Publications by authors named "Taweewun Hunsawong"

10 Publications

  • Page 1 of 1

Dengue pre-vaccination screening test evaluation for the use of dengue vaccine in an endemic area.

PLoS One 2021 10;16(9):e0257182. Epub 2021 Sep 10.

Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.

Background: The dengue vaccine (Dengvaxia) is only recommended for individuals with prior dengue infection (PDI). This study aimed to perform a serosurvey to inform decision-making for vaccine introduction and identify appropriate target populations. We also evaluated the performance of the serological tests using plaque reduction neutralization test (PRNT) as a reference test in identifying PDI to determine suitability for pre-vaccination screening.

Methods: We enrolled 115 healthy individuals between 10 and 22 years of age living in the Ratchaburi province of Thailand. The serum samples were tested by PRNT to measure the prevalence and concentration of serotype-specific neutralizing antibodies. The performance of the IgG rapid diagnostic test (RDT, SD Bioline, Korea) and IgG enzyme-linked immunosorbent assay (ELISA, EUROIMMUN, Germany) in identifying PDI were evaluated by using PRNT as a reference method.

Results: Ninety-four (81.7%) individuals neutralized one or more dengue serotypes at a titer threshold greater than or equal to 10. Multitypic profiles were observed in 70.4% of the samples which increased to 91.9% in subjects aged 19-22. Among monotypic samples, the highest proportion was reactive against DENV-1 followed by DENV-2, DENV-3, and DENV-4. The highest anti-dengue antibody titers were recorded against DENV-1 and increased with age to a geometric mean NT50 titer (GMT) of 188.6 in the 19-22 age group. While both RDT and ELISA exhibited 100% specificity, RDT demonstrated low sensitivity (35%) with ELISA displaying much greater sensitivity (87%).

Conclusions: Almost 80% of adolescents and youth in Ratchaburi province had already been exposed to one or more of the dengue virus serotypes. The dengue IgG RDT displayed low sensitivity and is likely not be suitable for dengue pre-vaccination screening. These results support the use of IgG ELISA test for dengue vaccination in endemic areas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257182PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432984PMC
September 2021

Standardization and Evaluation of an Anti-ZIKV IgM ELISA Assay for the Serological Diagnosis of Zika Virus Infection.

Am J Trop Med Hyg 2021 Aug 2. Epub 2021 Aug 2.

Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand.

Here, we describe the development of the in-house anti-Zika virus (ZIKV) IgM antibody capture ELISA (in-house ZIKV IgM ELISA) for the detection and diagnosis of acute ZIKV infections. We compared the in-house ZIKV IgM ELISA assay performance against two commercial kits, Euroimmun ZIKV IgM and InBios 2.0 ZIKV IgM ELISA. We tested the assays' ability to detect anti-ZIKV IgM using a well-defined serum sample panel. This panel included 80 ZIKV negative samples (20 negative, 20 found to be primary dengue virus [DENV][ infections, 20 secondary DENV infections, and 20 Japanese encephalitis virus [JEV] infections) and 67 ZIKV reverse transcriptase-polymerase chain reaction-positive acute serum samples. The OD values were calculated to US Energy Information Administration units by comparing them to weak positive controls. The results demonstrated the high sensitivity (88.06%) and specificity (90.00%) of our in-house ZIKV IgM ELISA and its 89.12% overall percentage agreement. The kappa values were deemed to be within excellent range and comparable to the InBios ZIKV IgM ELISA. Some cross-reactivity was observed among secondary DENV and JEV samples, and to a much lower extent, among primary DENV samples. These data indicate that our in-house ZIKV IgM ELISA is a reliable assay for the detection of anti-ZIKV IgM antibodies in serum.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4269/ajtmh.21-0163DOI Listing
August 2021

Sero-surveillance for SARS-CoV-2 infection among healthcare providers in four hospitals in Thailand one year after the first community outbreak.

PLoS One 2021 14;16(7):e0254563. Epub 2021 Jul 14.

Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand.

Background: Thailand was the first country outside China to report SARS-CoV-2 infected cases. Since the detection of the first imported case on January 12th, 2020 to the time this report was written, Thailand experienced two waves of community outbreaks (March-April 2020 and December 2020-March 2021). We examined prevalence of SARS-CoV-2 seropositivity among healthcare providers (HCPs) in four hospitals approximately one year after SARS-CoV-2 first detected in Thailand. By March 2021, these hospitals have treated a total of 709 coronavirus disease 2019 (COVID-19) patients.

