Publications by authors named "Terrance D Barrett"

29 Publications

  • Page 1 of 1

Effects of ibrutinib on in vitro platelet aggregation in blood samples from healthy donors and donors with platelet dysfunction.

Hematology 2020 Dec;25(1):112-117

Department of Medicine, McMaster University, Hamilton, Canada.

Ibrutinib, a first-in-class, once-daily inhibitor of Bruton's tyrosine kinase (BTK), is approved in the US and EU for the treatment of various B-cell malignancies. In clinical studies, BTK inhibitors have been associated with increased bleeding risk, which may result from BTK inhibition in platelets. To better understand the mechanism of ibrutinib in bleeding events, we isolated platelet-rich plasma from healthy donors ( = 8) and donors with conditions associated with impaired platelet function or with potentially increased bleeding risk (on hemodialysis, taking aspirin, or taking warfarin;  = 8 each cohort) and used light transmission aggregometry to assess platelet aggregation in vitro after exposure to escalating concentrations of ibrutinib, spanning and exceeding the pharmacologic range of clinical exposure. Platelet aggregation was induced by agonists of 5 major platelet receptors: adenosine diphosphate (ADP), thrombin receptor-activating peptide 6 (TRAP6), ristocetin, collagen, or arachidonic acid (AA). Platelet aggregation induced by ADP, TRAP6, ristocetin, and AA was not meaningfully inhibited by the maximal concentrations of ibrutinib (10 µM). In contrast, collagen-induced platelet aggregation was dose-dependently inhibited by ibrutinib in all donor cohorts (maximum aggregation % with 10 μM ibrutinib, -64% to -83% of agonist activity compared to control agonist samples but without ibrutinib). These results confirm prior reports and support a mechanistic role for the inhibition of collagen-induced platelet aggregation in bleeding events among susceptible individuals receiving ibrutinib therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/16078454.2020.1730080DOI Listing
December 2020

Beyond Traditional Structure-Based Drug Design: The Role of Iron Complexation, Strain, and Water in the Binding of Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylase 2.

ACS Omega 2019 Apr 12;4(4):6703-6708. Epub 2019 Apr 12.

Janssen Research & Development, San Diego, California 92121, United States.

A combination of structure-based drug design and medicinal chemistry efforts led us from benzimidazole-2-carboxamide with modestly active hypoxia-inducible factor prolyl hydroxylase 2 inhibition to certain benzimidazole-2-pyrazole carboxylic acids that were more potent as well as orally efficacious stimulators of erythropoietin secretion in our in vivo mouse model. To better understand the structure-activity relationship, it was necessary to account for (i) the complexation of the ligand with the active site Fe, (ii) the strain incurred by the ligand upon binding, and (iii) certain key water interactions identified by a crystal structure analysis. With this more complete computational model, we arrived at an overarching paradigm that accounted for the potency differences between benzimidazole-2-carboxamide and benzimidazole-2-pyrazole carboxylic acid enzyme inhibitors. Moreover, the computational paradigm allowed us to anticipate that the bioisostere replacement strategy (amide → pyrazole), which had shown success in the benzimidazole series, was not generally applicable to other series. This illustrates that to fully reconcile the important ligand-active site interactions for certain targets, one often needs to move beyond traditional structure-based drug design (such as crystallographic analysis, docking, etc.) and appeal to a higher level of computational theory.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsomega.9b00199DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547624PMC
April 2019

Effects of Canagliflozin on Heart Failure Outcomes Associated With Preserved and Reduced Ejection Fraction in Type 2 Diabetes Mellitus.

Circulation 2019 05 17;139(22):2591-2593. Epub 2019 Mar 17.

The George Institute for Global Health, University of New South Wales, Sydney, Australia (G.A.F., K.R., V.P., B.N.).

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.119.040057DOI Listing
May 2019

Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials.

Lancet Diabetes Endocrinol 2018 09 21;6(9):691-704. Epub 2018 Jun 21.

The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, Sydney, NSW, Australia; Imperial College London, London, UK.

Background: In the Canagliflozin Cardiovascular Assessment Study (CANVAS) Program, canagliflozin reduced the rates of major adverse cardiovascular events and the results suggested a renal benefit in patients with type 2 diabetes who were at high risk for cardiovascular events, compared with those treated with placebo. Here we report the results of a prespecified exploratory analysis of the long-term effects of canagliflozin on a range of sustained and adjudicated renal outcomes.

Methods: The CANVAS Program consists of two double-blind, randomised trials that assessed canagliflozin versus placebo in participants with type 2 diabetes who were at high risk of cardiovascular events, done at 667 centres in 30 countries. People with type 2 diabetes and an HbA of 7·0-10·5% (53-91 mmol/mol) who were aged at least 30 years and had a history of symptomatic atherosclerotic vascular disease, or who were aged at least 50 years and had at least two cardiovascular risk factors were eligible to participate. Participants in CANVAS were randomly assigned (1:1:1) to receive 300 mg canagliflozin, 100 mg canagliflozin, or matching placebo once daily. Participants in CANVAS-R were randomly assigned (1:1) to receive canagliflozin or matching placebo, at an initial dose of 100 mg daily, with optional uptitration to 300 mg from week 13 or matching placebo. Participants and all study staff were masked to treatment allocations until study completion. Prespecified outcomes reported here include a composite of sustained and adjudicated doubling in serum creatinine, end-stage kidney disease, or death from renal causes; the individual components of this composite outcome; annual reductions in estimated glomerular filtration rate (eGFR); and changes in urinary albumin-to-creatinine ratio (UACR). The trials are registered with ClinicalTrials.gov, numbers NCT01032629 (CANVAS) and NCT01989754 (CANVAS-R).

