Publications by authors named "Terence R Lappin"

42 Publications

Erythropoietin in bone homeostasis-Implications for efficacious anemia therapy.

Stem Cells Transl Med 2021 Jun 21;10(6):836-843. Epub 2021 Jan 21.

Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.

Bone homeostasis and hematopoiesis are irrevocably linked in the hypoxic environment of the bone marrow. Erythropoietin (Epo) regulates erythropoiesis by binding to its receptor, Epor, on erythroid progenitor cells. The continuous process of bone remodeling is achieved by the finely balanced activity of osteoblasts in bone synthesis and osteoclasts in bone resorption. Both osteoblasts and osteoclasts express functional Epors, but the underlying mechanism of Epo-Epor signaling in bone homeostasis is incompletely understood. Two recent publications have provided new insights into the contribution of endogenous Epo to bone homeostasis. Suresh et al examined Epo-Epor signaling in osteoblasts in bone formation in mice and Deshet-Unger et al investigated osteoclastogenesis arising from transdifferentiation of B cells. Both groups also studied bone loss in mice caused by exogenous human recombinant EPO-stimulated erythropoiesis. They found that either deletion of Epor in osteoblasts or conditional knockdown of Epor in B cells attenuates EPO-driven bone loss. These findings have direct clinical implications because patients on long-term treatment for anemia may have an increased risk of bone fractures. Phase 3 trials of small molecule inhibitors of the PHD enzymes (hypoxia inducible factor-prolyl hydroxylase inhibitors [HIF-PHIs]), such as Roxadustat, have shown improved iron metabolism and increased circulating Epo levels in a titratable manner, avoiding the supraphysiologic increases that often accompany intravenous EPO therapy. The new evidence presented by Suresh and Deshet-Unger and their colleagues on the effects of EPO-stimulated erythropoiesis on bone homeostasis seems likely to stimulate discussion on the relative merits and safety of EPO and HIF-PHIs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/sctm.20-0387DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133338PMC
June 2021

Tibetan , an allele with loss-of-function properties.

Proc Natl Acad Sci U S A 2020 06 15;117(22):12230-12238. Epub 2020 May 15.

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;

Tibetans have adapted to the chronic hypoxia of high altitude and display a distinctive suite of physiologic adaptations, including augmented hypoxic ventilatory response and resistance to pulmonary hypertension. Genome-wide studies have consistently identified compelling genetic signatures of natural selection in two genes of the Hypoxia Inducible Factor pathway, and The product of the former induces the degradation of the product of the latter. Key issues regarding Tibetan are whether it is a gain-of-function or loss-of-function allele, and how it might contribute to high-altitude adaptation. Tibetan PHD2 possesses two amino acid changes, D4E and C127S. We previously showed that in vitro, Tibetan PHD2 is defective in its interaction with p23, a cochaperone of the HSP90 pathway, and we proposed that Tibetan is a loss-of-function allele. Here, we report that additional PHD2 mutations at or near Asp-4 or Cys-127 impair interaction with p23 in vitro. We find that mice with the Tibetan allele display augmented hypoxic ventilatory response, supporting this loss-of-function proposal. This is phenocopied by mice with a mutation in that abrogates the PHD2:p23 interaction. haploinsufficiency, but not the Tibetan allele, ameliorates hypoxia-induced increases in right ventricular systolic pressure. The Tibetan allele is not associated with hemoglobin levels in mice. We propose that Tibetans possess genetic alterations that both activate and inhibit selective outputs of the HIF pathway to facilitate successful adaptation to the chronic hypoxia of high altitude.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1920546117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275716PMC
June 2020

Update on mutations in the HIF: EPO pathway and their role in erythrocytosis.

Blood Rev 2019 09 16;37:100590. Epub 2019 Jul 16.

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Identification of the underlying defects in congenital erythrocytosis has provided mechanistic insights into the regulation of erythropoiesis and oxygen homeostasis. The Hypoxia Inducible Factor (HIF) pathway plays a key role in this regard. In this pathway, an enzyme, Prolyl Hydroxylase Domain protein 2 (PHD2), constitutively prolyl hydroxylates HIF-2α, thereby targeting HIF-2α for degradation by the von Hippel Lindau (VHL) tumor suppressor protein. Under hypoxia, this modification is attenuated, resulting in the stabilization of HIF-2α and transcriptional activation of the erythropoietin (EPO) gene. Circulating EPO then binds to the EPO receptor (EPOR) on red cell progenitors in the bone marrow, leading to expansion of red cell mass. Loss of function mutations in PHD2 and VHL, as well as gain of function mutations in HIF-2α and EPOR, are well established causes of erythrocytosis. Here, we highlight recent developments that show that the study of this condition is still evolving. Specifically, novel mutations have been identified that either change amino acids in the zinc finger domain of PHD2 or alter splicing of the VHL gene. In addition, continued study of HIF-2α mutations has revealed a distinctive genotype-phenotype correlation. Finally, novel mutations have recently been identified in the EPO gene itself. Thus, the cascade of genes that at a molecular level leads to EPO action, namely PHD2 - > HIF2A - > VHL - > EPO - > EPOR, are all mutational targets in congenital erythrocytosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.blre.2019.100590DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484688PMC
September 2019

A novel splicing site IRP1 somatic mutation in a patient with pheochromocytoma and JAK2 positive polycythemia vera: a case report.

BMC Cancer 2018 03 13;18(1):286. Epub 2018 Mar 13.

Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.

Background: The role of the hypoxia signaling pathway in the pathogenesis of pheochromocytoma/paraganglioma (PPGL)-polycythemia syndrome has been elucidated. Novel somatic mutations in hypoxia-inducible factor type 2A (HIF2A) and germline mutations in prolyl hydroxylase type 1 and type 2 (PHD1 and PHD2) have been identified to cause upregulation of the hypoxia signaling pathway and its target genes including erythropoietin (EPO) and its receptor (EPOR). However, in a minority of patients presenting with this syndrome, the genetics and molecular pathogenesis remain unexplained. The aim of the present study was to uncover novel genetic causes of PPGL-polycythemia syndrome.

Case Presentation: A female presented with a history of JAK2 positive PV, diagnosed in 2007, and right adrenal pheochromocytoma diagnosed and resected in 2011. Her polycythemia symptoms and hematocrit levels continued to worsen from 2007 to 2011, with an increased frequency of phlebotomies. Postoperatively, until early 2013, her hematocrit levels remained normalized. Following this, the hematocrit levels ranged between 46.4 and 48.9% [35-45%]. Tumor tissue from the patient was further tested for mutations in genes related to upregulation of the hypoxia signaling pathway including iron regulatory protein 1 (IRP1), which is a known regulator of HIF-2α mRNA translation. Functional studies were performed to investigate the consequences of these mutations, especially their effect on the HIF signaling pathway and EPO. Indel mutations (c.267-1_267delGGinsTA) were discovered at the exon 3 splicing site of IRP1. Minigene construct and splicing site analysis showed that the mutation led to a new splicing site and a frameshift mutation of IRP1, which caused a truncated protein. Fluorescence in situ hybridization analysis demonstrated heterozygous IRP1 deletions in tumor cells. Immunohistochemistry results confirmed the truncated IRP1 and overexpressed HIF-2α, EPO and EPOR in tumor cells.

Conclusions: This is the first report which provides direct molecular genetic evidence of association between a somatic IRP1 loss-of-function mutation and PHEO and secondary polycythemia. In patients diagnosed with PHEO/PGL and polycythemia with negative genetic testing for mutations in HIF2A, PHD1/2, and VHL, IRP1 should be considered as a candidate gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12885-018-4127-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850917PMC
March 2018

Erythropoietin drives breast cancer progression by activation of its receptor EPOR.

Oncotarget 2017 Jun;8(24):38251-38263

Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK.

Breast cancer is a leading cause of cancer-related deaths. Anemia is common in breast cancer patients and can be treated with blood transfusions or with recombinant erythropoietin (EPO) to stimulate red blood cell production. Clinical studies have indicated decreased survival in some groups of cancer patients treated with EPO. Numerous tumor cells express the EPO receptor (EPOR), posing a risk that EPO treatment would enhance tumor growth, but the mechanisms involved in breast tumor progression are poorly understood.Here, we have examined the functional role of the EPO-EPOR axis in pre-clinical models of breast cancer. EPO induced the activation of PI3K/AKT and MAPK pathways in human breast cancer cell lines. EPOR knockdown abrogated human tumor cell growth, induced apoptosis through Bim, reduced invasiveness, and caused downregulation of MYC expression. EPO-induced MYC expression is mediated through the PI3K/AKT and MAPK pathways, and overexpression of MYC partially rescued loss of cell proliferation caused by EPOR downregulation. In a xenotransplantation model, designed to simulate recombinant EPO therapy in breast cancer patients, knockdown of EPOR markedly reduced tumor growth.Thus, our experiments in vitro and in vivo demonstrate that functional EPOR signaling is essential for the tumor-promoting effects of EPO and underline the importance of the EPO-EPOR axis in breast tumor progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.16368DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503530PMC
June 2017

POU2F1 activity regulates HOXD10 and HOXD11 promoting a proliferative and invasive phenotype in head and neck cancer.

Oncotarget 2014 Sep;5(18):8803-15

Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL. The Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL and The Belfast Trust, Belfast City Hospital, Lisburn Road, Belfast.

HOX genes are master regulators of organ morphogenesis and cell differentiation during embryonic development, and continue to be expressed throughout post-natal life. To test the hypothesis that HOX genes are dysregulated in head and neck squamous cell carcinoma (HNSCC) we defined their expression profile, and investigated the function, transcriptional regulation and clinical relevance of a subset of highly expressed HOXD genes. Two HOXD genes, D10 and D11, showed strikingly high levels in HNSCC cell lines, patient tumor samples and publicly available datasets. Knockdown of HOXD10 in HNSCC cells caused decreased proliferation and invasion, whereas knockdown of HOXD11 reduced only invasion. POU2F1 consensus sequences were identified in the 5' DNA of HOXD10 and D11. Knockdown of POU2F1 significantly reduced expression of HOXD10 and D11 and inhibited HNSCC proliferation. Luciferase reporter constructs of the HOXD10 and D11 promoters confirmed that POU2F1 consensus binding sites are required for optimal promoter activity. Utilizing patient tumor samples a significant association was found between immunohistochemical staining of HOXD10 and both the overall and the disease-specific survival, adding further support that HOXD10 is dysregulated in head and neck cancer. Additional studies are now warranted to fully evaluate HOXD10 as a prognostic tool in head and neck cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226723PMC
http://dx.doi.org/10.18632/oncotarget.2492DOI Listing
September 2014

A knock-in mouse model of human PHD2 gene-associated erythrocytosis establishes a haploinsufficiency mechanism.

