Publications by authors named "Tercilio Calsa Junior"

6 Publications

  • Page 1 of 1

Evaluation of quality and gene expression of goat embryos produced in vivo and in vitro after cryopreservation.

Cryobiology 2021 May 5. Epub 2021 May 5.

Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil. Electronic address:

In the present study, we aimed to identify morphological and molecular changes of in vivo and in vitro-produced goat embryos submitted to cryopreservation. In vivo embryos were recovered by transcervical technique from superovulated goats, whereas in vitro produced embryos were produced from ovaries collected at a slaughterhouse. Embryos were frozen by two-steps slow freezing method, which is defined as freezing to -32 °C followed by transfer to liquid nitrogen. Morphological evaluation of embryos was carried out by assessing blastocoel re-expansion rate and the total number of blastomeres. The expression profile of candidate genes related to thermal and oxidative stress, apoptosis, epigenetic, and implantation control was measured using RT-qPCR based SYBR Green system. In silico analyses were performed to identify conserved genes in goat species and protein-protein interaction networks were created. In vivo-produced embryos showed greater blastocoel re-expansion and more blastomere cells (P < 0.05). The expression level of CTP2 and HSP90 genes from in vitro cryopreserved embryos was higher than their in vivo counterparts. Unlikely, no significant difference was observed in the transcription level of SOD gene between groups. The high similarity of CPT2 and HSP90 proteins to their orthologs among mammals indicates that they share conserved functions. In summary, cryopreservation negatively affects the morphology and viability of goat embryos produced in vitro and changes the CPT2 and HSP90 gene expression likely in response to the in vitro production process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cryobiol.2021.04.008DOI Listing
May 2021

Comparative proteomic analyses reveal the metabolic aspects and biotechnological potential of nitrate assimilation in the yeast Dekkera bruxellensis.

Appl Microbiol Biotechnol 2021 Feb 4;105(4):1585-1600. Epub 2021 Feb 4.

Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife, PE, 50760-901, Brazil.

The yeast Dekkera bruxellensis is well-known for its adaptation to industrial ethanol fermentation processes, which can be further improved if nitrate is present in the substrate. To date, the assimilation of nitrate has been considered inefficient because of the apparent energy cost imposed on cell metabolism. Recent research, however, has shown that nitrate promotes growth rate and ethanol yield when oxygen is absent from the environment. Given this, the present work aimed to identify the biological mechanisms behind this physiological behaviour. Proteomic analyses comparing four contrasting growth conditions gave some clues on how nitrate could be used as primary nitrogen source by D. bruxellensis GDB 248 (URM 8346) cells in anaerobiosis. The superior anaerobic growth in nitrate seems to be a consequence of increased cell metabolism (glycolytic pathway, production of ATP and NADPH and anaplerotic reactions providing metabolic intermediates) regulated by balanced activation of TORC1 and NCR de-repression mechanisms. On the other hand, the poor growth observed in aerobiosis is likely due to an oxidative stress triggered by nitrate when oxygen is present. These results represent a milestone regarding the knowledge about nitrate metabolism and might be explored for future use of D. bruxellensis as an industrial yeast. KEY POINTS: • Nitrate can be regarded as preferential nitrogen source for D. bruxellensis. • Oxidative stress limits the growth of D. bruxellensis in nitrate in aerobiosis. • Nitrate is a nutrient for novel industrial bioprocesses using D. bruxellensis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-021-11117-0DOI Listing
February 2021

Vegetative desiccation tolerance of Tripogon spicatus (Poaceae) from the tropical semiarid region of northeastern Brazil.

Funct Plant Biol 2017 Oct;44(11):1124-1133

Empresa Brasileira de Pesquisa Agropecuária Embrapa Semiárido, Rodovia BR 428, km 152, PO Box 23, Petrolina, Pernambuco, Brazil.

