dictyostelium homologues of the RNA-directed RNA polymerase (RrpA, RrpB, and DosA) all contain an N-terminal helicase domain homologous to the one in the dicer nuclease, suggesting exon shuffling between RNA-directed RNA polymerase and the dicer homologue. Only the knock-out of rrpA resulted in a loss of the hairpin RNA effect and simultaneously in a loss of detectable about 23mers. However, about 23mers were still generated by the Dictyostelium dsRNase in vitro with extracts from rrpA(-), rrpB(-), and DosA(-) cells. Both RrpA and a target gene were required for production of detectable amounts of about 23mers, suggesting that target sequences are involved in about 23mer amplification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1091/mbc.01-04-0211DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC65640PMC
February 2002

Effect of protein kinase C on endoplasmic reticulum cholesterol.

Biochem Biophys Res Commun 2002 Jan;290(1):488-93

Department of Pathology, Rush-Presbyterian-St. Luke's Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA.

Plasma membrane cholesterol both regulates and is regulated by effector proteins in the endoplasmic reticulum (ER) through a feedback system that is poorly understood. We now show that ER cholesterol varies over a fivefold range in response to experimental agents that act upon protein kinase C (PKC). Agents that activate Ca(2+)-dependent PKC [phorbol-12-myristate-13-acetate (PMA) and bryostatin 1] increased the level of ER cholesterol; inhibitors such as staurosporine and calphostin C decreased it. Rottlerin, a selective inhibitor of the PKC-delta isoform, also increased ER cholesterol. The esterification of plasma membrane cholesterol was altered by protein kinase C-directed agents in a corresponding fashion. Furthermore, the regulatory effect of plasma membrane cholesterol on the esterification of ER cholesterol was blocked by PKC-directed agents. These findings suggest that multiple protein kinase C isoforms participate in the regulation of ER cholesterol and therefore in cholesterol homeostasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.2001.6156DOI Listing
January 2002