Publications by authors named "Tassiana Gutierrez de Paula"

10 Publications

  • Page 1 of 1

Maternal protein restriction changes structural and metabolic gene expression in the skeletal muscle of aging offspring rats.

Histol Histopathol 2021 Apr 12:18337. Epub 2021 Apr 12.

Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.

Maternal protein restriction affects postnatal skeletal muscle physiology with impacts that last through senility. To investigate the morphological and molecular characteristics of skeletal muscle in aging rats subjected to maternal protein restriction, we used aged male rats (540 days old) born of dams fed a protein restricted diet (6% protein) during pregnancy and lactation. Using morphological, immunohistochemical and molecular analyses, we evaluated the soleus (SOL) and extensor digitorum longus (EDL) muscles, muscle fiber cross-sectional area (CSA) (n=8), muscle fiber frequency (n=5) and the gene expression (n=8) of the oxidative markers (succinate dehydrogenase-Sdha and citrate synthase-CS) and the glycolytic marker (lactate dehydrogenase-Ldha). Global transcriptome analysis (n=3) was also performed to identify differentially regulated genes, followed by gene expression validation (n=8). The oxidative SOL muscle displayed a decrease in muscle fiber CSA (*p<0.05) and in the expression of oxidative metabolism marker Sdha (***p<0.001), upregulation of the anabolic Igf-1 (**p<0.01), structural Chad (**p<0.01), and Fmod (*p<0.05) genes, and downregulation of the Hspb7 (**p<0.01) gene. The glycolytic EDL muscle exhibited decreased IIA (*p<0.05) and increased IIB (*p<0.05) fiber frequency, and no changes in muscle fiber CSA or in the expression of oxidative metabolism genes. In contrast, the gene expression of Chad (**p<0.01) was upregulated and the Myog (**p<0.01) gene was downregulated. Collectively, our morphological, immunohistochemical and molecular analyses showed that maternal protein restriction induced changes in the expression of metabolic, anabolic, myogenic, and structural genes, mainly in the oxidative SOL muscle, in aged offspring rats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14670/HH-18-337DOI Listing
April 2021

Ascorbic Acid Supplementation Improves Skeletal Muscle Growth in Pacu () Juveniles: In Vivo and In Vitro Studies.

Int J Mol Sci 2021 Mar 15;22(6). Epub 2021 Mar 15.

Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil.

In fish, fasting leads to loss of muscle mass. This condition triggers oxidative stress, and therefore, antioxidants can be an alternative to muscle recovery. We investigated the effects of antioxidant ascorbic acid (AA) on the morphology, antioxidant enzyme activity, and gene expression in the skeletal muscle of pacu () following fasting, using in vitro and in vivo strategies. Isolated muscle cells of the pacu were subjected to 72 h of nutrient restriction, followed by 24 h of incubation with nutrients or nutrients and AA (200 µM). Fish were fasted for 15 days, followed by 6 h and 15 and 30 days of refeeding with 100, 200, and 400 mg/kg of AA supplementation. AA addition increased cell diameter and the expression of anabolic and cell proliferation genes in vitro. In vivo, 400 mg/kg of AA increased anabolic and proliferative genes expression at 6 h of refeeding, the fiber diameter and the expression of genes related to cell proliferation at 15 days, and the expression of catabolic and oxidative metabolism genes at 30 days. Catalase activity remained low in the higher supplementation group. In conclusion, AA directly affected the isolated muscle cells, and the higher AA supplementation positively influenced muscle growth after fasting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22062995DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998472PMC
March 2021

Prolonged fasting followed by refeeding modifies proteome profile and parvalbumin expression in the fast-twitch muscle of pacu (Piaractus mesopotamicus).

PLoS One 2019 19;14(12):e0225864. Epub 2019 Dec 19.

Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.