J Biol Chem 2013 Nov 11;288(47):33571-33584. Epub 2013 Oct 11.

Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104. Electronic address:

The central pathway for controlling red cell mass is the PHD (prolyl hydroxylase domain protein):hypoxia-inducible factor (HIF) pathway. HIF, which is negatively regulated by PHD, activates numerous genes, including ones involved in erythropoiesis, such as the ERYTHROPOIETIN (EPO) gene. Recent studies have implicated PHD2 as the key PHD isoform regulating red cell mass. Studies of humans have identified erythrocytosis-associated, heterozygous point mutations in the PHD2 gene. A key question concerns the mechanism by which human mutations lead to phenotypes. In the present report, we generated and characterized a mouse line in which a P294R knock-in mutation has been introduced into the mouse Phd2 locus to model the first reported human PHD2 mutation (P317R). Phd2(P294R/+) mice display a degree of erythrocytosis equivalent to that seen in Phd2(+/-) mice. The Phd2(P294R/+)-associated erythrocytosis is reversed in a Hif2a(+/-), but not a Hif1a(+/-) background. Additional studies using various conditional knock-outs of Phd2 reveal that erythrocytosis can be induced by homozygous and heterozygous knock-out of Phd2 in renal cortical interstitial cells using a Pax3-Cre transgene or by homozygous knock-out of Phd2 in hematopoietic progenitors driven by a Vav1-Cre transgene. These studies formally prove that a missense mutation in PHD2 is the cause of the erythrocytosis, show that this occurs through haploinsufficiency, and point to multifactorial control of red cell mass by PHD2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M113.482364DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837105PMC
November 2013

Erythrocytosis and pulmonary hypertension in a mouse model of human HIF2A gain of function mutation.

J Biol Chem 2013 Jun 2;288(24):17134-44. Epub 2013 May 2.

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

The central pathway for oxygen-dependent control of red cell mass is the prolyl hydroxylase domain protein (PHD):hypoxia inducible factor (HIF) pathway. PHD site specifically prolyl hydroxylates the transcription factor HIF-α, thereby targeting the latter for degradation. Under hypoxia, this modification is attenuated, allowing stabilized HIF-α to activate target genes, including that for erythropoietin (EPO). Studies employing genetically modified mice point to Hif-2α, one of two main Hif-α isoforms, as being the critical regulator of Epo in the adult mouse. More recently, erythrocytosis patients with heterozygous point mutations in the HIF2A gene have been identified; whether these mutations were polymorphisms unrelated to the phenotype could not be ruled out. In the present report, we characterize a mouse line bearing a G536W missense mutation in the Hif2a gene that corresponds to the first such human mutation identified (G537W). We obtained mice bearing both heterozygous and homozygous mutations at this locus. We find that these mice display, in a mutation dose-dependent manner, erythrocytosis and pulmonary hypertension with a high degree of penetrance. These findings firmly establish missense mutations in HIF-2α as a cause of erythrocytosis, highlight the importance of this HIF-α isoform in erythropoiesis, and point to physiologic consequences of HIF-2α dysregulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M112.444059DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682519PMC
June 2013

Entinostat prevents leukemia maintenance in a collaborating oncogene-dependent model of cytogenetically normal acute myeloid leukemia.

Stem Cells 2013 Jul;31(7):1434-45

Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK.

The incidence of refractory acute myeloid leukemia (AML) is on the increase due in part to an aging population that fails to respond to traditional therapies. High throughput genomic analysis promises better diagnosis, prognosis, and therapeutic intervention based on improved patient stratification. Relevant preclinical models are urgently required to advance drug development in this area. The collaborating oncogenes, HOXA9 and MEIS1, are frequently co-overexpressed in cytogenetically normal AML (CN-AML), and a conditional transplantation mouse model was developed that demonstrated oncogene dependency and expression levels comparable to CN-AML patients. Integration of gene signatures obtained from the mouse model and a cohort of CN-AML patients using statistically significant connectivity map analysis identified Entinostat as a drug with the potential to alter the leukemic condition toward the normal state. Ex vivo treatment of leukemic cells, but not age-matched normal bone marrow controls, with Entinostat validated the gene signature and resulted in reduced viability in liquid culture, impaired colony formation, and loss of the leukemia initiating cell. Furthermore, in vivo treatment with Entinostat resulted in prolonged survival of leukemic mice. This study demonstrates that the HDAC inhibitor Entinostat inhibits disease maintenance and prolongs survival in a clinically relevant murine model of cytogenetically normal AML.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.1398DOI Listing
July 2013

Methemoglobin reductase deficiency: novel mutation is associated with a disease phenotype of intermediate severity.

J Pediatr Hematol Oncol 2012 Aug;34(6):457-60

Department of Haematology, Belfast City Hospital, Belfast, Northern Ireland.

Background: Cytochrome b5 reductase (CB5R) deficiency is a recessively inherited autosomal disorder that is either benign (type I) or associated with severe neurological problems (type II). Specific mutations in the CYB5R gene are not exclusive to each type.

Observation: Two cyanotic children with developmental delay but with slow progression were investigated for CB5R deficiency. A novel mutation, p.Arg58Pro, was independently detected in both cases.