Methods: Blood specimens, collected from COVID-19 unvaccinated HCPs during January-March 2021, were tested for the presence of SARS-CoV-2 immunoglobulin G (IgG) antibodies to nucleocapsid (IgG-nucleocapsid) and spike (IgG-spike) proteins using Euroimmune® enzyme-linked immunosorbent assays.

Results: Of 600 HCPs enrolled, 1 (0.2%) tested positive for the SARS-CoV-2 IgG-spike antibodies, but not the IgG-nucleocapsid.

Conclusion: The presence of SARS-CoV-2 IgG antibodies was rare in this sample of HCPs, suggesting that this population remains susceptible to SARS-CoV-2 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254563PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279322PMC
July 2021

Evaluation of the extended efficacy of the Dengvaxia vaccine against symptomatic and subclinical dengue infection.

Nat Med 2021 08 24;27(8):1395-1400. Epub 2021 Jun 24.

Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, USA.

More than half of the world's population lives in areas at risk for dengue virus infection. A vaccine will be pivotal to controlling spread, however, the only licensed vaccine, Dengvaxia, has been shown to increase the risk of severe disease in a subset of individuals. Vaccine efforts are hampered by a poor understanding of antibody responses, including those generated by vaccines, and whether antibody titers can be used as a marker of protection from infection or disease. Here we present the results of an ancillary study to a phase III vaccine study (n = 611). All participants received three doses of either Dengvaxia or placebo and were followed for 6 years. We performed neutralization tests on annual samples and during confirmed dengue episodes (n = 16,508 total measurements). We use mathematical models to reconstruct long-term antibody responses to vaccination and natural infection, and to identify subclinical infections. There were 87 symptomatic infections reported, and we estimated that there were a further 351 subclinical infections. Cumulative vaccine efficacy was positive for both subclinical and symptomatic infection, although the protective effect of the vaccine was concentrated in the first 3 years following vaccination. Among individuals with the same antibody titer, we found no difference between the risk of subsequent infection or disease between placebo and vaccine recipients, suggesting that antibody titers are a good predictor of both protection and disease risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-021-01392-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364868PMC
August 2021

Correlation between reported dengue illness history and seropositivity in rural Thailand.

PLoS Negl Trop Dis 2021 Jun 15;15(6):e0009459. Epub 2021 Jun 15.

State University of New York Upstate Medical University, Syracuse, New York, United States of America.

In the latest World Health Organization (WHO) recommendation for Dengvaxia implementation, either serological testing or a person's history of prior dengue illness may be used as supporting evidence to identify dengue virus (DENV)-immune individuals eligible for vaccination, in areas with limited capacity for laboratory confirmation. This analysis aimed to estimate the concordance between self-reported dengue illness histories and seropositivity in a prospective cohort study for dengue virus infection in Kamphaeng Phet province, a dengue-endemic area in northern Thailand. The study enrolled 2,076 subjects from 516 multigenerational families, with a median age of 30.6 years (range 0-90 years). Individual and family member dengue illness histories were obtained by questionnaire. Seropositivity was defined based on hemagglutination inhibition (HAI) assays. Overall seropositivity for DENV was 86.5% among those aged 9-45 years, which increased with age. 18.5% of participants reported a history of dengue illness prior to enrollment; 30.1% reported a previous DENV infection in the family, and 40.1% reported DENV infection in either themselves or a family member. Relative to seropositivity by HAI in the vaccine candidate group, the sensitivity and specificity of individual prior dengue illness history were 18.5% and 81.6%, respectively; sensitivity and specificity of reported dengue illness in a family member were 29.8% and 68.0%, and of either the individual or a family member were 40.1% and 60.5%. Notably, 13.4% of individuals reporting prior dengue illness were seronegative. Given the high occurrence of asymptomatic and mild DENV infection, self-reported dengue illness history is poorly sensitive for prior exposure and may misclassify individuals as 'exposed' when they were not. This analysis highlights that a simple, highly sensitive, and highly specific test for determining serostatus prior to Dengvaxia vaccination is urgently needed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pntd.0009459DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232416PMC
June 2021

Comparative Analyses of Historical Trends in Confirmed Dengue Illnesses Detected at Public Hospitals in Bangkok and Northern Thailand, 2002-2018.

Am J Trop Med Hyg 2020 Dec 14. Epub 2020 Dec 14.

Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand.