Findings: Between Nov 17, 2009, and March 7, 2011 (CANVAS), and Jan 17, 2014, and May 29, 2015 (CANVAS-R), 15 494 people were screened, of whom 10 142 participants (with a baseline mean eGFR 76·5 mL/min per 1·73 m, median UACR 12·3 mg/g, and 80% of whom were receiving renin-angiotensin system blockade) were randomly allocated to receive either canagliflozin or placebo. The composite outcome of sustained doubling of serum creatinine, end-stage kidney disease, and death from renal causes occurred less frequently in the canagliflozin group compared with the placebo group (1·5 per 1000 patient-years in the canagliflozin group vs 2·8 per 1000 patient-years in the placebo group; hazard ratio 0·53, 95% CI 0·33-0·84), with consistent findings across prespecified patient subgroups. Annual eGFR decline was slower (slope difference between groups 1·2 mL/min per 1·73 m per year, 95% CI 1·0-1·4) and mean UACR was 18% lower (95% CI 16-20) in participants treated with canagliflozin than in those treated with placebo. Total serious renal-related adverse events were similar between the canagliflozin and placebo groups (2·5 vs 3·3 per 1000 patient-years; HR 0·76, 95% CI 0·49-1·19).

Interpretation: In a prespecified exploratory analysis, canagliflozin treatment was associated with a reduced risk of sustained loss of kidney function, attenuated eGFR decline, and a reduction in albuminuria, which supports a possible renoprotective effect of this drug in people with type 2 diabetes.

Funding: Janssen Research & Development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2213-8587(18)30141-4DOI Listing
September 2018

Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus: Results From the CANVAS Program.

Circulation 2018 07;138(5):458-468

The George Institute for Global Health (K.R., V.P., B.N.).

Background: Canagliflozin is a sodium glucose cotransporter 2 inhibitor that reduces the risk of cardiovascular events. We report the effects on heart failure (HF) and cardiovascular death overall, in those with and without a baseline history of HF, and in other participant subgroups.

Methods: The CANVAS Program (Canagliflozin Cardiovascular Assessment Study) enrolled 10 142 participants with type 2 diabetes mellitus and high cardiovascular risk. Participants were randomly assigned to canagliflozin or placebo and followed for a mean of 188 weeks. The primary end point for these analyses was adjudicated cardiovascular death or hospitalized HF.

Results: Participants with a history of HF at baseline (14.4%) were more frequently women, white, and hypertensive and had a history of prior cardiovascular disease (all P<0.001). Greater proportions of these patients were using therapies such as blockers of the renin angiotensin aldosterone system, diuretics, and β-blockers at baseline (all P<0.001). Overall, cardiovascular death or hospitalized HF was reduced in those treated with canagliflozin compared with placebo (16.3 versus 20.8 per 1000 patient-years; hazard ratio [HR], 0.78; 95% confidence interval [CI], 0.67-0.91), as was fatal or hospitalized HF (HR, 0.70; 95% CI, 0.55-0.89) and hospitalized HF alone (HR, 0.67; 95% CI, 0.52-0.87). The benefit on cardiovascular death or hospitalized HF may be greater in patients with a prior history of HF (HR, 0.61; 95% CI, 0.46-0.80) compared with those without HF at baseline (HR, 0.87; 95% CI, 0.72-1.06; P interaction =0.021). The effects of canagliflozin compared with placebo on other cardiovascular outcomes and key safety outcomes were similar in participants with and without HF at baseline (all interaction P values >0.130), except for a possibly reduced absolute rate of events attributable to osmotic diuresis among those with a prior history of HF ( P=0.03).

Conclusions: In patients with type 2 diabetes mellitus and an elevated risk of cardiovascular disease, canagliflozin reduced the risk of cardiovascular death or hospitalized HF across a broad range of different patient subgroups. Benefits may be greater in those with a history of HF at baseline.

Clinical Trial Registration: URL: https://www.clinicaltrials.gov . Unique identifiers: NCT01032629 and NCT01989754.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034222DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075881PMC
July 2018

Prolyl hydroxylase inhibition corrects functional iron deficiency and inflammation-induced anaemia in rats.

Br J Pharmacol 2015 Aug 26;172(16):4078-88. Epub 2015 Jun 26.

Aetheria Therapeutics, San Diego, CA, USA.

Background And Purpose: Small-molecule inhibitors of prolyl hydroxylase (PHD) enzymes are a novel target for the treatment of anaemia and functional iron deficiency (FID). Other than being orally bioavailable, the differentiation of PHD inhibitors from recombinant human erythropoietin (rhEPO) has not been demonstrated.

Experimental Approach: JNJ-42905343 was identified and characterized as a novel inhibitor of PHD and its action was compared with rhEPO in healthy rats and in a rat model of inflammation-induced anaemia and FID [peptidoglycan-polysaccharide (PGPS) model].

Key Results: Oral administration of JNJ-42905343 to healthy rats increased the gene expression of cytochrome b (DcytB) and divalent metal-ion transporter 1 (DMT1) in the duodenum, and increased plasma EPO. Repeated administration of JNJ-42905343 for 28 days increased blood haemoglobin, mean corpuscular haemoglobin (MCH) and mean corpuscular volume (MCV). The serum iron concentration was increased with low doses (0.3 mg·kg(-1) ) but reduced at high doses (6 mg·kg(-1) ). In PGPS-treated rats, administration of JNJ-42905343 for 28 days corrected FID and anaemia, as reflected by increased blood haemoglobin, MCH and MCV. Increased expression of DcytB and DMT1 genes in the duodenum resulting in increased iron availability was defined as the mechanism for these effects. rhEPO did not affect DcytB and DMT1 and was not effective in PGPS-treated rats.