Conclusions: The clinical variability and severity of the disease reflect the combined effects of impaired function of the 2 mutant enzymes. As illustrated by these 2 cases, inheritance of p.Arg58Pro with either p.Gly76Ser or pLeu188del causes a clinical condition more severe than type I and less severe than the type II cases reported to date.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/MPH.0b013e318257a492DOI Listing
August 2012

Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: associations of maternal A1C and glucose with pregnancy outcomes.

Diabetes Care 2012 Mar 1;35(3):574-80. Epub 2012 Feb 1.

Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.

Objective: To compare associations of maternal glucose and A1C with adverse outcomes in the multinational Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study and determine, based on those comparisons, if A1C measurement can provide an alternative to an oral glucose tolerance test (OGTT) in pregnant women.

Research Design And Methods: Eligible pregnant women underwent a 75-g OGTT at 24-32 weeks' gestation. A sample for A1C was also collected. Neonatal anthropometrics and cord serum C-peptide were measured. Associations with outcomes were assessed using multiple logistic regression with adjustment for potential confounders.

Results: Among 23,316 HAPO Study participants with glucose levels blinded to caregivers, 21,064 had a nonvariant A1C result. The mean ± SD A1C was 4.79 ± 0.40%. Associations were significantly stronger with glucose measures than with A1C for birth weight, sum of skinfolds, and percent body fat >90th percentile and for fasting and 1-h glucose for cord C-peptide (all P < 0.01). For example, in fully adjusted models, odds ratios (ORs) for birth weight >90th percentile for each measure higher by 1 SD were 1.39, 1.45, and 1.38, respectively, for fasting, 1-, and 2-h plasma glucose and 1.15 for A1C. ORs for cord C-peptide >90th percentile were 1.56, 1.45, and 1.35 for glucose, respectively, and 1.32 for A1C. ORs were similar for glucose and A1C for primary cesarean section, preeclampsia, and preterm delivery.

Conclusions: On the basis of associations with adverse outcomes, these findings suggest that A1C measurement is not a useful alternative to an OGTT in pregnant women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/dc11-1687DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322718PMC
March 2012

Potential prognostic marker ubiquitin carboxyl-terminal hydrolase-L1 does not predict patient survival in non-small cell lung carcinoma.

J Exp Clin Cancer Res 2011 Aug 30;30:79. Epub 2011 Aug 30.

Department of Haematology, Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, UK, BT9 7BL.

Background: Ubiquitin Carboxyl-Terminal Hydrolase-L1 (UCH-L1) is a deubiquitinating enzyme that is highly expressed throughout the central and peripheral nervous system and in cells of the diffuse neuroendocrine system. Aberrant function of UCH-L1 has been associated with neurological disorders such as Parkinson's disease and Alzheimer's disease. Moreover, UCH-L1 exhibits a variable expression pattern in cancer, acting either as a tumour suppressor or promoter, depending on the type of cancer. In non-small cell lung carcinoma primary tumour samples, UCH-L1 is highly expressed and is associated with an advanced tumour stage. This suggests UCH-L1 may be involved in oncogenic transformation and tumour invasion in NSCLC. However, the functional significance of UCH-L1 in the progression of NSCLC is unclear. The aim of this study was to investigate the role of UCH-L1 using NSCLC cell line models and to determine if it is clinically relevant as a prognostic marker for advanced stage disease.

Methods: UCH-L1 expression in NSCLC cell lines H838 and H157 was modulated by siRNA-knockdown, and the phenotypic changes were assessed by flow cytometry, haematoxylin & eosin (H&E) staining and poly (ADP-ribose) polymerase (PARP) cleavage. Metastatic potential was measured by the presence of phosphorylated myosin light chain (MLC2). Tumour microarrays were examined immunohistochemically for UCH-L1 expression. Kaplan-Meier curves were generated using UCH-L1 expression levels and patient survival data extracted from Gene Expression Omnibus data files.

Results: Expression of UCH-L1 was decreased by siRNA in both cell lines, resulting in increased cell death in H838 adenocarcinoma cells but not in the H157 squamous cell line. However, metastatic potential was reduced in H157 cells. Immunohistochemical staining of UCH-L1 in patient tumours confirmed it was preferentially expressed in squamous cell carcinoma rather than adenocarcinoma. However the Kaplan-Meier curves generated showed no correlation between UCH-L1 expression levels and patient outcome.

Conclusions: Although UCH-L1 appears to be involved in carcinogenic processes in NSCLC cell lines, the absence of correlation with patient survival indicates that caution is required in the use of UCH-L1 as a potential prognostic marker for advanced stage and metastasis in lung carcinoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1756-9966-30-79DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3180428PMC
August 2011

The role of Pea3 group transcription factors in esophageal squamous cell carcinoma.

Am J Pathol 2011 Aug 31;179(2):992-1003. Epub 2011 May 31.

Center for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom.

