Publications by authors named "Tero-Pekka Alastalo"

43 Publications

Diagnostic utility of next-generation sequencing-based panel testing in 543 patients with suspected skeletal dysplasia.

Orphanet J Rare Dis 2021 10 9;16(1):412. Epub 2021 Oct 9.

Blueprint Genetics Inc, Seattle, WA, USA.

Background: Skeletal dysplasia is typically diagnosed using a combination of radiographic imaging, clinical examinations, and molecular testing. Identifying a molecular diagnosis for an individual with a skeletal dysplasia can lead to improved clinical care, guide future medical management and treatment, and inform assessment of risk for familial recurrence. The molecular diagnostic utility of multi-gene panel testing using next-generation sequencing (NGS) has not yet been characterized for an unselected population of individuals with suspected skeletal dysplasia. In this study, we retrospectively reviewed patient reports to assess the diagnostic yield, reported variant characteristics, impact of copy number variation, and performance in prenatal diagnostics of panel tests for variants in genes associated with skeletal dysplasia and growth disorders.

Results: Clinical reports of consecutive patients with a clinical indication of suspected skeletal dysplasia who underwent panel testing were examined. The 543 patients included in the study submitted samples for diagnostic genetic testing with an indication of suspected skeletal dysplasia or growth disorder and received one of three nested panel tests. A molecular diagnosis was established in 42.0% of patients (n = 228/543). Diagnostic variants were identified in 71 genes, nearly half of which (n = 35, 49.3%) contributed uniquely to a molecular diagnosis for a single patient in this cohort. Diagnostic yield was significantly higher among fetal samples (58.0%, n = 51/88) than postnatal samples (38.9%, n = 177/455; z = 3.32, p < 0.0009). Diagnostic variants in fetal cases were identified across 18 genes. Thirteen diagnostic CNVs were reported, representing 5.7% of diagnostic findings and ranging in size from 241-bp to whole chromosome aneuploidy. Additionally, 11.4% (36/315) of non-diagnostic patient reports had suspicious variants of unknown significance (VUS), in which additional family studies that provide segregation data and/or functional characterization may result in reclassification to likely pathogenic.

Conclusions: These findings demonstrate the utility of panel testing for individuals with a suspected skeletal dysplasia or growth disorder, with a particularly high diagnostic yield seen in prenatal cases. Pursuing comprehensive panel testing with high-resolution CNV analysis can provide a diagnostic benefit, given the considerable phenotype overlap amongst skeletal dysplasia conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13023-021-02025-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501536PMC
October 2021

Next-generation sequencing in childhood-onset epilepsies: Diagnostic yield and impact on neuronal ceroid lipofuscinosis type 2 (CLN2) disease diagnosis.

PLoS One 2021 1;16(9):e0255933. Epub 2021 Sep 1.

Blueprint Genetics Inc, Seattle, Washington, United States of America.

Epilepsy is one of the most common childhood-onset neurological conditions with a genetic etiology. Genetic diagnosis provides potential for etiologically-based management and treatment. Existing research has focused on early-onset (<24 months) epilepsies; data regarding later-onset epilepsies is limited. The goal of this study was to determine the diagnostic yield of a clinically available epilepsy panel in a selected pediatric epilepsy cohort with epilepsy onset between 24-60 months of life and evaluate whether this approach decreases the age of diagnosis of neuronal ceroid lipofuscinosis type 2 (CLN2). Next-generation sequencing (NGS)-based epilepsy panels, including genes associated with epileptic encephalopathies and inborn errors of metabolism (IEMs) that present with epilepsy, were used. Copy-number variant (CNV) detection from NGS data was included. Variant interpretation was performed per American College of Medical Genetics and Genomics (ACMG) guidelines. Results are reported from 211 consecutive patients with the following inclusion criteria: 24-60 months of age at the time of enrollment, first unprovoked seizure at/after 24 months, and at least one additional finding such as EEG/MRI abnormalities, speech delay, or motor symptoms. Median age was 42 months at testing and 30 months at first seizure onset; the mean delay from first seizure to comprehensive genetic testing was 10.3 months. A genetic diagnosis was established in 43 patients (20.4%). CNVs were reported in 25.6% diagnosed patients; 27.3% of CNVs identified were intragenic. Within the diagnosed cohort, 11 (25.6%) patients were diagnosed with an IEM. The predominant molecular diagnosis was CLN2 (14% of diagnosed patients). For these patients, diagnosis was achieved 12-24 months earlier than reported by natural history of the disease. This study supports comprehensive genetic testing for patients whose first seizure occurs ≥ 24 months of age. It also supports early application of testing in this age group, as the identified diagnoses can have significant impact on patient management and outcome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255933PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409681PMC
November 2021

Diagnostic yield of genetic testing in a heterogeneous cohort of 1376 HCM patients.

BMC Cardiovasc Disord 2021 03 5;21(1):126. Epub 2021 Mar 5.

Blueprint Genetics, a Quest Diagnostics Company, Keilaranta 16 A-B, 02150, Espoo, Finland.

Background: Genetic testing in hypertrophic cardiomyopathy (HCM) is a published guideline-based recommendation. The diagnostic yield of genetic testing and corresponding HCM-associated genes have been largely documented by single center studies and carefully selected patient cohorts. Our goal was to evaluate the diagnostic yield of genetic testing in a heterogeneous cohort of patients with a clinical suspicion of HCM, referred for genetic testing from multiple centers around the world.

Methods: A retrospective review of patients with a suspected clinical diagnosis of HCM referred for genetic testing at Blueprint Genetics was undertaken. The analysis included syndromic, myopathic and metabolic etiologies. Genetic test results and variant classifications were extracted from the database. Variants classified as pathogenic (P) or likely pathogenic (LP) were considered diagnostic.

Results: A total of 1376 samples were analyzed. Three hundred and sixty-nine tests were diagnostic (26.8%); 373 P or LP variants were identified. Only one copy number variant was identified. The majority of diagnostic variants involved genes encoding the sarcomere (85.0%) followed by 4.3% of diagnostic variants identified in the RASopathy genes. Two percent of diagnostic variants were in genes associated with a cardiomyopathy other than HCM or an inherited arrhythmia. Clinical variables that increased the likelihood of identifying a diagnostic variant included: an earlier age at diagnosis (p < 0.0001), a higher maximum wall thickness (MWT) (p < 0.0001), a positive family history (p < 0.0001), the absence of hypertension (p = 0.0002), and the presence of an implantable cardioverter-defibrillator (ICD) (p = 0.0004).