Conclusions And Implications: PHD inhibition has a beneficial effect on iron metabolism in addition to stimulating the release of EPO. Small-molecule inhibitors of PHD such as JNJ-42905343 represent a mechanism distinct from rhEPO to treat anaemia and FID.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bph.13188DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4543614PMC
August 2015

JNJ-26070109 [(R)4-bromo-N-[1-(2,4-difluoro-phenyl)-ethyl]-2-(quinoxaline-5-sulfonylamino)-benzamide]: a novel, potent, and selective cholecystokinin 2 receptor antagonist with good oral bioavailability.

J Pharmacol Exp Ther 2011 Jul 14;338(1):328-36. Epub 2011 Apr 14.

Johnson & Johnson Pharmaceutical Research & Development, LLC San Diego, California 92101, USA.

JNJ-26070109 [(R)4-bromo-N-[1-(2,4-difluoro-phenyl)-ethyl]-2-(quinoxaline-5-sulfonylamino)-benzamide] is a representative of a new chemical class of competitive antagonists of cholecystokinin 2 (CCK2) receptors. In this study, the primary in vitro pharmacology of JNJ-26070109 was evaluated along with the pharmacokinetic and pharmacodynamic properties of this compound in rat and canine models of gastric acid secretion. JNJ-26070109 expressed high affinity for human (pK(I) = 8.49 ± 0.13), rat (pK(I) = 7.99 ± 0.08), and dog (pK(I) = 7.70 ± 0.14) CCK2 receptors. The selectivity of JNJ-26070109 at the CCK2 receptor versus the CCK1 receptor was species-dependent, with the greatest degree of selectivity (>1200-fold) measured at the human isoforms of the CCK1 receptor (selectivity at CCK2 versus CCK1 receptors: human, ∼1222-fold; rat, ∼324-fold; dog ∼336-fold). JNJ-26070109 behaved as a surmountable, competitive, antagonist of human CCK2 receptors in a calcium mobilization assay (pK(B) = 8.53 ± 0.05) and in pentagastrin-stimulated gastric acid secretion in the isolated, lumen-perfused, mouse stomach assay (pK(B) = 8.19 ± 0.13). The pharmacokinetic profile of this compound was determined in vivo in rats and dogs. JNJ-26070109 was shown to have high oral bioavailability (%F rat = 73 ± 16; %F dog = 92 ± 12) with half lives of 1.8 ± 0.3 and 1.2 ± 0.1 h in rat and dog, respectively. The pharmacodynamic properties of this compound were investigated using two in vivo models. In conscious rat and dog chronic gastric fistula models of pentagastrin-stimulated acid secretion, JNJ-26070109 had oral EC(50) values of 1.5 and 0.26 μM, respectively. Overall, we have demonstrated that JNJ-26070109 is a high-affinity, selective CCK2 receptor antagonist with good pharmacokinetic properties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.110.178483DOI Listing
July 2011

Targeting gastrin for the treatment of gastric acid related disorders and pancreatic cancer.

Trends Pharmacol Sci 2011 Apr 10;32(4):201-5. Epub 2011 Mar 10.

Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

Gastrin, acting through peripheral cholecystokinin (CCK) 2 receptors, is a major hormonal regulator of gastric acid secretion. The effects of gastrin on acid secretion occur both acutely and chronically because gastrin directly stimulates gastric acid secretion and also exerts trophic effects on the enterochromaffin-like and parietal cells that together constitute the acid secretory apparatus of the stomach. Several antagonists that target the CCK2 receptor have been identified and investigated for the treatment of gastroesophageal reflux disease and pancreatic cancer. In this paper, we discuss the contribution of gastrin to these disease pathologies and the data generated to date from clinical studies investigating CCK2 receptor antagonists.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tips.2011.02.003DOI Listing
April 2011

Pharmacological characterization of 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), a potent and selective hypoxia-inducible factor prolyl hydroxylase inhibitor.

Mol Pharmacol 2011 Jun 3;79(6):910-20. Epub 2011 Mar 3.

Cardiovascular Metabolic Research, Johnson and Johnson Pharmaceutical Research and Development LLC, 3210 Merryfield Row, San Diego, CA 92121, USA.

The hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) enzymes represent novel targets for the treatment of anemia, ulcerative colitis, and ischemic and metabolic disease inter alia. We have identified a novel small-molecule inhibitor of PHD, 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), through structure-based drug design methods. The pharmacology of JNJ-42041935 was investigated in enzyme, cellular, and whole-animal systems and was compared with other compounds described in the literature as PHD inhibitors. JNJ-42041935, was a potent (pK(I) = 7.3-7.9), 2-oxoglutarate competitive, reversible, and selective inhibitor of PHD enzymes. In addition, JNJ-42041935 was used to compare the effect of selective inhibition of PHD to intermittent, high doses (50 μg/kg i.p.) of an exogenous erythropoietin receptor agonist in an inflammation-induced anemia model in rats. JNJ-42041935 (100 μmol/kg, once a day for 14 days) was effective in reversing inflammation-induced anemia, whereas erythropoietin had no effect. The results demonstrate that JNJ-42041935 is a new pharmacological tool, which can be used to investigate PHD inhibition and demonstrate that PHD inhibitors offer great promise for the treatment of inflammation-induced anemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.110.070508DOI Listing
June 2011

Benzimidazole-2-pyrazole HIF Prolyl 4-Hydroxylase Inhibitors as Oral Erythropoietin Secretagogues.

ACS Med Chem Lett 2010 Dec 5;1(9):526-9. Epub 2010 Oct 5.

Johnson & Johnson Pharmaceutical Research and Development, L.L.C, 3210 Merryfield Row, San Diego, California 92121, United States.