The transcription factors Pea3, Erm, and Er81 can promote cancer initiation and progression in various types of solid tumors. However, their role in esophageal squamous cell carcinoma (ESCC) has not been elucidated. In this study, we found that the expression levels of Pea3 and Erm, but not that of Er81, were significantly higher in ESCC compared with nontumor esophageal epithelium. A high level of Pea3 expression was significantly correlated with a shorter overall survival in a cohort of 81 patients with ESCC and the subgroup with N1 stage tumor (Wilcoxon-Gehan test, P = 0.016 and P = 0.001, respectively). Pea3 was overexpressed in seven ESCC cell lines compared with two immortalized esophageal cell lines. Pea3 knockdown reduced cell proliferation and suppressed nonadherent growth, migration, and invasion in ESCC cells in vitro. In addition, Pea3 knockdown in ESCC cells resulted in a down-regulation of phospho-Akt and matrix metalloproteinase 13, whereas a significant positive correlation in the expression levels was observed between Pea3 and phospho-Akt (r = 0.281, P < 0.013) and between Pea3 and matrix metalloproteinase 13 in the human specimens (r = 0.462, P < 0.001). Moreover, Pea3 modulated the sensitivity of EC109 cells to doxorubicin, probably via reduced activity of the phosphatidylinositol 3-kinase-Akt-mammalian target of Rapamycin complex 1 pathway on Pea3 knockdown. In conclusion, our results suggest that Pea3 plays an important role in the progression of ESCC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2011.04.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157177PMC
August 2011

Autocrine/paracrine erythropoietin signalling promotes JAK/STAT-dependent proliferation of human cervical cancer cells.

Int J Cancer 2011 Dec 25;129(11):2566-76. Epub 2011 Mar 25.

Instituto de Investigaciones Biomedicas, Departamento de Biologia Molecular y Biotecnologia, UNAM, Mexico City, Mexico.

Erythropoietin (Epo) regulates erythropoiesis by binding to its receptor (EpoR) and promoting cell proliferation, differentiation and inhibition of apoptosis. Epo is widely used to treat cervical cancer-related anaemia. However, there are data suggesting that administration of Epo is associated with an increment in recurrence rate, and decreased disease-free and overall survival. In the present study, we investigated the expression of Epo and EpoR on cervical cancer cell lines. We observed that both EpoR and extracellular Epo are constitutively expressed in cervical cancer cells. Inhibition of either Epo or EpoR expression with siRNA attenuated cell proliferation, whereas addition of exogenous Epo led to a significant increase in cell growth, both in vitro and in vivo. Epo-induced proliferation was associated with the activation of JAK2, JAK3, STAT3 and STAT5 but not JAK1 and STAT1. Our results are consistent with the existence of a functional, endogenous Epo/EpoR system in cervical cancer with the capacity to activate the transduction of signals resulting in an increased proliferation potential.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.25935DOI Listing
December 2011

Polyomavirus enhancer activator 3 protein promotes breast cancer metastatic progression through Snail-induced epithelial-mesenchymal transition.

J Pathol 2011 May 14;224(1):78-89. Epub 2011 Mar 14.

Centre for Cancer Research and Cell Biology, Queen's University of Belfast, UK.

Polyomavirus enhancer activator 3 protein (Pea3), also known as ETV4, is a member of the Ets-transcription factor family, which promotes metastatic progression in various types of solid cancer. Pea3-driven epithelial-mesenchymal transition (EMT) has been described in lung and ovarian cancers. The mechanisms of Pea3-induced EMT, however, are largely unknown. Here we show that Pea3 overexpression promotes EMT in human breast epithelial cells through transactivation of Snail (SNAI1), an activator of EMT. Pea3 binds to the human Snail promoter through the two proximal Pea3 binding sites and enhances Snail expression. In addition, knockdown of Pea3 in invasive breast cancer cells results in down-regulation of Snail, partial reversal of EMT, and reduced invasiveness in vitro. Moreover, knockdown of Snail partially rescues the phenotype induced by Pea3 overexpression, suggesting that Snail is one of the mediators bridging Pea3 and EMT, and thereby metastatic progression of the cancer cells. In four breast cancer patient cohorts whose microarray and survival data were obtained from the Gene Expression Omnibus database, Pea3 and Snail expression are significantly correlated with each other and with overall survival of breast cancer patients. We further demonstrate that nuclear localization of Pea3 is associated with Snail expression in breast cancer cell lines and is an independent predictor of overall survival in a Chinese breast cancer patient cohort. In conclusion, our results suggest that Pea3 may be an important prognostic marker and a therapeutic target for metastatic progression of human breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.2859DOI Listing
May 2011

Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel-Lindau disease and HIF-2alpha gain-of-function mutation.

FASEB J 2011 Jun 9;25(6):2001-11. Epub 2011 Mar 9.

Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Rd., Oxford, OX1 3PT, UK.

The hypoxia-inducible factors (HIFs; isoforms HIF-1α, HIF-2α, HIF-3α) mediate many responses to hypoxia. Their regulation is principally by oxygen-dependent degradation, which is initiated by hydroxylation of specific proline residues followed by binding of von Hippel-Lindau (VHL) protein. Chuvash polycythemia is a disorder with elevated HIF. It arises through germline homozygosity for hypomorphic VHL alleles and has a phenotype of hematological, cardiopulmonary, and metabolic abnormalities. This study explores the phenotype of two other HIF pathway diseases: classic VHL disease and HIF-2α gain-of-function mutation. No cardiopulmonary abnormalities were detected in classic VHL disease. HIF-2α gain-of-function mutations were associated with pulmonary hypertension, increased cardiac output, increased heart rate, and increased pulmonary ventilation relative to metabolism. Comparison of the HIF-2α gain-of-function responses with data from studies of Chuvash polycythemia suggested that other aspects of the Chuvash phenotype were diminished or absent. In classic VHL disease, patients are germline heterozygous for mutations in VHL, and the present results suggest that a single wild-type allele for VHL is sufficient to maintain normal cardiopulmonary function. The HIF-2α gain-of-function phenotype may be more limited than the Chuvash phenotype either because HIF-1α is not elevated in the former condition, or because other HIF-independent functions of VHL are perturbed in Chuvash polycythemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.10-177378DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159892PMC
June 2011

Regulation of human metabolism by hypoxia-inducible factor.