Conclusion: The diagnostic yield of genetic testing in this heterogeneous cohort of patients with a clinical suspicion of HCM is lower than what has been reported in well-characterized patient cohorts. We report the highest yield of diagnostic variants in the RASopathy genes identified in a laboratory cohort of HCM patients to date. The spectrum of genes implicated in this unselected cohort highlights the importance of pre-and post-test counseling when offering genetic testing to the broad HCM population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12872-021-01927-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934228PMC
March 2021

Biallelic loss-of-function in NRAP is a cause of recessive dilated cardiomyopathy.

PLoS One 2021 3;16(2):e0245681. Epub 2021 Feb 3.

Heart and Lung Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.

Background: Familial dilated cardiomyopathy (DCM) is typically a monogenic disorder with dominant inheritance. Although over 40 genes have been linked to DCM, more than half of the patients undergoing comprehensive genetic testing are left without molecular diagnosis. Recently, biallelic protein-truncating variants (PTVs) in the nebulin-related anchoring protein gene (NRAP) were identified in a few patients with sporadic DCM.

Methods And Results: We determined the frequency of rare NRAP variants in a cohort of DCM patients and control patients to further evaluate role of this gene in cardiomyopathies. A retrospective analysis of our internal variant database consisting of 31,639 individuals who underwent genetic testing (either panel or direct exome sequencing) was performed. The DCM group included 577 patients with either a confirmed or suspected DCM diagnosis. A control cohort of 31,062 individuals, including 25,912 individuals with non-cardiac (control group) and 5,150 with non-DCM cardiac indications (Non-DCM cardiac group). Biallelic (n = 6) or two (n = 5) NRAP variants (two PTVs or PTV+missense) were identified in 11 unrelated probands with DCM (1.9%) but none of the controls. None of the 11 probands had an alternative molecular diagnosis. Family member testing supports co-segregation. Biallelic or potentially biallelic NRAP variants were enriched in DCM vs. controls (OR 1052, p<0.0001). Based on the frequency of NRAP PTVs in the gnomAD reference population, and predicting full penetrance, biallelic NRAP variants could explain 0.25%-2.46% of all DCM cases.

Conclusion: Loss-of-function in NRAP is a cause for autosomal recessive dilated cardiomyopathy, supporting its inclusion in comprehensive genetic testing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245681PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857588PMC
July 2021

DSP p.(Thr2104Glnfs*12) variant presents variably with early onset severe arrhythmias and left ventricular cardiomyopathy.

BMC Med Genet 2020 01 31;21(1):19. Epub 2020 Jan 31.

Blueprint Genetics, Helsinki, Finland.

Background: Dilated cardiomyopathy (DCM) is a condition characterized by dilatation and systolic dysfunction of the left ventricle in the absence of severe coronary artery disease or abnormal loading conditions. Mutations in the titin (TTN) and lamin A/C (LMNA) genes are the two most significant contributors in familial DCM. Previously mutations in the desmoplakin (DSP) gene have been associated with arrhythmogenic right ventricular cardiomyopathy (ARVC) and more recently with DCM.

Methods: We describe the cardiac phenotype related to a DSP mutation which was identified in ten unrelated Finnish index patients using next-generation sequencing. Sanger sequencing was used to verify the presence of this DSP variant in the probands' relatives. Medical records were obtained, and clinical evaluation was performed.

Results: We identified DSP c.6310delA, p.(Thr2104Glnfs*12) variant in 17 individuals of which 11 (65%) fulfilled the DCM diagnostic criteria. This pathogenic variant presented with left ventricular dilatation, dysfunction and major ventricular arrhythmias. Two patients showed late gadolinium enhancement (LGE) and myocardial edema on cardiac magnetic resonance imaging (MRI) that may suggest inflammatory process at myocardium.

Conclusions: The patients diagnosed with DCM showed an arrhythmogenic phenotype as well as SCD at young age supporting the recently proposed concept of arrhythmogenic cardiomyopathy. This study also demonstrates relatively low penetrance of truncating DSP variant in the probands' family members by the age of 40. Further studies are needed to elucidate the possible relations between myocardial inflammation and pathogenic DSP variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12881-020-0955-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6995042PMC
January 2020

2019 updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: The European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT.

J Heart Lung Transplant 2019 09 21;38(9):879-901. Epub 2019 Jun 21.

Department of Paediatric Cardiology, German Pediatric Heart Centre, Sankt Augustin, Germany.

The European Pediatric Pulmonary Vascular Disease Network is a registered, non-profit organization that strives to define and develop effective, innovative diagnostic methods and treatment options in all forms of pediatric pulmonary hypertensive vascular disease, including pulmonary hypertension (PH) associated with bronchopulmonary dysplasia, PH associated with congenital heart disease (CHD), persistent PH of the newborn, and related cardiac dysfunction. The executive writing group members conducted searches of the PubMed/MEDLINE bibliographic database (1990-2018) and held face-to-face and web-based meetings. Ten section task forces voted on the updated recommendations, based on the 2016 executive summary. Clinical trials, meta-analyses, guidelines, and other articles that include pediatric data were searched using the term "pulmonary hypertension" and other keywords. Class of recommendation (COR) and level of evidence (LOE) were assigned based on European Society of Cardiology/American Heart Association definitions and on pediatric data only, or on adult studies that included >10% children or studies that enrolled adults with CHD. New definitions by the World Symposium on Pulmonary Hypertension 2018 were included. We generated 10 tables with graded recommendations (COR/LOE). The topics include diagnosis/monitoring, genetics/biomarkers, cardiac catheterization, echocardiography, cardiac magnetic resonance/chest computed tomography, associated forms of PH, intensive care unit/lung transplantation, and treatment of pediatric PH. For the first time, a set of specific recommendations on the management of PH in middle- and low-income regions was developed. Taken together, these executive, up-to-date guidelines provide a specific, comprehensive, detailed but practical framework for the optimal clinical care of children and young adults with PH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.healun.2019.06.022DOI Listing
September 2019

Relevance of Titin Missense and Non-Frameshifting Insertions/Deletions Variants in Dilated Cardiomyopathy.

Sci Rep 2019 03 11;9(1):4093. Epub 2019 Mar 11.