HIF prolyl 4-hydroxylases (PHD) are a family of enzymes that mediate key physiological responses to hypoxia by modulating the levels of hypoxia inducible factor 1-α (HIF1α). Certain benzimidazole-2-pyrazole carboxylates were discovered to be PHD2 inhibitors using ligand- and structure-based methods and found to be potent, orally efficacious stimulators of erythropoietin secretion in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/ml100198yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007848PMC
December 2010

Discovery of the first known small-molecule inhibitors of heme-regulated eukaryotic initiation factor 2alpha (HRI) kinase.

Bioorg Med Chem Lett 2009 Dec 13;19(23):6548-51. Epub 2009 Oct 13.

Johnson & Johnson Pharmaceutical Research and Development, LLC, San Diego, CA 92121, United States.

A series of indeno[1,2-c]pyrazoles were discovered to be the first known inhibitors of heme-regulated eukaryotic initiation factor 2alpha (HRI) kinase. The synthesis, structure-activity relationship profile, and in-vitro pharmacological characterization of this inaugural series of HRI kinase inhibitors are detailed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.10.033DOI Listing
December 2009

Anthranilic sulfonamide CCK1/CCK2 dual receptor antagonists II: tuning of receptor selectivity and in vivo efficacy.

Bioorg Med Chem Lett 2009 Nov 23;19(22):6376-8. Epub 2009 Sep 23.

Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

In the previous article we demonstrated how certain CCK2R-selective anthranilic amides could be structurally modified to afford high-affinity, selective CCK1R activity. We now describe our efforts at modulating and optimizing the CCK1R and CCK2R affinities aimed at producing compounds with good pharmacokinetics properties and in vivo efficacy in rat models of gastric acid and pancreatic amylase secretion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.09.065DOI Listing
November 2009

Characterization of a robust enzymatic assay for inhibitors of 2-oxoglutarate-dependent hydroxylases.

J Biomol Screen 2009 Jul 4;14(6):627-35. Epub 2009 Jun 4.

Department of Drug Discovery, Johnson & Johnson Pharmaceutical Research & Development L.L.C., San Diego, California, USA.

The prolyl-4-hydroxylase proteins regulate the hypoxia-inducible transcription factors (HIFs) by hydroxylation of proline residues targeting HIF-1alpha for proteasomal degradation. Using the purified catalytic domain of prolyl hydroxylase 2 (PHD2(181-417)), an enzymatic assay has been developed to test inhibitors of the enzyme in vitro. Because PHD2 hydroxylates HIF-1alpha, with succinic acid produced as an end product, radiolabeled [5-(14)C]-2-oxoglutaric acid was used and formation of [14C]-succinic acid was measured to quantify PHD2(181-417) enzymatic activity. Comparison of the separation of 2-oxoglutaric acid and succinic acid by either ion exchange chromatography or precipitation with phenylhydrazine showed similar results, but the quantification and throughput were vastly increased using the latter method. The PHD2 reaction was substrate and concentration dependent. The addition of iron to the enzyme reaction mix resulted in an increase in enzymatic activity. The Km value for 2-oxoglutaric acid was determined to be 0.9 microM, and known PHD2 inhibitors were used to validate the assay. In addition, the authors demonstrate that this assay can be applied to other 2-oxoglutaric acid-dependent enzymes, including the asparaginyl hydroxylase, factor-inhibiting HIF-1alpha (FIH). A concentration-dependent increase in succinic acid production using recombinant FIH enzyme with a synthetic peptide substrate was observed. The authors conclude that a by-product enzyme assay measuring the conversion of 2-oxoglutaric acid to succinic acid using the catalytic domain of the human PHD2 provides a convenient method for the biochemical evaluation of inhibitors of the 2-oxoglutaric acid-dependent hydroxylases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1087057109333976DOI Listing
July 2009

Discovery of potent cholecystokinin-2 receptor antagonists: elucidation of key pharmacophore elements by X-ray crystallographic and NMR conformational analysis.

Bioorg Med Chem 2008 Apr 5;16(7):3917-25. Epub 2008 Feb 5.

Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Drug Discover, 3210 Merryfield Row, San Diego, CA 92121, USA.

A novel series of cholecystokinin-2 receptor (CCK-2R) antagonists has been identified, as exemplified by anthranilic sulfonamide 1 (pK(i)=7.6). Pharmacokinetic and stability studies indicated that this series of compounds suffered from metabolic degradation, and that both the benzothiadiazole and piperidine rings were rapidly oxidized by liver enzymes. A combination of synthesis, computational methods, (1)H NMR conformational studies, and X-ray crystallographic analyses were applied to elucidate key pharmacophore elements, and to discover analogs with improved pharmacokinetic profiles, and high receptor binding affinity and selectivity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.01.059DOI Listing
April 2008

Synthesis and solid-phase purification of anthranilic sulfonamides as CCK-2 ligands.

Bioorg Med Chem Lett 2007 Dec 29;17(24):6905-9. Epub 2007 Sep 29.

Johnson & Johnson Pharmaceutical Research and Development, 3210 Merryfield Row, San Diego, CA 92121, USA.

A novel strategy for the synthesis of cholecystokinin-2 receptor ligands was developed. The route employs a solution-phase synthesis of a series of anthranilic sulfonamides followed by a resin capture purification strategy to produce multi-milligram quantities of compounds for bioassay. The synthesis was used to produce >100 compounds containing various functional groups, highlighting the general applicability of this strategy and to address specific metabolism issues in our CCK-2 program.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2007.09.087DOI Listing
December 2007

SAR studies of 1,5-diarylpyrazole-based CCK1 receptor antagonists.

Bioorg Med Chem Lett 2007 Dec 1;17(23):6493-8. Epub 2007 Oct 1.