Dengue is a re-emerging global public health problem, the most common arbovirus causing human disease in the world, and a major cause of hospitalization in endemic countries causing significant economic burden. Data were analyzed from passive surveillance of hospital-attended dengue cases from 2002 to 2018 at Phramongkutklao Hospital (PMKH) located in Bangkok, Thailand, and Kamphaeng Phet Provincial Hospital (KPPH) located in the lower northern region of Thailand. At PMKH, serotype 1 proved to be the most common strain of the virus, whereas at KPPH, serotypes 1, 2, and 3 were the most common strains from 2006 to 2008, 2009 to 2012, and 2013 to 2015, respectively. The 11-17 years age-group made up the largest proportion of patients impacted by dengue illnesses during the study period at both sites. At KPPH, dengue virus (DENV)-3 was responsible for most cases of dengue fever (DF), whereas it was DENV-1 at PMKH. In cases where dengue hemorrhagic fever was the clinical diagnosis, DENV-2 was the predominant serotype at KPPH, whereas at PMKH, it was DENV-1. The overall disease prevalence remained consistent across the two study sites with DF being the predominant clinical diagnosis as the result of an acute secondary dengue infection, representing 40.7% of overall cases at KPPH and 56.8% at PMKH. The differences seen between these sites could be a result of climate change increasing the length of dengue season and shifts in migration patterns of these populations from rural to urban areas and vice versa.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4269/ajtmh.20-0396DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941814PMC
December 2020

Polytopic vaccination with a live-attenuated dengue vaccine enhances B-cell and T-cell activation, but not neutralizing antibodies.

Heliyon 2017 Mar 21;3(3):e00271. Epub 2017 Mar 21.

The United States Army Medical Materiel Development Activity, Fort Detrick, MD, USA.

Dengue, caused by dengue viruses (DENVs), is the most common arboviral disease of humans. Several dengue vaccine candidates are at different stages of clinical development and one has been licensed. Inoculation with live-attenuated DENV constructs is an approach that has been used by vaccine developers. Unfortunately, the simultaneous injection of all four attenuated DENV serotypes (DENV1-4) into a single injection site (monotopic vaccination) has been postulated to result in interference in the replication of some serotypes in favor of others, an important obstacle in obtaining a balanced immune response against all serotypes. Here, we demonstrate the virus replicative and immunostimulatory effects of polytopic monovalent dengue vaccination (PV) in which, each of the four components of the tetravalent vaccine is simultaneously delivered to four different sites versus the more traditional monotopic tetravalent vaccination (MV) in a non-human primate (NHP) model. With the exception of DENV-2, there was no significant difference in detectable viral RNA levels between PV and MV inoculation. Interestingly, longer periods of detection and higher viral RNA levels were seen in the lymph nodes of NHPs inoculated PV compared to MV. Induction of lymph node dendritic cell maturation and of blood T- and B-cell activation showed different kinetics in PV inoculated NHPs compared to MV. The MV inoculated group showed earlier maturation of dendritic cells and activation of B and T cells compared to PV inoculated NHPs. A similar kinetic difference was also observed in the cytokine response: MV induced earlier cytokine responses compared to PV. However, similar levels of DENV neutralizing antibodies were observed in PV and MV NHPs. These findings indicate that cellular immune response after vaccination may be affected by the location of inoculation. Design of vaccine delivery may need to take into account the effects of locations of vaccine delivery of multiples serotype live viral vaccine on the induction of immune response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heliyon.2017.e00271DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5367862PMC
March 2017

Immunogenic Properties of a BCG Adjuvanted Chitosan Nanoparticle-Based Dengue Vaccine in Human Dendritic Cells.

PLoS Negl Trop Dis 2015 Sep 22;9(9):e0003958. Epub 2015 Sep 22.

The United States Army Medical Materiel Development Activity, Fort Detrick, Maryland, United States of America.

Dengue viruses (DENVs) are among the most rapidly and efficiently spreading arboviruses. WHO recently estimated that about half of the world's population is now at risk for DENV infection. There is no specific treatment or vaccine available to treat or prevent DENV infections. Here, we report the development of a novel dengue nanovaccine (DNV) composed of UV-inactivated DENV-2 (UVI-DENV) and Mycobacterium bovis Bacillus Calmette-Guerin cell wall components (BCG-CWCs) loaded into chitosan nanoparticles (CS-NPs). CS-NPs were prepared by an emulsion polymerization method prior to loading of the BCG-CWCs and UVI-DENV components. Using a scanning electron microscope and a zetasizer, DNV was determined to be of spherical shape with a diameter of 372.0 ± 11.2 nm in average and cationic surface properties. The loading efficacies of BCG-CWCs and UVI-DENV into the CS-NPs and BCG-CS-NPs were up to 97.2 and 98.4%, respectively. THP-1 cellular uptake of UVI-DENV present in the DNV was higher than soluble UVI-DENV alone. DNV stimulation of immature dendritic cells (iDCs) resulted in a significantly higher expression of DCs maturation markers (CD80, CD86 and HLA-DR) and induction of various cytokine and chemokine productions than in UVI-DENV-treated iDCs, suggesting a potential use of BCG- CS-NPs as adjuvant and delivery system for dengue vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pntd.0003958DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578877PMC
September 2015