Blueprint Genetics, Helsinki, Finland.

Recent advancements in next generation sequencing (NGS) technology have led to the identification of the giant sarcomere gene, titin (TTN), as a major human disease gene. Truncating variants of TTN (TTNtv) especially in the A-band region account for 20% of dilated cardiomyopathy (DCM) cases. Much attention has been focused on assessment and interpretation of TTNtv in human disease; however, missense and non-frameshifting insertions/deletions (NFS-INDELs) are difficult to assess and interpret in clinical diagnostic workflow. Targeted sequencing covering all exons of TTN was performed on a cohort of 530 primary DCM patients from three cardiogenetic centres across Europe. Using stringent bioinformatic filtering, twenty-nine and two rare TTN missense and NFS-INDELs variants predicted deleterious were identified in 6.98% and 0.38% of DCM patients, respectively. However, when compared with those identified in the largest available reference population database, no significant enrichment of such variants was identified in DCM patients. Moreover, DCM patients and reference individuals had comparable frequencies of splice-region missense variants with predicted splicing alteration. DCM patients and reference populations had comparable frequencies of rare predicted deleterious TTN missense variants including splice-region missense variants suggesting that these variants are not independently causative for DCM. Hence, these variants should be classified as likely benign in the clinical diagnostic workflow, although a modifier effect cannot be excluded at this stage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-39911-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412046PMC
March 2019

Genetic Basis of Severe Childhood-Onset Cardiomyopathies.

J Am Coll Cardiol 2018 11;72(19):2324-2338

Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland; Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, Helsinki, Finland; Neuroscience Center, HiLife, University of Helsinki, Helsinki, Finland. Electronic address:

Background: Childhood cardiomyopathies are progressive and often lethal disorders, forming the most common cause of heart failure in children. Despite severe outcomes, their genetic background is still poorly characterized.

Objectives: The purpose of this study was to characterize the genetics of severe childhood cardiomyopathies in a countrywide cohort.

Methods: The authors collected a countrywide cohort, KidCMP, of 66 severe childhood cardiomyopathies from the sole center in Finland performing cardiac transplantation. For genetic diagnosis, next-generation sequencing and subsequent validation using genetic, cell biology, and computational approaches were used.

Results: The KidCMP cohort presents remarkable early-onset and severe disorders: the median age of diagnosis was 0.33 years, and 17 patients underwent cardiac transplantation. The authors identified the pathogenic variants in 39% of patients: 46% de novo, 34% recessive, and 20% dominantly-inherited. The authors report NRAP underlying childhood dilated cardiomyopathy, as well as novel phenotypes for known heart disease genes. Some genetic diagnoses have immediate implications for treatment: CALM1 with life-threatening arrhythmias, and TAZ with good cardiac prognosis. The disease genes converge on metabolic causes (PRKAG2, MRPL44, AARS2, HADHB, DNAJC19, PPA2, TAZ, BAG3), MAPK pathways (HRAS, PTPN11, RAF1, TAB2), development (NEK8 and TBX20), calcium signaling (JPH2, CALM1, CACNA1C), and the sarcomeric contraction cycle (TNNC1, TNNI3, ACTC1, MYH7, NRAP).

Conclusions: Childhood cardiomyopathies are typically caused by rare, family-specific mutations, most commonly de novo, indicating that next-generation sequencing of trios is the approach of choice in their diagnosis. Genetic diagnoses may suggest intervention strategies and predict prognosis, offering valuable tools for prioritization of patients for transplantation versus conservative treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacc.2018.08.2171DOI Listing
November 2018

Heterozygous junctophilin-2 (JPH2) p.(Thr161Lys) is a monogenic cause for HCM with heart failure.

PLoS One 2018 20;13(9):e0203422. Epub 2018 Sep 20.

Blueprint Genetics, Helsinki, Finland.

During the last two decades, mutations in sarcomere genes have found to comprise the most common cause for hypertrophic cardiomyopathy (HCM), but still significant number of patients with dominant HCM in the family are left without molecular genetic diagnosis. Next generation sequencing (NGS) does not only enable evaluation of established HCM genes but also candidate genes for cardiomyopathy are frequently tested which may lead to a situation where conclusive interpretation of the variant requires extensive family studies. We aimed to characterize the phenotype related to a variant in the junctophilin-2 (JPH2) gene, which is less known non-sarcomeric candidate gene. In addition, we did extensive review of the literature and databases about JPH2 variation in association with cardiac disease. We characterize nine Finnish index patients with HCM and heterozygous for JPH2 c.482C>A, p.(Thr161Lys) variant were included and segregation studies were performed. We identified 20 individuals affected with HCM with or without systolic heart failure and conduction abnormalities in the nine Finnish families with JPH2 p.(Thr161Lys) variant. We found 26 heterozygotes with the variant and penetrance was 71% by age 60 and 100% by age 80. Co-segregation of the variant with HCM phenotype was observed in six families. Main clinical features were left ventricular hypertrophy, arrhythmia vulnerability and conduction abnormalities including third degree AV-block. In some patients end-stage severe left ventricular heart failure with normal or mildly enlarged diastolic dimensions was detected. In conclusion, we propose that the heterozygous JPH2 p.(Thr161Lys) variant is a new Finnish mutation causing atypical HCM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203422PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147424PMC
February 2019

Case reports of two pedigrees with recessive arrhythmogenic right ventricular cardiomyopathy associated with homozygous Thr335Ala variant in DSG2.

BMC Med Genet 2017 08 17;18(1):86. Epub 2017 Aug 17.

Blueprint Genetics, Helsinki, Finland.

Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disease, involving changes in ventricular myocardial tissue and leading to fatal arrhythmias. Mutations in desmosomal genes are thought to be the main cause of ARVC. However, the exact molecular genetic etiology of the disease still remains largely inconclusive, and this along with large variabilities in clinical manifestations complicate clinical diagnostics.

Case Presentation: We report two families (n = 20) in which a desmoglein-2 (DSG2) missense variant c.1003A > G, p.(Thr335Ala) was discovered in the index patients using next-generation sequencing panels. The presence of this variant in probands' siblings and children was studied by Sanger sequencing. Five homozygotes and nine heterozygotes were found with the mutation. Participants were evaluated clinically where possible, and available medical records were obtained. All patients homozygous for the variant fulfilled the current diagnostic criteria for ARVC, whereas none of the heterozygous subjects had symptoms suggestive of ARVC or other cardiomyopathies.