Here, we analyzed the fast-twitch muscle of juvenile Piaractus mesopotamicus (pacu) submitted to prolonged fasting (30d) and refeeding (6h, 24h, 48h and 30d). We measured the relative rate of weight and length increase (RRIlength and RRIweight), performed shotgun proteomic analysis and did Western blotting for PVALB after 30d of fasting and 30d of refeeding. We assessed the gene expression of igf-1, mafbx and pvalb after 30d of fasting and after 6h, 24h, 48h and 30d of refeeding. We performed a bioinformatic analysis to predict miRNAs that possibly control parvalbumin expression. After fasting, RRIlength, RRIweight and igf-1 expression decreased, while the mafbx expression increased, which suggest that prolonged fasting caused muscle atrophy. After 6h and 24h of refeeding, mafbx was not changed and igf-1 was downregulated, while after 48h of refeeding mafbx was downregulated and igf-1 was not changed. After 30d of refeeding, RRIlength and RRIweight were increased and igf-1 and mafbx expression were not changed. Proteomic analysis identified 99 proteins after 30d of fasting and 71 proteins after 30d of refeeding, of which 23 and 17, respectively, were differentially expressed. Most of these differentially expressed proteins were related to cytoskeleton, muscle contraction, and metabolism. Among these, parvalbumin (PVALB) was selected for further validation. The analysis showed that pvalb mRNA was downregulated after 6h and 24h of refeeding, but was not changed after 30d of fasting or 48h and 30d of refeeding. The Western blotting confirmed that PVALB protein was downregulated after 30d of fasting and 30d of refeeding. The downregulation of the protein and the unchanged expression of the mRNA after 30d of fasting and 30d of refeeding suggest a post-transcriptional regulation of PVALB. Our miRNA analysis predicted 444 unique miRNAs that may target pvalb. In conclusion, muscle atrophy and partial compensatory growth caused by prolonged fasting followed by refeeding affected the muscle proteome and PVALB expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225864PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6922423PMC
March 2020

The combination of resveratrol and exercise enhances muscle growth characteristics in pacu (Piaractus mesopotamicus).

Comp Biochem Physiol A Mol Integr Physiol 2019 09 8;235:46-55. Epub 2019 May 8.

Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil; Aquaculture Center, CAUNESP, Sao Paulo State University, UNESP, Jaboticabal, SP, Brazil. Electronic address:

Pacu is a tropical fish with important value to aquaculture. During cellular metabolism, reactive oxygen species (ROS) are produced, which can influence muscle growth. Resveratrol is an effective antioxidant that scavenges ROS and can modulate physical performance preventing oxidative stress. We investigated the effects of resveratrol and exercise on pacu muscle growth characteristics. Four groups were used: fish fed with control diet /without exercise (C); fish fed with control diet/subjected to exercise (CE); fish fed resveratrol-supplemented diet/without exercise (R); and fish fed resveratrol-supplemented diet/subjected to exercise (RE). At 30 days, the RE group presented a significant increase in body weight, fewer muscle fibers in the 20-40 μm and more fibers in the >60 μm diameter class compared to the C group. At day 7, catalase activity decreased in CE and RE groups. Superoxide dismutase activity decreased only in the CE group. Myod and mtor gene expression was higher in R and RE and igf-1 was up-regulated in the RE group. Murf1a level decreased in CE, R, and RE, while sdha expression was higher in the RE group. We suggest that resveratrol in combination with exercise was beneficial for muscle growth and metabolism, increasing the expression levels of genes related to muscle anabolism and oxidative metabolism, besides the decrease of catabolic gene expression. Notably, all of these changes occurred together with muscle hypertrophy and increased body weight. Our results show a positive application for resveratrol in association with exercise as a strategy to improve the growth performance of juvenile pacus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2019.05.002DOI Listing
September 2019

Association of CAST2, HSP90AA1, DNAJA1 and HSPB1 genes with meat tenderness in Nellore cattle.

Meat Sci 2018 Apr 5;138:49-52. Epub 2018 Jan 5.

Departamento de Melhoramento e Nutrição Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, SP 18618-000, Brazil.

The objective of this study was to evaluate the association of expression of CAPN1, CAPN2, CAST, HSP90AA1, DNAJA1 and HSPB1 genes with meat tenderness in Nellore cattle. Three experimental groups were selected by shear force (SF): moderately tender (SF=34.3±5.8N), moderately tough (SF=56.8±7.8N), and very tough meat (SF=80.4±15N). Gene expression was evaluated by real-time PCR. Expression of the CAPN1, CAPN2, CAST and CAST1 genes did not differ between groups. Expression of the CAST2 was up-regulated (P<0.05) in the moderately tough and very tough meat groups. Down-regulation of the HSP90AA1, DNAJA1 and HSPB1 genes (P<0.05) was observed in the moderately tender meat group. The present results suggest that meat tenderness in Nellore cattle does not directly depend on the expression of the CAPN1 and CAPN2 genes, but is associated with the expression of other genes such as CAST2, HSP90AA1, DNAJA1 and HSPB1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meatsci.2018.01.003DOI Listing
April 2018

Influence of temperature and exercise on growth performance, muscle, and adipose tissue in pacus (Piaractus mesopotamicus).