Johnson & Johnson Pharmaceutical Research and Development L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

A high throughput screening campaign revealed compound 1 as a potent antagonist of the human CCK(1) receptor. Here, we report the syntheses and SAR studies of 1,5-diarylpyrazole analogs with various structural modifications of the alkane side chain of the molecule. The difference in affinity between the two enantiomers for the CCK(1) receptor and the flexible nature of the linker led to the design of constrained analogs with increased potency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2007.09.093DOI Listing
December 2007

Effects of cyclooxygenase inhibition on canine coronary artery blood flow and thrombosis.

Am J Physiol Heart Circ Physiol 2008 Jan 5;294(1):H145-55. Epub 2007 Oct 5.

Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0632, USA.

This study was designed to determine the effect of inhibitors of cyclooxygenase (COX)-1, COX-2, and the nonselective COX inhibitor naproxen on coronary vasoactivity and thrombogenicity under baseline and lipopolysaccharide (LPS)-induced inflammatory conditions. We hypothesize that endothelial COX-1 is the primary COX isoform in the canine normal coronary artery, which mediates arachidonic acid (AA)-induced vasodilatation. However, COX-2 can be induced and overexpressed by inflammatory mediators and becomes the major local COX isoform responsible for the production of antithrombotic prostaglandins during systemic inflammation. The interventions included the selective COX-1 inhibitor SC-560 (0.3 mg/kg iv), the selective COX-2 inhibitor nimesulide (5 mg/kg iv), or the nonselective COX inhibitor naproxen (3 mg/kg iv). The selective prostacyclin (IP) receptor antagonist RO-3244794 (RO) was used as an investigational tool to delineate the role of prostacyclin (PGI(2)) in modulating vascular reactivity. AA-induced vasodilatation of the left circumflex coronary artery was suppressed to a similar extent by each of the COX inhibitors and RO. The data suggest that AA-induced vasodilatation in the normal coronary artery is mediated by a single COX isoform, the constitutive endothelial COX-1, which is reported to be susceptible to COX-2 inhibitors. The effect of the COX inhibitors on thrombus formation was evaluated in a model of carotid artery thrombosis secondary to electrolytic-induced vessel wall injury. Pretreatment with LPS (0.5 mg/kg iv) induced a systemic inflammatory response and prolonged the time-to-occlusive thrombus formation, which was reduced in the LPS-treated animals by the administration of nimesulide. In contrast, neither SC-560 nor naproxen influenced the time to thrombosis in the animals pretreated with LPS. The data are of significance in view of reported adverse cardiovascular events observed in clinical trials involving the use of selective COX-2 inhibitors, thereby suggesting that the endothelial constitutive COX-1 and the inducible vascular COX-2 serve important functions in maintaining vascular homeostasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00646.2007DOI Listing
January 2008

3-[5-(3,4-Dichloro-phenyl)-1-(4-methoxy-phenyl)-1H-pyrazol-3-yl]-2-m-tolyl-propionate (JNJ-17156516), a novel, potent, and selective cholecystokinin 1 receptor antagonist: in vitro and in vivo pharmacological comparison with dexloxiglumide.

J Pharmacol Exp Ther 2007 Nov 7;323(2):562-9. Epub 2007 Aug 7.

Johnson & Johnson Pharmaceutical Research & Development L.L.C., San Diego, California 92121, USA.

3-[5-(3,4-Dichloro-phenyl)-1-(4-methoxy-phenyl)-1H-pyrazol-3-yl]-2-m-tolyl-propionate (JNJ-17156516) is a novel, potent, and selective cholecystokinin (CCK)1-receptor antagonist. In this study, the pharmacology of JNJ-17156516 was investigated both in vitro and in vivo, and the pharmacokinetic profile was evaluated in rats. JNJ-17156516 expressed high-affinity at the cloned human (pK(I) = 7.96 +/- 0.11), rat (pK(I) = 8.02 +/- 0.11), and canine (pK(I) = 7.98 +/- 0.04) CCK1 receptors, and it was also highly selective for the CCK1 receptor compared with the CCK2 receptor across the same species ( approximately 160-, approximately 230-, and approximately 75-fold, respectively). The high affinity of JNJ-17156516 at CCK1 receptors in vitro was confirmed in radioligand binding studies on fresh human gallbladder tissue (pK(I) = 8.22 +/- 0.05). In a functional in vitro assay of guinea pig gallbladder contraction, JNJ-17156516 behaved as a competitive antagonist, with a pK(B) value of 8.00 +/- 0.07. In vivo, JNJ-17156516 produced a parallel, rightward shift in the CCK-8S-evoked contraction of the guinea pig gallbladder. The dose required to shift the CCK-8S dose-response curve was 240 nmol kg(-1) i.v. In the anesthetized rat, JNJ-17156516 produced a dose-related decrease in the number of duodenal contractions evoked by infusion of CCK-8S, with an ED(50) = 484 nmol kg(-1). Pharmacokinetic analysis of JNJ-17156516 in rats, revealed that JNJ-17156516 had a half-life of 3.0 +/- 0.5 h and a very high bioavailability (108 +/- 10%) in this species. Overall, we have demonstrated that JNJ-17156516 is a high-affinity selective human CCK1 receptor antagonist with good pharmacokinetic properties in rats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.107.124578DOI Listing
November 2007

Synthesis and biological studies of novel 2-aminoalkylethers as potential antiarrhythmic agents for the conversion of atrial fibrillation.

J Med Chem 2007 Jun 17;50(12):2818-41. Epub 2007 May 17.

Cardiome Pharma Corporation, 6190 Agronomy Road, 6th Floor, Vancouver, British Columbia V6T 1Z3.