Conclusions: The homozygous DSG2 variant c.1003A > G co-segregated with ARVC, indicating autosomal recessive inheritance and complete penetrance. More research is needed to establish a detailed understanding of the relevance of rare variants in ARVC associated genes, which is essential for informative genetic counseling and rational family member testing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12881-017-0442-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561604PMC
August 2017

Reduced carboxylesterase 1 is associated with endothelial injury in methamphetamine-induced pulmonary arterial hypertension.

Am J Physiol Lung Cell Mol Physiol 2017 08 4;313(2):L252-L266. Epub 2017 May 4.

Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California;

Pulmonary arterial hypertension is a complication of methamphetamine use (METH-PAH), but the pathogenic mechanisms are unknown. Given that cytochrome P450 2D6 (CYP2D6) and carboxylesterase 1 (CES1) are involved in metabolism of METH and other amphetamine-like compounds, we postulated that loss of function variants could contribute to METH-PAH. Although no difference in CYP2D6 expression was seen by lung immunofluorescence, CES1 expression was significantly reduced in endothelium of METH-PAH microvessels. Mass spectrometry analysis showed that healthy pulmonary microvascular endothelial cells (PMVECs) have the capacity to both internalize and metabolize METH. Furthermore, whole exome sequencing data from 18 METH-PAH patients revealed that 94.4% of METH-PAH patients were heterozygous carriers of a single nucleotide variant (SNV; rs115629050) predicted to reduce CES1 activity. PMVECs transfected with this CES1 variant demonstrated significantly higher rates of METH-induced apoptosis. METH exposure results in increased formation of reactive oxygen species (ROS) and a compensatory autophagy response. Compared with healthy cells, CES1-deficient PMVECs lack a robust autophagy response despite higher ROS, which correlates with increased apoptosis. We propose that reduced CES1 expression/activity could promote development of METH-PAH by increasing PMVEC apoptosis and small vessel loss.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00453.2016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582936PMC
August 2017

Novel Dominant-Negative Mutation in Cardiac Troponin I Causes Severe Restrictive Cardiomyopathy.

Circ Heart Fail 2017 02;10(2)

From the Division of Cardiology, Department of Medicine (S.S., H.Y., R.B., F.W., D.I.P., G.Y.O.) and Mazankowski Alberta Heart Institute (S.S., H.Y., R.B., D.I.P., G.Y.O.), University of Alberta, Edmonton, Canada; and Blueprint Genetics Inc, San Francisco, CA (T.-P.A.).

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCHEARTFAILURE.116.003820DOI Listing
February 2017

Systemic Dosing of Thymosin Beta 4 before and after Ischemia Does Not Attenuate Global Myocardial Ischemia-Reperfusion Injury in Pigs.

Front Pharmacol 2016 3;7:115. Epub 2016 May 3.

Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku Turku, Finland.

The use of cardiopulmonary bypass (CPB) and aortic cross-clamping causes myocardial ischemia-reperfusion injury (I-RI) and can lead to reduced postoperative cardiac function. We investigated whether this injury could be attenuated by thymosin beta 4 (TB4), a peptide which has showed cardioprotective effects. Pigs received either TB4 or vehicle and underwent CPB and aortic cross-clamping for 60 min with cold intermittent blood-cardioplegia and were then followed for 30 h. Myocardial function and blood flow was studied by cardiac magnetic resonance and PET imaging. Tissue and plasma samples were analyzed to determine the amount of cardiomyocyte necrosis and apoptosis as well as pharmacokinetics of the peptide. In vitro studies were performed to assess its influence on blood coagulation and vasomotor tone. Serum levels of the peptide were increased after administration compared to control samples. TB4 did not decrease the amount of cell death. Cardiac function and global myocardial blood flow was similar between the study groups. At high doses a vasoconstrictor effect on mesentery arteries and a vasodilator effect on coronary arteries was observed and blood clot firmness was reduced when tested in the presence of an antiplatelet agent. Despite promising results in previous trials the cardioprotective effect of TB4 was not demonstrated in this model for global myocardial I-RI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2016.00115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853610PMC
May 2016

Executive summary. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK.

Heart 2016 May;102 Suppl 2:ii86-100

Department of Paediatric Cardiology, German Paediatric Heart Centre, Sankt Augustin, Germany.

Unlabelled: : The European Paediatric Pulmonary Vascular Disease (PVD) Network is a registered, non-profit organisation that strives to define and develop effective, innovative diagnostic methods and treatment options in all forms of paediatric pulmonary hypertensive vascular disease, including specific forms such as pulmonary arterial hypertension (PAH)-congenital heart disease, pulmonary hypertension (PH) associated with bronchopulmonary dysplasia, persistent PH of the newborn, and related cardiac dysfunction.

Methods: The writing group members conducted searches of the PubMed/MEDLINE bibliographic database (1990-2015) and held five face-to-face meetings with votings. Clinical trials, guidelines, and reviews limited to paediatric data were searched using the terms 'pulmonary hypertensioń' and 5-10 other keywords, as outlined in the other nine articles of this special issue. Class of recommendation (COR) and level of evidence (LOE) were assigned based on European Society of Cardiology/American Heart Association definitions and on paediatric data only, or on adult studies that included >10% children.

Results: A total of 9 original consensus articles with graded recommendations (COR/LOE) were developed, and are summarised here. The topics included diagnosis/monitoring, genetics/biomarker, cardiac catheterisation, echocardiography, cardiac magnetic resonance/chest CT, associated forms of PH, intensive care unit/ventricular assist device/lung transplantation, and treatment of paediatric PAH.

Conclusions: The multipaper expert consensus statement of the European Paediatric PVD Network provides a specific, comprehensive, detailed but practical framework for the optimal clinical care of children with PH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/heartjnl-2015-309132DOI Listing
May 2016

Genetic testing and blood biomarkers in paediatric pulmonary hypertension. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK.

Heart 2016 May;102 Suppl 2:ii36-41

Blueprint Genetics, Biomedicum Helsinki, Helsinki, Finland Department of Paediatric Cardiology, Childrens Hospital Helsinki, University of Helsinki, Helsinki, Finland.