J Therm Biol 2017 Oct 8;69:221-227. Epub 2017 Aug 8.

Universidade do Oeste Paulista - UNOESTE, Brazil.

The aim of this study was to evaluate the effects of temperature and swimming exercise on fish growth in pacus (Piaractus mesopotamicus). Pacus weighing 0.9 - 1.9g and 2.7 - 4.2cm in standard length were cultivated at an initial density of 120 fish m in 3 recirculation systems containing 6 water tanks at a volume of 0.5m each at temperatures of 24, 28 and 32°C. At each temperature, three tanks were modified to generate exercise activity in the specimens and force the fish to swim under a current speed of 27.5cms. At the end of the experiment, the following metrics were evaluated: fish performance, morphometry (length, width, height and perimeter in different body positions), and the diameter and density of muscle and subcutaneous ventral adipose tissues. At 28°C, pacus were both heavier and had greater weight gain after 240 days of cultivation. Additionally, exercise improved the feed conversion. An increase of 4°C (30°C) did not provide any improvement in the performance of the fish. However, swimming exercise improved the performance of pacus, providing increases of 38% and a 15% improvement in feed conversion. Both temperature and exercise influenced the body morphology (especially in the caudal region) and the cellularity of white and red muscle fibers and adipocytes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2017.08.004DOI Listing
October 2017

Food restriction increase the expression of mTORC1 complex genes in the skeletal muscle of juvenile pacu (Piaractus mesopotamicus).

PLoS One 2017 15;12(5):e0177679. Epub 2017 May 15.

Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil.

Skeletal muscle is capable of phenotypic adaptation to environmental factors, such as nutrient availability, by altering the balance between muscle catabolism and anabolism that in turn coordinates muscle growth. Small noncoding RNAs, known as microRNAs (miRNAs), repress the expression of target mRNAs, and many studies have demonstrated that miRNAs regulate the mRNAs of catabolic and anabolic genes. We evaluated muscle morphology, gene expression of components involved in catabolism, anabolism and energetic metabolism and miRNAs expression in both the fast and slow muscle of juvenile pacu (Piaractus mesopotamicus) during food restriction and refeeding. Our analysis revealed that short periods of food restriction followed by refeeding predominantly affected fast muscle, with changes in muscle fiber diameter and miRNAs expression. There was an increase in the mRNA levels of catabolic pathways components (FBXO25, ATG12, BCL2) and energetic metabolism-related genes (PGC1α and SDHA), together with a decrease in PPARβ/δ mRNA levels. Interestingly, an increase in mRNA levels of anabolic genes (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) was also observed during food restriction. After refeeding, muscle morphology showed similar patterns of the control group; the majority of genes were slightly up- or down-regulated in fast and slow muscle, respectively; the levels of all miRNAs increased in fast muscle and some of them decreased in slow muscle. Our findings demonstrated that a short period of food restriction in juvenile pacu had a considerable impact on fast muscle, increasing the expression of anabolic (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) and energetic metabolism genes. The miRNAs (miR-1, miR-206, miR-199 and miR-23a) were more expressed during refeeding and while their target genes (IGF-1, mTOR, PGC1α and MAFbx), presented a decreased expression. The alterations in mTORC1 complex observed during fasting may have influenced the rates of protein synthesis by using amino acids from protein degradation as an alternative mechanism to preserve muscle phenotype and metabolic demand maintenance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177679PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432107PMC
September 2017

Differential microRNA Expression in Fast- and Slow-Twitch Skeletal Muscle of Piaractus mesopotamicus during Growth.

PLoS One 2015 3;10(11):e0141967. Epub 2015 Nov 3.

Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil.