Proc Natl Acad Sci U S A 2010 Jul 28;107(28):12722-7. Epub 2010 Jun 28.

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom.

The hypoxia-inducible factor (HIF) family of transcription factors directs a coordinated cellular response to hypoxia that includes the transcriptional regulation of a number of metabolic enzymes. Chuvash polycythemia (CP) is an autosomal recessive human disorder in which the regulatory degradation of HIF is impaired, resulting in elevated levels of HIF at normal oxygen tensions. Apart from the polycythemia, CP patients have marked abnormalities of cardiopulmonary function. No studies of integrated metabolic function have been reported. Here we describe the response of these patients to a series of metabolic stresses: exercise of a large muscle mass on a cycle ergometer, exercise of a small muscle mass (calf muscle) which allowed noninvasive in vivo assessments of muscle metabolism using (31)P magnetic resonance spectroscopy, and a standard meal tolerance test. During exercise, CP patients had early and marked phosphocreatine depletion and acidosis in skeletal muscle, greater accumulation of lactate in blood, and reduced maximum exercise capacities. Muscle biopsy specimens from CP patients showed elevated levels of transcript for pyruvate dehydrogenase kinase, phosphofructokinase, and muscle pyruvate kinase. In cell culture, a range of experimental manipulations have been used to study the effects of HIF on cellular metabolism. However, these approaches provide no potential to investigate integrated responses at the level of the whole organism. Although CP is relatively subtle disorder, our study now reveals a striking regulatory role for HIF on metabolism during exercise in humans. These findings have significant implications for the development of therapeutic approaches targeting the HIF pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1002339107DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906567PMC
July 2010

Complete array of HOX gene expression by RQ-PCR.

Methods Mol Biol 2009 ;538:369-93

Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland.

In mammals the HOX network consists of 39 genes which encode master regulators of developmental processes including hematopoiesis. Many of the chromosomal translocations associated with acute leukemias involve HOX genes directly or some of their regulatory factors, e.g., mixed lineage leukaemia (MLL), leading to inappropriate expression of certain subsets of the genes. Evolutionarily, the HOX genes are thought to have arisen by duplication and divergence from a primordial gene. Consequently, they exhibit a high degree of sequence similarity, particularly in the homeobox domain. HOX gene expression, the HOXOME, can be quantified by real-time quantitative PCR (RQ-PCR) using carefully selected reagents. In practice, an RQ-PCR platform based on Taqman probe chemistry has proved valuable for the precise measurement of individual human and murine HOX genes with a high degree of specificity, over a wide dynamic range. Defining the roles for HOX in hematopoiesis should help to elucidate the mechanisms of deregulation in leukemia and eventually identify targets for therapeutic intervention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-418-6_19DOI Listing
May 2009

Erythrocytosis-associated HIF-2alpha mutations demonstrate a critical role for residues C-terminal to the hydroxylacceptor proline.

J Biol Chem 2009 Apr 10;284(14):9050-8. Epub 2009 Feb 10.

Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

A classic physiologic response to hypoxia in humans is the up-regulation of the ERYTHROPOIETIN (EPO) gene, which is the central regulator of red blood cell mass. The EPO gene, in turn, is activated by hypoxia inducible factor (HIF). HIF is a transcription factor consisting of an alpha subunit (HIF-alpha) and a beta subunit (HIF-beta). Under normoxic conditions, prolyl hydroxylase domain protein (PHD, also known as HIF prolyl hydroxylase and egg laying-defective nine protein) site specifically hydroxylates HIF-alpha in a conserved LXXLAP motif (where underlining indicates the hydroxylacceptor proline). This provides a recognition motif for the von Hippel Lindau protein, a component of an E3 ubiquitin ligase complex that targets hydroxylated HIF-alpha for degradation. Under hypoxic conditions, this inherently oxygen-dependent modification is arrested, thereby stabilizing HIF-alpha and allowing it to activate the EPO gene. We previously identified and characterized an erythrocytosis-associated HIF2A mutation, G537W. More recently, we reported two additional erythrocytosis-associated HIF2A mutations, G537R and M535V. Here, we describe the functional characterization of these two mutants as well as a third novel erythrocytosis-associated mutation, P534L. These mutations affect residues C-terminal to the LXXLAP motif. We find that all result in impaired degradation and thus aberrant stabilization of HIF-2alpha. However, each exhibits a distinct profile with respect to their effects on PHD2 binding and von Hippel Lindau interaction. These findings reinforce the importance of HIF-2alpha in human EPO regulation, demonstrate heterogeneity of functional defects arising from these mutations, and point to a critical role for residues C-terminal to the LXXLAP motif in HIF-alpha.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M808737200DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666553PMC
April 2009

Quantification of Hox and surfactant protein-B transcription during murine lung development.

Neonatology 2009 10;96(1):50-60. Epub 2009 Feb 10.

Regional Neonatal Unit, Royal Maternity Hospital, Grosvenor Road, Belfast BT12 6BB, UK.

Background: Genetic processes underlying fetal lung development and maturation are incompletely understood. Better knowledge of these processes would provide insights into the causes of lung malformations and prevention of respiratory distress syndrome and the potential adverse effects of glucocorticoids. Hox genes are involved in the lung branching morphogenesis and maturation of respiratory epithelium, but their expression pattern remains to be defined.