Childhood-onset pulmonary arterial hypertension (PAH) is considered complex and multifactorial, with relatively poor estimates of the natural history of the disease. Strategies allowing earlier detection, establishment of disease aetiology together with more accurate and sensitive biomarkers could enable better estimates of prognosis and individualise therapeutic strategies. Evidence is accumulating that genetic defects play an important role in the pathogenesis of idiopathic and hereditary forms of PAH. Altogether nine genes have been reported so far to be associated with childhood onset PAH suggesting that comprehensive multigene diagnostics can be useful in the assessment. Identification of disease-causing mutations allows estimates of prognosis and forms the most effective way for risk stratification in the family. In addition to genetic determinants the analysis of blood biomarkers are increasingly used in clinical practice to evaluate disease severity and treatment responses. As in genetic diagnostics, a multiplex approach can be helpful, as a single biomarker for PAH is unlikely to meet all requirements. This consensus statement reviews the current evidence for the use of genetic diagnostics and use of blood biomarkers in the assessment of paediatric patients with PAH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/heartjnl-2014-307238DOI Listing
May 2016

Extracellular ATP protects endothelial cells against DNA damage.

Purinergic Signal 2016 09 31;12(3):575-81. Epub 2016 Mar 31.

Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.

Cell damage can lead to rapid release of ATP to extracellular space resulting in dramatic change in local ATP concentration. Evolutionary, this has been considered as a danger signal leading to adaptive responses in adjacent cells. Our aim was to demonstrate that elevated extracellular ATP or inhibition of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/CD39) activity could be used to increase tolerance against DNA-damaging conditions. Human endothelial cells, with increased extracellular ATP concentration in cell proximity, were more resistant to irradiation or chemically induced DNA damage evaluated with the DNA damage markers γH2AX and phosphorylated p53. In our rat models of DNA damage, inhibiting CD39-driven ATP hydrolysis with POM-1 protected the heart and lung tissues against chemically induced DNA damage. Interestingly, the phenomenon could not be replicated in cancer cells. Our results show that transient increase in extracellular ATP can promote resistance to DNA damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11302-016-9508-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023623PMC
September 2016

The rare Costello variant HRAS c.173C>T (p.T58I) with severe neonatal hypertrophic cardiomyopathy.

Am J Med Genet A 2016 06 17;170(6):1433-8. Epub 2016 Feb 17.

Department of Pediatric Cardiology, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.

We report a 10-year-old girl presenting with severe neonatal hypertrophic cardiomyopathy (HCM), feeding difficulties, mildly abnormal facial features, and progressive skeletal muscle symptoms but with normal cognitive development. Targeted oligonucleotide-selective sequencing of 101 cardiomyopathy genes revealed the genetic diagnosis, and the mutation was verified by Sanger sequencing in the patient and her parents. To offer insights into the potential mechanism of patient mutation, protein structural analysis was performed using the resolved structure of human activated HRAS protein with bound GTP analogue (PDB id 5P21) in Discovery Studio 4.5 (Dassault Systèmes Biovia, San Diego, CA). The patient with hypertrophic cardiomyopathy and normal cognitive development was diagnosed with an HRAS mutation c.173C>T (p.T58I), a milder variant of Costello syndrome affecting a highly conserved amino acid, threonine 58. Our analysis suggests that the p.G12 mutations slow GTP hydrolysis rendering HRAS unresponsive to GTPase activating proteins, and resulting in permanently active state. The p.T58I mutation likely affects binding of guanidine-nucleotide-exchange factors, thereby promoting the active state but also allowing for slow inactivation. Patients with the HRAS mutation c.173C>T (p.T58I) might go undiagnosed because of the milder phenotype compared with other mutations causing Costello syndrome. We expand the clinical and molecular picture of the rare HRAS mutation by reporting the first case in Europe and the fourth case in the literature. Our protein structure analysis offers insights into the mechanism of the mildly activating p.T58I mutation. © 2016 Wiley Periodicals, Inc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.37596DOI Listing
June 2016

Loss of PPARγ in endothelial cells leads to impaired angiogenesis.

J Cell Sci 2016 Feb 7;129(4):693-705. Epub 2016 Jan 7.

Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland

Tie2-promoter-mediated loss of peroxisome proliferator-activated receptor gamma (PPARγ, also known as PPARG) in mice leads to osteopetrosis and pulmonary arterial hypertension. Vascular disease is associated with loss of PPARγ in pulmonary microvascular endothelial cells (PMVEC); we evaluated the role of PPARγ in PMVEC functions, such as angiogenesis and migration. The role of PPARγ in angiogenesis was evaluated in Tie2CrePPARγ(flox/flox) and wild-type mice, and in mouse and human PMVECs. RNA sequencing and bioinformatic approaches were utilized to reveal angiogenesis-associated targets for PPARγ. Tie2CrePPARγ(flox/flox) mice showed an impaired angiogenic capacity. Analysis of endothelial progenitor-like cells using bone marrow transplantation combined with evaluation of isolated PMVECs revealed that loss of PPARγ attenuates the migration and angiogenic capacity of mature PMVECs. PPARγ-deficient human PMVECs showed a similar migration defect in culture. Bioinformatic and experimental analyses newly revealed E2F1 as a target of PPARγ in the regulation of PMVEC migration. Disruption of the PPARγ-E2F1 axis was associated with a dysregulated Wnt pathway related to the GSK3B interacting protein (GSKIP). In conclusion, PPARγ plays an important role in sustaining angiogenic potential in mature PMVECs through E2F1-mediated gene regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.169011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108588PMC
February 2016

Prevalence of Titin Truncating Variants in General Population.

PLoS One 2015 23;10(12):e0145284. Epub 2015 Dec 23.

Children's Hospital Helsinki, Institute of Clinical Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.

Background: Truncating titin (TTN) mutations, especially in A-band region, represent the most common cause of dilated cardiomyopathy (DCM). Clinical interpretation of these variants can be challenging, as these variants are also present in reference populations. We carried out systematic analyses of TTN truncating variants (TTNtv) in publicly available reference populations, including, for the first time, data from Exome Aggregation Consortium (ExAC). The goal was to establish more accurate estimate of prevalence of different TTNtv to allow better clinical interpretation of these findings.