Pacu (Piaractus mesopotamicus) is a Brazilian fish with a high economic value in pisciculture due to its rusticity and fast growth. Postnatal growth of skeletal muscle in fish occurs by hyperplasia and/or hypertrophy, processes that are dependent on the proliferation and differentiation of myoblasts. A class of small noncoding RNAs, known as microRNAs (miRNAs), represses the expression of target mRNAs, and many studies have demonstrated that miR-1, miR-133, miR-206 and miR-499 regulate different processes in skeletal muscle through the mRNA silencing of hdac4 (histone deacetylase 4), srf (serum response factor), pax7 (paired box 7) and sox6 ((sex determining region Y)-box 6), respectively. The aim of our work was to evaluate the expression of these miRNAs and their putative target mRNAs in fast- and slow-twitch skeletal muscle of pacu during growth. We used pacus in three different development stages: larval (aged 30 days), juvenile (aged 90 days and 150 days) and adult (aged 2 years). To complement our study, we also performed a pacu myoblast cell culture, which allowed us to investigate miRNA expression in the progression from myoblast proliferation to differentiation. Our results revealed an inverse correlation between the expression of the miRNAs and their target mRNAs, and there was evidence that miR-1 and miR-206 may regulate the differentiation of myoblasts, whereas miR-133 may regulate the proliferation of these cells. miR-499 was highly expressed in slow-twitch muscle, which suggests its involvement in the specification of the slow phenotype in muscle fibers. The expression of these miRNAs exhibited variations between different development stages and between distinct muscle twitch phenotypes. This work provides the first identification of miRNA expression profiles in pacu skeletal muscle and suggests an important role of these molecules in muscle growth and in the maintenance of the muscle phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141967PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631509PMC
June 2016

High Final Energy of Low-Level Gallium Arsenide Laser Therapy Enhances Skeletal Muscle Recovery without a Positive Effect on Collagen Remodeling.

Photochem Photobiol 2015 Jul-Aug;91(4):957-65. Epub 2015 Mar 28.

Department of Morphology, Bioscience Institute State University of São Paulo, UNESP, Botucatu, SP, Brazil.

The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8 J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n = 10); Injured (I, n = 10) and Injured and laser treated (Injured/LLLT, n = 10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904 nm, 50 mW average power) were initiated 24 h after injury, at energy density of 69 J cm(-1) for 48 s, for 5 days, to two points of the lesion. Twenty-four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF-α, TGF-β, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P < 0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF-α and myogenin compared to the injured group (P < 0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/php.12446DOI Listing
December 2015

Rearing temperature induces changes in muscle growth and gene expression in juvenile pacu (Piaractus mesopotamicus).

Comp Biochem Physiol B Biochem Mol Biol 2014 Mar 21;169:31-7. Epub 2013 Dec 21.

São Paulo State University, UNESP, Institute of Biosciences, Department of Morphology and CAUNESP, 18618-970 Botucatu, Sao Paulo, Brazil. Electronic address:

Pacu (Piaractus mesopotamicus) is a fast-growing fish that is extensively used in Brazilian aquaculture programs and shows a wide range of thermal tolerance. Because temperature is an environmental factor that influences the growth rate of fish and is directly related to muscle plasticity and growth, we hypothesized that different rearing temperatures in juvenile pacu, which exhibits intense muscle growth by hyperplasia, can potentially alter the muscle growth patterns of this species. The aim of this study was to analyze the muscle growth characteristics together with the expression of the myogenic regulatory factors MyoD and myogenin and the growth factor myostatin in juvenile pacu that were submitted to different rearing temperatures. Juvenile fish (1.5 g weight) were distributed in tanks containing water and maintained at 24°C (G24), 28 °C (G28) and 32 °C (G32) (three replicates for each group) for 60 days. At days 30 and 60, the fish were anesthetized and euthanized, and muscle samples (n=12) were collected for morphological, morphometric and gene expression analyses. At day 30, the body weight and standard length were lower for G24 than for G28 and G32. Muscle fiber frequency in the <25 μm class was significantly higher in G24, and the >50 μm class was lower in G24. MyoD gene expression was higher in G24 compared with that in G28 and G32, and myogenin and myostatin mRNA levels were higher in G24 than G28. At day 60, the body weight and the standard length were higher in G32 but lower in G24. The frequency distribution of the <25 μm diameter muscle fibers was higher in G24, and that of the >50 μm class was lower in G24. MyoD mRNA levels were higher in G24 and G32, and myogenin mRNA levels were similar between G24 and G28 and between G24 and G32 but were higher in G28 compared to G32. The myostatin mRNA levels were similar between the studied temperatures. In light of our results, we conclude that low rearing temperature altered the expression of muscle growth-related genes and induced a delay in muscle growth in juvenile pacu (P. mesopotamicus). Our study provides a clear example of thermally induced phenotypic plasticity in pacu fish and shows that changing the rearing temperature during the juvenile stage can have a considerable effect on gene expression and muscle growth in this species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2013.12.004DOI Listing
March 2014
-->