Objectives: We hypothesized that genes involved in lung branching would be downregulated during early development, whereas those involved in maturation would be unchanged or upregulated.

Methods: TaqMan real-time primers and probes were designed for all 39 murine Hox genes, and the murine SP-B gene and transcription profiles of these genes were obtained from whole lungs isolated at e14.5, e16.5, e18.5, e19.5 and postnatal days 1 and 20.

Results: Hox genes in clusters A and B, specifically those between paralog groups 3 and 7, were the most represented, with Hoxa4 and Hoxa5 being the most highly transcribed. A wave of reduced transcription in 16 Hox genes, coincident with increased SP-B transcription, was observed with advancing gestation. Consistently high transcription of Hoxa5 from e14.5 to postnatal day 20 may indicate that sustained transcription is required for normal lung maturation. When e15.5 lungs were cultured with dexamethasone, Hoxb6, Hoxb7 and Hoxb8 levels were significantly upregulated, creating the potential for modulation of diverse downstream target genes.

Conclusions: Improved understanding of the genetic processes underlying lung development afforded by our Q-PCR platform may allow development of more specific methods for inducing fetal lung maturation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000201739DOI Listing
September 2009

Hoxa6 potentiates short-term hemopoietic cell proliferation and extended self-renewal.

Exp Hematol 2009 Mar 20;37(3):322-33.e3. Epub 2009 Jan 20.

Haematology, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK.

Hemopoietic progenitor cells express clustered homeobox (Hox) genes in a pattern characteristic of their lineage and stage of differentiation. In general, HOX expression tends to be higher in more primitive and lower in lineage-committed cells. These trends have led to the hypothesis that self-renewal of hemopoietic stem/progenitor cells is HOX-dependent and that dysregulated HOX expression underlies maintenance of the leukemia-initiating cell. Gene expression profile studies support this hypothesis and specifically highlight the importance of the HOXA cluster in hemopoiesis and leukemogenesis. Within this cluster HOXA6 and HOXA9 are highly expressed in patients with acute myeloid leukemia and form part of the "Hox code" identified in murine models of this disease. We have examined endogenous expression of Hoxa6 and Hoxa9 in purified primary progenitors as well as four growth factor-dependent cell lines FDCP-Mix, EML, 32Dcl3, and Ba/F3, representative of early multipotential and later committed precursor cells respectively. Hoxa6 was consistently higher expressed than Hoxa9, preferentially expressed in primitive cells and was both growth-factor and cell-cycle regulated. Enforced overexpression of HOXA6 or HOXA9 in FDCP-Mix resulted in increased proliferation and colony formation but had negligible effect on differentiation. In both FDCP-Mix and the more committed Ba/F3 precursor cells overexpression of HOXA6 potentiated factor-independent proliferation. These findings demonstrate that Hoxa6 is directly involved in fundamental processes of hemopoietic progenitor cell development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2008.10.015DOI Listing
March 2009

Grappling with the HOX network in hematopoiesis and leukemia.

Front Biosci 2008 May 1;13:4297-308. Epub 2008 May 1.

Haematology, Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL.

The mammalian HOX gene network encodes a family of proteins which act as master regulators of developmental processes such as embryogenesis and hematopoiesis. The complex arrangement, regulation and co-factor association of HOX has been an area of intense research, particularly in cancer biology, for over a decade. The concept of redeployment of embryonic regulators in the neoplastic arena has received support from many quarters. Observations of altered HOX gene expression in various solid tumours and leukemia appear to support the thesis that 'oncology recapitulates ontogeny' but the identification of critical HOX subsets and their functional role in cancer onset and maintenance requires further investigation. The application of novel techniques and model systems will continue to enhance our understanding of the HOX network in the years to come. Better understanding of the intricacy of the complex as well as identification of functional pathways and direct targets of the encoded proteins will permit harnessing of this family of genes for clinical application.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2741/3006DOI Listing
May 2008

Novel exon 12 mutations in the HIF2A gene associated with erythrocytosis.

Blood 2008 Jun 31;111(11):5400-2. Epub 2008 Mar 31.

Department of Haematology, Belfast City Hospital, Belfast, United Kingdom.

Erythrocytosis can arise from deregulation of the erythropoietin (Epo) axis resulting from defects in the oxygen-sensing pathway. Epo synthesis is controlled by the hypoxia inducible factor (HIF) complex, composed of an alpha and a beta subunit. There are 2 main alpha subunits, HIF-1 alpha and HIF-2 alpha. Recently, a HIF-2 alpha Gly537Trp mutation was identified in a family with erythrocytosis. This raises the possibility of HIF2A mutations being associated with other cases of erythrocytosis. We now report a subsequent analysis of HIF2A in a cohort of 75 erythrocytosis patients and identify 4 additional patients with novel heterozygous Met535Val and Gly537Arg mutations. All patients presented at a young age with elevated serum Epo. Mutations at Gly-537 account for 4 of 5 HIF2A mutations associated with erythrocytosis. These findings support the importance of HIF-2 alpha in human Epo regulation and warrant investigation of HIF2A in patients with unexplained erythrocytosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2008-02-137703DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396730PMC
June 2008

A gain-of-function mutation in the HIF2A gene in familial erythrocytosis.

N Engl J Med 2008 Jan;358(2):162-8

Belfast City Hospital, Northern Ireland, United Kingdom.