The vegetative desiccation tolerance of Tripogon spicatus (Nees) Ekman was confirmed by its ability to recover the physiological functionality of intact plants previously subjected to extreme dehydration. Photosynthesis became undetectable when leaf relative water content (RWCleaf) achieved ~60%, whereas photochemical variables showed a partial decrease. Until the minimum RWCleaf of 6.41%, total chl decreased by 9%, and total carotenoids increased by 29%. Superoxide dismutase (SOD) activity decreased by 57%, on average, during dehydration, but catalase (CAT) and peroxidase (APX) activities showed no significant differences throughout the experiment. Malondialdehyde (MDA) content increased by 151%, total leaf and root amino acids decreased by 62% and 77%, respectively, whereas leaf and root proline decreased by 40% and 61%, respectively, until complete desiccation. After rehydration, leaves completely recovered turgidity and total chl contents. Carotenoids and MDA remained high, whereas SOD was 60% lower than the measured average measured before dehydration. With the exception of root amino acid contents, total amino acids and proline concentrations recovered completely. Gas exchange and photochemical variables remained substantially higher 4 days after rehydration, compared with the control. Besides increasing MDA, the overall physiological results showed that membrane functionality was preserved, leading to the vegetative desiccation tolerance of T. spicatus during the dehydration-rehydration cycle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP17066DOI Listing
October 2017

Plant Proteomics and Peptidomics in Host-Pathogen Interactions: The Weapons Used by Each Side.

Curr Protein Pept Sci 2017 ;18(4):400-410

Av. Prof. Moraes Rego 1235, Cidade Universitaria, CEP 50670420, Recife, PE, Brazil.

Environmental biotic stress factors act continuously on plants, through multiple molecular interactions that eventually lead to the establishment and progress of symbiotic or pathogenic complex interactions. Proteins and peptides play noteworthy roles in such biological processes, usually being the main effectors since the initial recognizing and elicitor functions until the following transduction, gene regulation and physiological responses activities. Ranging from specific regulators to direct antimicrobial agents, plant or pathogen proteins and peptides comprise the arsenal available to each side in this biological war, resulting from the genetic coding potential inherited by each one. Post-translational research tools have widely contributed with valuable information on how the plant proteome works to achieve, maintain and adjust plant immunity in order to properly cope with the challenging pathogenic derived proteomes. These key proteins and peptides have great biotechnological potential since they represent distinctive features of each pathogen group (fungi, bacteria, viruses and other) in response to molecules of defense of host plants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389203717666160724192305DOI Listing
November 2017

Cell wall, lignin and fatty acid-related transcriptome in soybean: Achieving gene expression patterns for bioenergy legume.

Genet Mol Biol 2012 Jun;35(1 (suppl)):322-30

Laboratório de Genômica e Proteômica de Plantas, Departamento de Genética, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brazil.

Increasing efforts to preserve environmental resources have included the development of more efficient technologies to produce energy from renewable sources such as plant biomass, notably through biofuels and cellulosic residues. The relevance of the soybean industry is due mostly to oil and protein production which, although interdependent, results from coordinated gene expression in primary metabolism. Concerning biomass and biodiesel, a comprehensive analysis of gene regulation associated with cell wall components (as polysaccharides and lignin) and fatty acid metabolism may be very useful for finding new strategies in soybean breeding for the expanding bioenergy industry. Searching the Genosoja transcriptional database for enzymes and proteins directly involved in cell wall, lignin and fatty acid metabolism provides gene expression datasets with frequency distribution and specific regulation that is shared among several cultivars and organs, and also in response to different biotic/abiotic stress treatments. These results may be useful as a starting point to depict the Genosoja database regarding gene expression directly associated with potential applications of soybean biomass and/or residues for bioenergy-producing technologies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1590/S1415-47572012000200013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392884PMC
June 2012

Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome.

Curr Genet 2004 Dec 4;46(6):366-73. Epub 2004 Nov 4.

ESALQ/Universidade de São Paulo, Av. Pádua Dias 11, Piracicaba, 13418-900 São Paulo, Brazil.

The complete nucleotide sequence of the chloroplast genome of sugarcane (Saccharum officinarum) was determined. It consists of 141,182 base-pairs (bp), containing a pair of inverted repeat regions (IR(A), IR(B)) of 22,794 bp each. The IR(A) and IR(B) sequences separate a small single copy region (12,546 bp) and a large single copy (83,048 bp) region. The gene content and relative arrangement of the 116 identified genes (82 peptide-encoding genes, four ribosomal RNA genes, 30 tRNA genes), with the 16 ycf genes, are highly similar to maize. Editing events, defined as C-to-U transitions in the mRNA sequences, were comparable with those observed in maize, rice and wheat. The conservation of gene organization and mRNA editing suggests a common ancestor for the sugarcane and maize plastomes. These data provide the basis for functional analysis of plastid genes and plastid metabolism within the Poaceae. The sugarcane chloroplast DNA sequence is available at GenBank under accession NC005878.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00294-004-0542-4DOI Listing
December 2004