A series of 2-aminoalkylethers prepared as potential antiarrhythmic agents is described. The present compounds are mixed sodium and potassium ion channel blockers and exhibit antiarrhythmic activity in a rat model of ischemia-induced arrhythmias. Structure-activity studies led to the identification of three compounds 5, 18, and 26, which were selected based on their particular in vivo electrophysiological properties, for studies in two canine atrial fibrillation (AF) models. The three compounds converted AF in both models, but only compound 26 was shown to be orally bioavailable. Resolution of the racemate 26 into its corresponding enantiomers 40 and 41 and subsequent biological testing of these enantiomers led to the selection of (1S,2S)-1-(1-naphthalenethoxy)-2-(3-ketopyrrolidinyl)cyclohexane monohydrochloride (41) as a potential atrial selective antiarrhythmic candidate for further development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0604528DOI Listing
June 2007

Obestatin reduces food intake and suppresses body weight gain in rodents.

Biochem Biophys Res Commun 2007 May 30;357(1):264-9. Epub 2007 Mar 30.

Internal Medicine, Johnson & Johnson Pharmaceutical Research & Development L.L.C., San Diego, CA 92121, USA.

Obestatin was recently described as a bioactive peptide encoded for by the same gene as ghrelin but with opposite actions on food intake. Although some groups have confirmed these findings others find no effect. We investigated the effect of obestatin on feeding in rodents over a wide range of doses. Acute administration of obestatin inhibited feeding at doses of 10-100 nmol/kg i.p. in mice and 100-300 nmol/kg i.p. in lean and Zucker fatty rats. Interestingly, the dose-response relationship was U-shaped such that both low and high doses were without effect in either species. Treatment of mice with obestatin over a 7-day period decreased body weight gain and food consumption. Overall, obestatin suppressed food intake and body weight gain in rodent and an unusual dose-response relationship was found. These findings may explain the difficulties in reproducing the effects of obestatin on feeding reported by some groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.03.138DOI Listing
May 2007

Effect of sodium/hydrogen exchange inhibition on myocardial infarct size after coronary artery thrombosis and thrombolysis.

Pharmacology 2006 3;78(1):27-37. Epub 2006 Apr 3.

Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Mich., USA.

This study examines the cardioprotective effects of Na+/H+ exchange inhibition with BIIB-722 or ischemic preconditioning after occlusive thrombus formation and subsequent thrombolysis for reperfusion. Coronary artery thrombosis was induced by vessel wall electrolytic injury. Thrombotic occlusion was maintained for 60 or 90 min in 4 different groups: (1) control; (2) Na+/H+ exchange inhibitor, BIIB-722 (3 mg/kg) before occlusion; (3) BIIB-722 (0.75 mg/kg) before reperfusion; (4) ischemic preconditioning (4 x 5 min). Thrombolysis with intracoronary recombinant tissue plasminogen activator produced reperfusion in 6.3 +/- 1.4 min (average for 68 dogs). After restoration of blood flow, vessel patency was maintained for 4 h with the glycoprotein IIb/IIIa receptor antagonist, BIBU 52ZW. BIIB-722, administered before (26.9 +/- 3.6%) or after (22.0 +/- 2.3%) 60-min ischemia or preconditioning (18.4 +/- 2.8%), produced comparable and significant reductions in infarct size (percent of area at risk) compared to controls (47.2 +/- 2.0%). After 90 min of ischemia, BIIB-722 administered before occlusion (37.3 +/- 1.1%) and ischemic preconditioning (35.0 +/- 4.8%) provided significant cardioprotection compared to control (45.9 +/- 1.8%). BIIB-722 was not cardioprotective when administered during occlusion (48.0 +/- 2.4%). The results indicate that Na+/H+ exchange inhibition and preconditioning provide a comparable degree of cardioprotection against 60 min of regional ischemia. However, when the regional ischemic period is extended to 90 min, the degree of cardioprotection is markedly reduced. Further studies incorporating clinically relevant events such as thrombosis and thrombolysis are required before one can conclude that Na+/H+ exchange inhibition is effective against more prolonged myocardial ischemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000094874DOI Listing
December 2006

A novel, quantitative bio-assay for cholecystokinin type-1 receptor activity in the anaesthetised rat.

J Pharmacol Toxicol Methods 2006 Jul-Aug;54(1):36-41. Epub 2005 Oct 24.

Physiological Systems, Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

Introduction: Cholecystokinin type-1 (CCK(1)) receptors mediate many of the physiological functions of CCK including delay of gastric emptying, pancreatic enzyme secretion, intestinal motility and gallbladder contractility. Existing in-vivo assays for the quantitative measurement of CCK(1) receptor mediated function are generally variable, limited in precision and require a relatively large number of animals to obtain statistically meaningful data. We found that they did not provide robust pharmacokinetic-pharmacodynamic data for profiling compounds acting at these receptors. Accordingly, here we describe a novel rat duodenal contractility assay that addresses these problems.

Methods: Rats were anaesthetised and a saline-filled balloon was inserted through the body of the stomach and secured in the duodenum approximately 1 cm from the pyloric sphincter for measurement of intra-lumenal pressure. Studies were performed to determine a dose, rate and frequency of administration of CCK8S that produced a readily quantifiable response.

Results: Initial experiments revealed that sustained exposure to CCK8S resulted in the rapid development of tachyphylaxis. After investigating different dosing paradigms, it was found that pulsatile delivery of CCK8S (intravenous infusion for 1 min every 10 min) produced a readily quantifiable contractile response that did not exhibit tachyphylaxis. The assay response output was defined as the number of contractions >5 mm Hg over baseline. The contractions were blocked in a dose-dependent manner by intravenous bolus injections of the CCK(1) receptor antagonists, dexloxiglumide (2 and 20 micromol/kg), and devazepide (3-100 nmol/kg) but not by the CCK(2) receptor antagonist gastrazole (10 micromol/kg).