Hypoxia-inducible factor (HIF) alpha, which has three isoforms, is central to the continuous balancing of the supply and demand of oxygen throughout the body. HIF-alpha is a transcription factor that modulates a wide range of processes, including erythropoiesis, angiogenesis, and cellular metabolism. We describe a family with erythrocytosis and a mutation in the HIF2A gene, which encodes the HIF-2alpha protein. Our functional studies indicate that this mutation leads to stabilization of the HIF-2alpha protein and suggest that wild-type HIF-2alpha regulates erythropoietin production in adults.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa073123DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2295209PMC
January 2008

Pathophysiology of anemia and erythrocytosis.

Crit Rev Oncol Hematol 2007 Nov 25;64(2):139-58. Epub 2007 Jul 25.

Haematology Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom.

An increasing understanding of the process of erythropoiesis raises some interesting questions about the pathophysiology, diagnosis and treatment of anemia and erythrocytosis. The mechanisms underlying the development of many of the erythrocytoses, previously characterised as idiopathic, have been elucidated leading to an increased understanding of oxygen homeostasis. Characterisation of anemia and erythrocytosis in relation to serum erythropoietin levels can be a useful addition to clinical diagnostic criteria and provide a rationale for treatment with erythropoiesis stimulating agents (ESAs). Recombinant human erythropoietin as well as other ESAs are now widely used to treat anemias associated with a range of conditions, including chronic kidney disease, chronic inflammatory disorders and cancer. There is also heightened awareness of the potential abuse of ESAs to boost athletic performance in competitive sport. The discovery of erythropoietin receptors outside of the erythropoietic compartment may herald future applications for ESAs in the management of neurological and cardiac diseases. The current controversy concerning optimal hemoglobin levels in chronic kidney disease patients treated with ESAs and the potential negative clinical outcomes of ESA treatment in cancer reinforces the need for cautious evaluation of the pleiotropic effects of ESAs in non-erythroid tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.critrevonc.2007.06.006DOI Listing
November 2007

A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove.

Blood 2007 Sep 19;110(6):2193-6. Epub 2007 Jun 19.

Department of Haematology, Belfast City Hospital, Belfast, United Kingdom.

The molecular basis of the erythrocytosis group of red cell disorders is incompletely defined. Some cases are due to dysregulation of erythropoietin (Epo) synthesis. The hypoxia inducible transcription factor (HIF) tightly regulates Epo synthesis. HIF in turn is regulated through its alpha subunit, which under normoxic conditions is hydroxylated on specific prolines and targeted for degradation by the von Hippel Lindau (VHL) protein. Several mutations in VHL have been reported in erythrocytosis, but only 1 mutation in the HIF prolyl hydroxylase PHD2 (prolyl hydroxylase domain protein 2) has been described. Here, we report a novel PHD2 mutation, Arg371His, which causes decreased HIF binding, HIF hydroxylase, and HIF inhibitory activities. In the tertiary structure of PHD2, Arg371 lies close to the previously described Pro317Arg mutation site. These findings substantiate PHD2 as a critical enzyme controlling HIF and therefore Epo in humans, and furthermore suggest the location of an active site groove in PHD2 that binds HIF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2007-04-084434DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1976349PMC
September 2007

Warning flags for erythropoiesis-stimulating agents and cancer-associated anemia.

Oncologist 2007 Apr;12(4):362-5

Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Belfast City Hospital, Belfast BT9 7AB, Northern Ireland.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1634/theoncologist.12-4-362DOI Listing
April 2007

Erythropoietin receptor expression in non-small cell lung carcinoma: a question of antibody specificity.

Stem Cells 2007 Mar 16;25(3):718-22. Epub 2006 Nov 16.

Department of Pathology, Institute of Pathology, Royal Group of Hospitals Trust, Grosvenor Road, Belfast BT12 6BA, United Kingdom.

Immunohistochemical studies on formalin-fixed, paraffin-embedded (FFPE) tissue utilizing polyclonal antibodies form the cornerstone of many reports claiming to demonstrate erythropoietin receptor (EPOR) expression in malignant tissue. Recently, Elliott et al. (Blood 2006;107:1892-1895) reported that the antibodies commonly used to detect EPOR expression also detect non-EPOR proteins, and that their binding to EPOR was severely abrogated by two synthetic peptides based on the sequence of heat shock protein (HSP) 70, HSP70-2, and HSP70-5. We have investigated the specificity of the C20 antibody for detecting EPOR expression in non-small cell lung carcinoma (NSCLC) utilizing tissue microarrays. A total of 34 cases were available for study. Antibody absorbed with peptide resulted in marked suppression of cytoplasmic staining compared with nonabsorbed antibody. Four tumors that initially showed a membranous pattern of staining retained this pattern with absorbed antibody. Positive membranous immunoreactivity was also observed in 6 of 30 tumors that originally showed a predominantly cytoplasmic pattern of staining. Using the C20 antibody for Western blots, we detected three main bands, at 100, 66, and 59 kDa. Preincubation with either peptide caused abolition of the 66-kDa band, which contains non-EPOR sequences including heat shock peptides. These results call into question the significance of previous immunohistochemical studies of EPOR expression in malignancy and emphasize the need for more specific anti-EPOR antibodies to define the true extent of EPOR expression in neoplastic tissue.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1634/stemcells.2006-0687DOI Listing
March 2007
-->