A novel dengue virus serotype-2 nanovaccine induces robust humoral and cell-mediated immunity in mice.

Vaccine 2015 Mar 18;33(14):1702-10. Epub 2015 Feb 18.

Department of Virology, Armed Force Research Institute of Medical Sciences, Bangkok, Thailand. Electronic address:

Dengue virus (DENV), a member of the Flaviviridae family, can be transmitted to humans through the bite of infected Aedes mosquitoes. The incidence of dengue has increased worldwide over the past few decades. Inadequate vector control, changing global ecology, increased urbanization, and faster global travel are factors enhancing the rapid spread of the virus and its vector. In the absence of specific antiviral treatments, the search for a safe and effective vaccine grows more imperative. Many strategies have been utilized to develop dengue vaccines. Here, we demonstrate the immunogenic properties of a novel dengue nanovaccine (DNV), composed of ultraviolet radiation (UV)-inactivated DENV-2, which has been loaded into the nanoparticles containing chitosan/Mycobacterium bovis Bacillus Calmette-Guerin cell wall components (CS/BCG-NPs). We investigated the immunogenicity of DNV in a Swiss albino mouse model. Inoculation with various concentrations of vaccine (0.3, 1, 3 and 10μg/dose) with three doses, 15-day apart, induced strong anti-dengue IgM and IgG antibodies in the mouse serum along with neutralizing antibody against DENV-2 reference strain (16681), a clinical-isolate strain (00745/10) and the mouse-adapted New Guinea-C (NGC) strain. Cytokine and chemokine secretion in the serum of DNV-immunized mice showed elevated levels of IFN-γ, IL-2, IL-5, IL-12p40, IL-12p70, IL-17, eotaxin and RANTES, all of which have varying immune functions. Furthermore, we observed a DNV dose-dependent increase in the frequencies of IFN-γ-producing CD4(+) and CD8(+) T cells after in vitro stimulation of nucleated cells. Based on these findings, DNV has the potential to become a candidate dengue vaccine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2015.02.016DOI Listing
March 2015

Estrogen is increased in male cholangiocarcinoma patients' serum and stimulates invasion in cholangiocarcinoma cell lines in vitro.

J Cancer Res Clin Oncol 2012 Aug 3;138(8):1311-20. Epub 2012 Apr 3.

Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand.

Purpose: Cholangiocarcinoma is defined as a chronic liver disease with altered estrogen metabolism and could result in estrogen retention. Estrogenic response was known as a promoting factor in progression of some cancer. In this study, we determined the significant increase of estrogen level in cholangiocarcinoma patients' sera.

Methods: The estrogen levels in cholangiocarcinoma patients' sera were measured and correlated with clinical presentations. Estrogen receptor-α expressions in cholangiocarcinoma tissues were detected by immunohistochemistry method. KKU-100 and KKU-M213 cholangiocarcinoma cell lines were treated with 17β-estradiol and tested the proliferative and invasive effects.

Results: The estrogen levels showed positive correlations with serum bilirubin and alkaline phosphatase and a negative correlation with albumin. This study also showed an association with shorter survival times when patients with low and high serum estrogen levels were compared. In vitro studies demonstrated the effect of estrogen on cell proliferation and invasion in dose-dependent manners, which could be inhibited by tamoxifen, a clinical used estrogen antagonist. Invasion showed an association with the TFF1 gene expression and could be inhibited by small interfering RNA against TFF1 gene. Estrogen receptor-α was the main estrogen receptor that response to 17β-estradiol stimulation.

Conclusions: TFF1 trefoil protein could be one of the effectors for estrogen-induced invasion in cholangiocarcinoma via the estrogen receptor-α. These findings could lead to an understanding of the mechanism of cholangiocarcinoma progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00432-012-1207-1DOI Listing
August 2012
-->