Conclusion: A novel, simple, high quality assay for the quantification of the in-vivo activity of CCK(1) receptor ligands is described. CCK8S delivered by pulsatile intravenous infusion to anesthetized rats produced a burst of contractile activity of the duodenum mediated by CCK(1) receptors. This activity was highly reproducible and sustained for more than 3 h providing an assay that circumvents problems associated with agonist-induced tachyphylaxis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vascn.2005.09.002DOI Listing
October 2006

Pyrazole CCK(1) receptor antagonists. Part 1: Solution-phase library synthesis and determination of Free-Wilson additivity.

Bioorg Med Chem Lett 2006 Jan 19;16(1):72-6. Epub 2005 Oct 19.

Johnson and Johnson Pharmaceutical Research and Development L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

High throughput screening revealed compound 1 as a potent antagonist of the CCK(1) receptor. Evaluation of the CCK(1) SAR in a series of these diarylpyrazole antagonists was conducted in a matrix synthesis format revealing additive (Free-Wilson) and non-additive SAR. This use of additive QSAR modeling in conjunction with combinatorial libraries represents a unique approach to the evaluation of SAR interactions between the variables of any combinatorial matrix.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2005.09.048DOI Listing
January 2006

Pyrazole CCK(1) receptor antagonists. Part 2: SAR studies by solid-phase library synthesis and determination of Free-Wilson additivity.

Bioorg Med Chem Lett 2006 Jan 19;16(1):77-80. Epub 2005 Oct 19.

Johnson and Johnson Pharmaceutical Research and Development L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

High-throughput screening revealed compound 1 as a potent antagonist of the CCK(1) receptor. Here, we disclose the synthesis of combinatorial libraries by solid-phase synthesis on Kenner 'safety catch' resin. Additive QSAR models were used to determine a lack of consistent additive SAR within the matrix.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2005.09.041DOI Listing
January 2006

Mechanism of tissue-selective drug action in the cardiovascular system.

Mol Interv 2005 Apr;5(2):84-93

Department of Physiological Systems, Johnson & Johnson Pharmaceutical Research & Development L.L.C., San Diego, CA, USA.

Analysis of the human genome project tells us that there may be as few as 3000 genes that are likely to be good drug targets. Although the number of targets is still very large, these data have been interpreted by some to mean that the pharmaceutical industry may someday run out of novel drug targets. Despite the doom and gloom of such analysis, there is considerable reason for optimism. Drugs may exhibit selectivity of action beyond that predicted by target expression alone. Drugs that act at a single molecular target may have very different pharmacology and, as a result, different therapeutic uses. Three well-characterized model systems are highlighted to illustrate this point. The first model system is exemplified by nifedipine and verapamil, both of which act on L-type calcium channels. Both drugs are used to treat hypertension, but only verapamil can be used to produce atrioventricular block in patients with atrial fibrillation. The second model system describes the therapeutic exploitation of unusual conditions that occur in the ischemic myocardium to produce drugs that are more effective for suppressing ischemia-induced arrhythmias. The third model system discusses the mechanisms through which phosphodiesterase-5 (PDE5) inhibitors act selectively to facilitate penile erection while having little effect in the non-penile vasculature that also expresses PDE5.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/mi.5.2.6DOI Listing
April 2005

Risk of ventricular proarrhythmia with selective opening of the myocardial sarcolemmal versus mitochondrial ATP-gated potassium channel.

J Pharmacol Exp Ther 2004 May 27;309(2):554-9. Epub 2004 Jan 27.

Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109-0204, USA.

Myocardial ATP-gated potassium channels (K-ATPs) are critical in the intracellular signaling cascade resulting in ischemic preconditioning (IP). Mitochondrial K-ATP channels seem to be responsible for IP, whereas the functions of K-ATP channels in the sarcolemmal membrane are less well understood. The proarrhythmic potential of specific versus nonspecific opening of K-ATP channels has not been investigated. In this study, Langendorff-perfused rabbit hearts were exposed to either pinacidil (1.25 microM), a nonselective K-ATP channel agonist, or selective mitochondrial or sarcolemmal K-ATP channel agonists or antagonists. The hearts were then subjected to 12 min of hypoxic perfusion and 40 min of reoxygenation. Hearts were monitored for the induction of ventricular fibrillation (VF). No heart subjected to hypoxia-reoxygenation without drug treatment developed VF (0 of 5). Pinacidil pretreatment induced VF (12 of 14; p = 0.004 versus control). Pinacidil's effect was blocked by HMR-1098 (1-[5-[2-(5-chloro-o-anisamide)ethyl]-2-methoxyphenyl]sulfonyl]-3-methylthiourea) (1 microM), a selective sarcolemmal K-ATP channel antagonist (1 of 7; p = 0.007 versus pinacidil; N.S. versus control). Hearts pretreated with 5-hydroxydecanoate (5-HD) (100 microM), a putatively selective mitochondrial K-ATP channel blocker developed VF in one of eight trials (N.S. versus control). 5-HD did not alter the effects of pinacidil (6 of 8; p < 0.05 versus control; N.S. versus pinacidil alone). Selective mitochondrial K-ATP channel activation with [(3R)-trans-4-((4-chlorophenyl)-N-(1H-imidazol-2-ylmethyl)dimethyl-2H-1-benzopyran-6-carbonitril monohydrochloride] (BMS-191095) (6 microM) resulted in zero of five hearts developing VF (N.S. versus control). Our data suggest that selective opening of the sarcolemmal K-ATP channel during hypoxia-reoxygenation induced VF, whereas opening of the mitochondrial channel was not associated with VF. The findings suggest that caution should be exercised when developing compounds aimed at inducing IP, and nonspecific opening of the K-ATP channel should be avoided.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.103.060780DOI Listing
May 2004

Tedisamil and lidocaine enhance each other's antiarrhythmic activity against ischaemia-induced arrhythmias in rats.