Methods And Results: Using data from 1000 Genomes Project, Exome Sequencing Project (ESP) and ExAC, we estimated the prevalence of TTNtv in the population. In the three population datasets, 52-54% of TTNtv were not affecting all TTN transcripts. The frequency of truncations affecting all transcripts in ExAC was 0.36% (0.32% - 0.41%, 95% CI) and 0.19% (0.16% - 0.23%, 95% CI) for those affecting the A-band. In the A-band region, the prevalences of frameshift, nonsense and essential splice site variants were 0.057%, 0.090%, and 0.047% respectively. Cga/Tga (arginine/nonsense-R/*) transitional change at CpG mutation hotspots was the most frequent type of TTN nonsense mutation accounting for 91.3% (21/23) of arginine residue nonsense mutation (R/*) at TTN A-band region. Non-essential splice-site variants had significantly lower proportion of private variants and higher proportion of low-frequency variants compared to essential splice-site variants (P = 0.01; P = 5.1 X 10-4, respectively).

Conclusion: A-band TTNtv are more rare in the general population than previously reported. Based on this analysis, one in 500 carries a truncation in TTN A-band suggesting the penetrance of these potentially harmful variants is still poorly understood, and some of these variants do not manifest as autosomal dominant DCM. This calls for caution when interpreting TTNtv in individuals and families with no history of DCM. Considering the size of TTN, expertise in DNA library preparation, high coverage NGS strategies, validated bioinformatics approach, accurate variant assessment strategy, and confirmatory sequencing are prerequisites for reliable evaluation of TTN in clinical settings, and ideally with the inclusion of mRNA and/or protein level assessment for a definite diagnosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145284PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689403PMC
July 2016

Accurate genetic diagnosis of Finnish pulmonary arterial hypertension patients using oligonucleotide-selective sequencing.

Mol Genet Genomic Med 2015 Jul 25;3(4):354-62. Epub 2015 Apr 25.

Blueprint Genetics Helsinki, Finland ; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki Helsinki, Finland.

The genetic basis of pulmonary arterial hypertension (PAH) among Finnish PAH patients is poorly understood. We adopted a novel-targeted next-generation sequencing (NGS) approach called Oligonucleotide-Selective Sequencing (OS-Seq) and developed a custom data analysis and interpretation pipeline to identify pathogenic base substitutions, insertions, and deletions in seven genes associated with PAH (BMPR2, BMPR1B, ACVRL1, ENG, SMAD9, CAV1, and KCNK3) from Finnish PAH patients. This study represents the first clinical study with OS-Seq technology on patients suffering from a rare genetic disorder. We analyzed DNA samples from 21 Finnish PAH patients, whose BMPR2 and ACVRL1 mutation status had been previously studied using Sanger sequencing. Our sequencing panel covered 100% of the targeted base pairs with >15× sequencing depth. Pathogenic base substitutions were identified in the BMPR2 gene in 29% of the Finnish PAH cases. Two of the pathogenic variant-positive patients had been previously tested negative using Sanger sequencing. No clinically significant variants were identified in the six other PAH genes. Our study validates the use of targeted OS-Seq for genetic diagnostics of PAH and revealed pathogenic variants that had been previously missed using Sanger sequencing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mgg3.147DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521970PMC
July 2015

Genetics and genotype-phenotype correlations in Finnish patients with dilated cardiomyopathy.

Eur Heart J 2015 Sep 17;36(34):2327-37. Epub 2015 Jun 17.

Heart and Lung Center HUCH, University of Helsinki, Helsinki, Finland.

Aims: Despite our increased understanding of the genetic basis of dilated cardiomyopathy (DCM), the clinical utility and yield of clinically meaningful findings of comprehensive next-generation sequencing (NGS)-based genetic diagnostics in DCM has been poorly described. We utilized a high-quality oligonucleotide-selective sequencing (OS-Seq)-based targeted sequencing panel to investigate the genetic landscape of DCM in Finnish population and to evaluate the utility of OS-Seq technology as a novel comprehensive diagnostic tool.

Methods And Results: Using OS-Seq, we targeted and sequenced the coding regions and splice junctions of 101 genes associated with cardiomyopathies in 145 unrelated Finnish patients with DCM. We developed effective bioinformatic variant filtering strategy and implemented strict variant classification scheme to reveal diagnostic yield and genotype-phenotype correlations. Implemented OS-Seq technology provided high coverage of the target region (median coverage 410× and 99.42% of the nucleotides were sequenced at least 15× read depth). Diagnostic yield was 35.2% (familial 47.6% and sporadic 25.6%, P = 0.004) when both pathogenic and likely pathogenic variants are considered as disease causing. Of these, 20 (53%) were titin (TTN) truncations (non-sense and frameshift) affecting all TTN transcripts. TTN truncations accounted for 20.6% and 14.6% of the familial and sporadic DCM cases, respectively.

Conclusion: Panel-based, high-quality NGS enables high diagnostic yield especially in the familial form of DCM, and bioinformatic variant filtering is a reliable step in the process of interpretation of genomic data in a clinical setting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehv253DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561350PMC
September 2015

Suppression of endothelial CD39/ENTPD1 is associated with pulmonary vascular remodeling in pulmonary arterial hypertension.

Am J Physiol Lung Cell Mol Physiol 2015 May 27;308(10):L1046-57. Epub 2015 Mar 27.

Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland;

Endothelial cell (EC) dysfunction plays a role in the pathobiology of occlusive vasculopathy in pulmonary arterial hypertension (PAH). Purinergic signaling pathways, which consist of extracellular nucleotide and nucleoside-mediated cell signaling through specific receptors, are known to be important regulators of vascular tone and remodeling. Therefore, we hypothesized that abnormalities in the vascular purinergic microenvironment are associated with PAH. Enzymatic clearance is crucial to terminate unnecessary cell activation; one of the most abundantly expressed enzymes on the EC surface is E-NTPDase1/CD39, which hydrolyzes ATP and ADP to AMP. we used histological samples from patients and healthy donors, radioisotope-labeled substrates to measure ectoenzyme activity, and a variety of in vitro approaches to study the role of CD39 in PAH. Immunohistochemistry on human idiopathic PAH (IPAH) patients' lungs demonstrated that CD39 was significantly downregulated in the endothelium of diseased small arteries. Similarly, CD39 expression and activity were decreased in cultured pulmonary ECs from IPAH patients. Suppression of CD39 in vitro resulted in EC phenotypic switch that gave rise to apoptosis-resistant pulmonary arterial endothelial cells and promoted a microenvironment that induced vascular smooth muscle cell migration. we also identified that the ATP receptor P2Y11 is essential for ATP-mediated EC survival. Furthermore, we report that apelin, a known regulator of pulmonary vascular homeostasis, can potentiate the activity of CD39 both in vitro and in vivo. we conclude that sustained attenuation of CD39 activity through ATP accumulation is tightly linked to vascular dysfunction and remodeling in PAH and could represent a novel target for therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00340.2014DOI Listing
May 2015

LMNA Mutation c.917T>G (p.L306R) Leads to Deleterious Hyper-Assembly of Lamin A/C and Associates with Severe Right Ventricular Cardiomyopathy and Premature Aging.