Br J Pharmacol 2003 Aug;139(8):1389-98

Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, 2176 Health Science Mall, Vancouver, Canada.

1. Combinations of the action potential-widening drug tedisamil (Class III antiarrhythmic activity), and the inactivated state sodium channel blocker lidocaine (Class Ib antiarrhythmic activity) were assessed for antiarrhythmic actions in a rat model of ischaemia-induced arrhythmias and for electrophysiological actions in normal rat myocardial tissue. 2. Both tedisamil and lidocaine dose-dependently suppressed ischaemia-induced arrhythmias. The ED(50) values were 3.0+/-1.3 and 4.9+/-0.6 micro mol kg(-1) min(-1), respectively. 3. Combinations of the two drugs acted synergistically such that the ED(50) for tedisamil was reduced to 0.8+/-0.2 micro mol kg(-1) min(-1) in the presence of 2 micro mol kg(-1) min(-1) lidocaine. Similarly, the ED(50) for lidocaine was reduced to 0.7+/-0.2 micro mol kg(-1) min(-1) in the presence of 2 micro mol kg(-1) min(-1) tedisamil (both P<0.05). 4. In a separate series of experiments in which normal ventricular tissue was electrically stimulated, 2 micro mol kg(-1) min(-1) lidocaine produced a leftward shift in the dose-response curve for tedisamil's effect on effective refractory period (P<0.05). This dose of lidocaine had no effect on its own. These data indicate that the synergistic actions of combinations of tedisamil and lidocaine were mediated, at least in part, by extension of effective refractory period in normal myocardial tissue. 5. In contrast to the strategy of developing drugs that are selective for a single electrophysiological mechanism, the results of the present study suggest that effective antiarrhythmic drugs might be developed by optimising the combination of two complimentary electrophysiological mechanisms (i.e., action potential-prolonging activity and inactivated state sodium channel blockade).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.bjp.0705373DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573972PMC
August 2003

SNC-80-induced preconditioning: selective activation of the mitochondrial adenosine triphosphate-gated potassium channel.

J Cardiovasc Pharmacol 2003 May;41(5):744-50

Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.

Pharmacologic preconditioning by delta-opioid agonists occurs via activation of an adenosine triphosphate (ATP)-gated potassium channel (I(KATP)). Opening of mitochondrial I(KATP) confers pharmacologic preconditioning whereas opening the sarcolemmal I(KATP) shortens action potential duration and is proarrhythmic. This study investigated whether SNC-80, a selective delta-opioid agonist, is associated with development of ventricular arrhythmia due to activation of I(KATP). Rabbit isolated hearts were subjected to 12 min of hypoxia and 40 min of reoxygenation after pretreatment with SNC-80 (1 microM, n = 6), pinacidil (1.25 microM, n = 12), or BMS-191095 (6.0 microM, n = 4). Nine additional hearts served as controls. The cytoprotective effects of SNC-80 at a concentration of 1 microM were confirmed using 30 min of regional ischemia followed by 120 min of reperfusion. Ventricular fibrillation (VF) developed in 11 of 12 pinacidil-treated hearts whereas none of the SNC-80-treated (zero of six) hearts developed VF (P < 0.001 compared with pinacidil pretreatment) and zero of four BMS-191095-pretreated hearts developed VF. Similarly, zero of nine control hearts developed VF. SNC-80 reduced infarct size expressed as a percentage of the area at risk from 33 +/- 4% to 14 +/- 3% (P = 0.004) compared with control. SNC-80, which selectively activates the delta-opioid receptor, provided cytoprotection but did not induce VF after hypoxia reoxygenation. The results indicate that pinacidil-induced nonselective activation of I(KATP) results in proarrhythmia that is dependent on activation of the sarcolemmal I(KATP). Selectivity for the mitochondrial I(KATP) is necessary to prevent induction of a proarrhythmic state.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/00005344-200305000-00011DOI Listing
May 2003

C-reactive-protein-associated increase in myocardial infarct size after ischemia/reperfusion.

J Pharmacol Exp Ther 2002 Dec;303(3):1007-13

University of Michigan Medical School, Department of Pharmacology, Ann Arbor, Michigan, USA.

C-Reactive protein (CRP), a marker for acute inflammation, is associated with increased risk of cardiovascular events. The mechanism underlying this association is uncertain. An acute inflammatory response was induced in rabbits by subcutaneous injection of croton oil (CO) 1 to 3 days before 30 min of regional myocardial ischemia/180 min of reperfusion. CO treatment increased plasma CRP from below the limit of detection to 2.5 +/- 0.5 mg/dl and was associated with an increase in infarct size expressed as percentage of risk region [32 +/- 6% vehicle controls (n = 7) to 47 +/- 9% CO-treated rabbits (n = 7; P < 0.05]. After 10 min of ischemia and 180 min reperfusion, no infarct was found in controls; however, an infarct of 7 +/- 1% was found in CO-treated rabbits (P < 0.05; CRP, 2.3 +/- 0.4 mg/dl). The CRP-related increase in infarct size was not observed in croton oil-treated, C6-deficient rabbits (n = 5/group), indicating the involvement of complement. In these rabbits, infarct size was 22 +/- 2% (P < 0.05) despite having plasma CRP of 4.3 +/- 0.4 mg/dl. The CRP-associated increase in infarct size was ameliorated by pretreatment with heparin (n = 7; infarct size 33 +/- 3%; CRP, 2.3 +/- 0.3 mg/dl; P < 0.05) or N-acetylheparin (n = 7; infarct size 23 +/- 4%; CRP, 3.1 +/- 0.5 mg/dl; P < 0.05). These observations may explain why increased serum CRP is associated with an augmented risk for cardiovascular events.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.102.040600DOI Listing
December 2002