Hum Mutat 2015 Jul 1;36(7):694-703. Epub 2015 Jun 1.

Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.

Mutations in the LMNA gene coding for the nuclear lamina proteins lamin A and its smaller splice form lamin C associate with a heterogeneous group of diseases collectively called laminopathies. Here, we describe a 2-year-old patient with a previously undescribed phenotype including right ventricular cardiomyopathy, progeroid features, and premature death. Sequencing of LMNA revealed a novel heterozygous de novo mutation p.L306R located in the α-helical rod domain of A-type lamins. Fibroblasts from the patient showed reduced proliferation and early premature replicative senescence, as characterized by progressive hyperlobulation of the nuclei, abnormally clustered centromeres, loss of lamin B1, and reorganization of promyelocytic leukemia nuclear bodies. Furthermore, the patient cells were more sensitive to double-strand DNA breaks. Similar structural and phenotypic defects were observed in normal fibroblasts transfected with FLAG-tagged p.L306R lamin A. Correspondingly, in vitro assembly studies revealed that the p.L306R generates a "hyper-assembly" mutant of lamin A that forms extensive fiber arrays under physiological conditions where wild-type lamin A is still largely soluble. In summary, we report a novel LMNA p.L306R mutation that leads to previously undescribed hyper-assembly of lamin A, heavy distortion of nuclear shape and that manifests as right ventricular cardiomyopathy and premature aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.22793DOI Listing
July 2015

Expanding the phenotype of Timothy syndrome type 2: an adolescent with ventricular fibrillation but normal development.

Am J Med Genet A 2015 Mar;167A(3):629-34

Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.

Timothy syndrome is a rare multiorgan disorder with prolonged QTc interval, congenital heart defects, syndactyly, typical facial features and neurodevelopmental problems. Ventricular tachyarrhythmia is the leading cause of death at early age. Classical Timothy syndrome type 1 (TS1) results from a recurrent de novo CACNA1C mutation, G406R in exon 8 A. An atypical form of Timothy syndrome type 2 (TS2) is caused by mutations in G406R and G402S in the alternatively spliced exon 8. Only one individual for each exon 8 mutations has been described. In contrast to multiorgan disease caused by the mutation in G406R either in exon 8 A or 8, the G402S carrier manifested only an isolated cardiac phenotype with LQTS and cardiac arrest. We describe a teenage patient resuscitated from ventricular fibrillation and treated with an implantable cardioverter defibrillator. She has no other organ manifestations, no syndactyly, normal neurodevelopment and her QTc has ranged between 440-480 ms. There is no family history of arrhythmias or sudden death. Targeted oligonucleotide-selective sequencing (OS-Seq) of channelopathy genes revealed a de novo substitution, G402S in exon 8 of CACNA1C. Direct sequencing of blood and saliva derived DNA showed an identical mutation peak suggesting ubiquitous expression in different tissues. The phenotype of our patient and the previously described patient show an isolated arrhythmia disease with no other organ manifestations of classical Timothy syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.36924DOI Listing
March 2015

GATA4 is a key regulator of steroidogenesis and glycolysis in mouse Leydig cells.

Endocrinology 2015 May 10;156(5):1860-72. Epub 2015 Feb 10.

Children's Hospital (A.S., A.K., O.A., M.P., T.-P.A., M.H.), University of Helsinki, Helsinki 00014, Finland; Institute of Biomedicine (O.A.), University of Helsinki, Helsinki 00014, Finland; School of Pharmacy (M.H.), University of Eastern Finland, Kuopio 70211, Finland; Institute of Applied Biotechnology (S.F.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku, Turku 20520, Finland; and Departments of Pediatrics (A.S., M.P., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University in St. Louis, St. Louis, Missouri 63110.

Transcription factor GATA4 is expressed in somatic cells of the mammalian testis. Gene targeting studies in mice have shown that GATA4 is essential for proper differentiation and function of Sertoli cells. The role of GATA4 in Leydig cell development, however, remains controversial, because targeted mutagenesis experiments in mice have not shown a consistent phenotype, possibly due to context-dependent effects or compensatory responses. We therefore undertook a reductionist approach to study the function of GATA4 in Leydig cells. Using microarray analysis and quantitative RT-PCR, we identified a set of genes that are down-regulated or up-regulated after small interfering RNA (siRNA)-mediated silencing of Gata4 in the murine Leydig tumor cell line mLTC-1. These same genes were dysregulated when primary cultures of Gata4(flox/flox) adult Leydig cells were subjected to adenovirus-mediated cre-lox recombination in vitro. Among the down-regulated genes were enzymes of the androgen biosynthetic pathway (Cyp11a1, Hsd3b1, Cyp17a1, and Srd5a). Silencing of Gata4 expression in mLTC-1 cells was accompanied by reduced production of sex steroid precursors, as documented by mass spectrometric analysis. Comprehensive metabolomic analysis of GATA4-deficient mLTC-1 cells showed alteration of other metabolic pathways, notably glycolysis. GATA4-depleted mLTC-1 cells had reduced expression of glycolytic genes (Hk1, Gpi1, Pfkp, and Pgam1), lower intracellular levels of ATP, and increased extracellular levels of glucose. Our findings suggest that GATA4 plays a pivotal role in Leydig cell function and provide novel insights into metabolic regulation in this cell type.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2014-1931DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398762PMC
May 2015

Targeting the Wnt signaling pathways in pulmonary arterial hypertension.

Drug Discov Today 2014 Aug 20;19(8):1270-6. Epub 2014 Jun 20.

Pediatric Cardiology, Stanford University Medical Center, 300 Pasteur Drive Grant S140B, Stanford, CA 94305, USA.

Pulmonary arterial hypertension (PAH) is a life-threatening disorder that is associated with elevated pulmonary pressures and right heart failure resulting from progressive loss and thickening of small pulmonary arteries. Despite their ability to improve symptoms, current therapies fail to prevent disease progression, leaving lung transplantation as the only therapy in end-stage PAH. To overcome the limitations of current therapies, there is an active search for disease-modifying agents capable of altering the natural history of, and improving clinical outcomes in, PAH. The Wnt signaling pathways have emerged as attractive treatment targets in PAH given their role in the preservation of pulmonary vascular homeostasis and the recent development of Wnt-specific compounds and biological therapies capable of modulating pathway activity. In this review, we summarize the literature describing the role of Wnt signaling in the pulmonary circulation and discuss promising advances in the field of Wnt therapeutics that could lead to novel clinical therapies capable of preventing and/or reversing pulmonary vascular pathology in patients with this devastating disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2014.06.014DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689294PMC
August 2014

Whole-exome sequencing reveals TopBP1 as a novel gene in idiopathic pulmonary arterial hypertension.

Am J Respir Crit Care Med 2014 May;189(10):1260-72

1 Division of Pulmonary and Critical Care Medicine.

Rationale: Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disorder characterized by progressive loss of pulmonary microvessels. Although mutations in the bone morphogenetic receptor 2 (BMPR2) are found in 80% of heritable and ∼15% of patients with IPAH, their low penetrance (∼20%) suggests that other unidentified genetic modifiers are required for manifestation of the disease phenotype. Use of whole-exome sequencing (WES) has recently led to the discovery of novel susceptibility genes in heritable PAH, but whether WES can also accelerate gene discovery in IPAH remains unknown.

Objectives: To determine whether WES can help identify novel gene modifiers in patients with IPAH.

Methods: Exome capture and sequencing was performed on genomic DNA isolated from 12 unrelated patients with IPAH lacking BMPR2 mutations. Observed genetic variants were prioritized according to their pathogenic potential using ANNOVAR.

Measurements And Main Results: A total of nine genes were identified as high-priority candidates. Our top hit was topoisomerase DNA binding II binding protein 1 (TopBP1), a gene involved in the response to DNA damage and replication stress. We found that TopBP1 expression was reduced in vascular lesions and pulmonary endothelial cells isolated from patients with IPAH. Although TopBP1 deficiency made endothelial cells susceptible to DNA damage and apoptosis in response to hydroxyurea, its restoration resulted in less DNA damage and improved cell survival.

Conclusions: WES led to the discovery of TopBP1, a gene whose deficiency may increase susceptibility to small vessel loss in IPAH. We predict that use of WES will help identify gene modifiers that influence an individual's risk of developing IPAH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.201310-1749OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4225850PMC
May 2014

Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension.

J Exp Med 2014 Feb 20;211(2):263-80. Epub 2014 Jan 20.

The Vera Moulton Wall Center for Pulmonary Vascular Disease, 2 Department of Pediatrics, 3 Department of Surgery, 4 Department of Microbiology and Immunology, 5 Department of Medicine, and 6 Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305.

Idiopathic pulmonary arterial hypertension (PAH [IPAH]) is an insidious and potentially fatal disease linked to a mutation or reduced expression of bone morphogenetic protein receptor 2 (BMPR2). Because intravascular inflammatory cells are recruited in IPAH pathogenesis, we hypothesized that reduced BMPR2 enhances production of the potent chemokine granulocyte macrophage colony-stimulating factor (GM-CSF) in response to an inflammatory perturbation. When human pulmonary artery (PA) endothelial cells deficient in BMPR2 were stimulated with tumor necrosis factor (TNF), a twofold increase in GM-CSF was observed and related to enhanced messenger RNA (mRNA) translation. The mechanism was associated with disruption of stress granule formation. Specifically, loss of BMPR2 induced prolonged phospho-p38 mitogen-activated protein kinase (MAPK) in response to TNF, and this increased GADD34-PP1 phosphatase activity, dephosphorylating eukaryotic translation initiation factor (eIF2α), and derepressing GM-CSF mRNA translation. Lungs from IPAH patients versus unused donor controls revealed heightened PA expression of GM-CSF co-distributing with increased TNF and expanded populations of hematopoietic and endothelial GM-CSF receptor α (GM-CSFRα)-positive cells. Moreover, a 3-wk infusion of GM-CSF in mice increased hypoxia-induced PAH, in association with increased perivascular macrophages and muscularized distal arteries, whereas blockade of GM-CSF repressed these features. Thus, reduced BMPR2 can subvert a stress granule response, heighten GM-CSF mRNA translation, increase inflammatory cell recruitment, and exacerbate PAH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20111741DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920564PMC
February 2014

Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension.

Am J Respir Cell Mol Biol 2014 Jun;50(6):1118-28

1 The Johns Hopkins University School of Medicine, Baltimore, Maryland.

Occlusive vasculopathy with intimal hyperplasia and plexogenic arteriopathy are severe histopathological changes characteristic of pulmonary arterial hypertension (PAH). Although a phenotypic switch in pulmonary endothelial cells (ECs) has been suggested to play a critical role in the formation of occlusive lesions, the pathobiology of this process is poorly understood. The goal of this study was to identify novel molecular mechanisms associated with EC dysfunction and PAH-associated bone morphogenetic protein receptor 2 (BMPR2) deficiency during PAH pathogenesis. A bioinfomatics approach, patient samples, and in vitro experiments were used. By combining a metaanalysis of human idiopathic PAH (iPAH)-associated gene-expression microarrays and a unique gene expression-profiling technique in rat endothelium, our bioinformatics approach revealed a PAH-associated dysregulation of genes involving chromatin organization, DNA metabolism, and repair. Our hypothesis that altered DNA repair and loss of genomic stability play a role in PAH was supported by in vitro assays where pulmonary ECs from patients with iPAH and BMPR2-deficient ECs were highly susceptible to DNA damage. Furthermore, we showed that BMPR2 expression is tightly linked to DNA damage control because excessive DNA damage leads to rapid down-regulation of BMPR2 expression. Moreover, we identified breast cancer 1 (BRCA1) as a novel target for BMPR2 signaling and a novel modulator of pulmonary EC homeostasis. We show here that BMPR2 signaling plays a critical role in the regulation of genomic integrity in pulmonary ECs via genes such as BRCA1. We propose that iPAH-associated EC dysfunction and genomic instability are mediated through BMPR2 deficiency-associated loss of DNA damage control.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2013-0349OCDOI Listing
June 2014
-->