Publications by authors named "Tarunveer S Ahluwalia"

80 Publications

Circulating Free Fatty Acid and Phospholipid Signature Predicts Early Rapid Kidney Function Decline in Patients With Type 1 Diabetes.

Diabetes Care 2021 Jul 8. Epub 2021 Jul 8.

Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI

Objective: Patients with type 1 diabetes (T1D) exhibit modest lipid abnormalities as measured by traditional metrics. This study aimed to identify lipidomic predictors of rapid decline of kidney function in T1D.

Research Design And Methods: In a case-control study, 817 patients with T1D from three large cohorts were randomly split into training and validation subsets. Case was defined as >3 mL/min/1.73 m per year decline in estimated glomerular filtration rate (eGFR), while control was defined as <1 mL/min/1.73 m per year decline over a minimum 4-year follow-up. Lipids were quantified in baseline serum samples using a targeted mass spectrometry lipidomic platform.

Results: At individual lipids, free fatty acid (FFA)20:2 was directly and phosphatidylcholine (PC)16:0/22:6 was inversely and independently associated with rapid eGFR decline. When examined by lipid class, rapid eGFR decline was characterized by higher abundance of unsaturated FFAs, phosphatidylethanolamine (PE)-Ps, and PCs with an unsaturated acyl chain at the sn1 carbon, and by lower abundance of saturated FFAs, longer triacylglycerols, and PCs, PEs, PE-Ps, and PE-Os with an unsaturated acyl chain at the sn1 carbon at eGFR ≥90 mL/min/1.73 m. A multilipid panel consisting of unsaturated FFAs and saturated PE-Ps predicted rapid eGFR decline better than individual lipids (C-statistic, 0.71) and improved the C-statistic of the clinical model from 0.816 to 0.841 ( = 0.039). Observations were confirmed in the validation subset.

Conclusions: Distinct from previously reported predictors of GFR decline in type 2 diabetes, these findings suggest differential incorporation of FFAs at the sn1 carbon of the phospholipids' glycerol backbone as an independent predictor of rapid GFR decline in T1D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/dc21-0737DOI Listing
July 2021

The low-expression variant of is associated with cardiovascular disease in type 1 diabetes.

Diabetes 2021 Jul 9. Epub 2021 Jul 9.

Folkhälsan Research Center, 00290, Helsinki, Finland.

Fatty-acid binding protein 4 (FABP4) is implicated in the pathogenesis of cardiometabolic disorders. Pharmacological inhibition or genetic deletion of FABP4 improves cardiometabolic health and protects against atherosclerosis in preclinical models. As cardiovascular disease (CVD) is common in type 1 diabetes, we examined the role of FABP4 for the development of complications in type 1 diabetes, focusing on a functional, low-expression, variant (rs77878271) in the promoter of the gene. For this, we assessed the risk of CVD, stroke, coronary artery disease (CAD), end-stage kidney disease (ESKD), and mortality using Cox proportional-hazard models for the rs77878271 in 5,077 Finnish individuals with type 1 diabetes. The low-expression G-allele of rs77878271 increased the risk of CVD, independently of confounders. Findings were tested for replication in 852 Danish and 3,678 Finnish individuals with type 1 diabetes. In the meta-analysis, each G-allele increased the risk of stroke by 26% (p=0.04), CAD by 26% (p=0.006), and CVD by 17% (p=0.003). In Mendelian Randomization, a decrease in FABP4 increased CAD 2.4-fold. Hence, in contrast to the general population, the low-expression G-allele of rs77878271 increased CVD risk in type 1 diabetes, suggesting that genetically low FABP4 levels may be detrimental in the context of type 1 diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db21-0056DOI Listing
July 2021

The trans-ancestral genomic architecture of glycemic traits.

Nat Genet 2021 06 31;53(6):840-860. Epub 2021 May 31.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00852-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610958PMC
June 2021

Genome-wide association study of circulating interleukin 6 levels identifies novel loci.

Hum Mol Genet 2021 Apr;30(5):393-409

Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK.

Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098112PMC
April 2021

Copeptin and renal function decline, cardiovascular events and mortality in type 1 diabetes.

Nephrol Dial Transplant 2020 Dec 26. Epub 2020 Dec 26.

Steno Diabetes Center Copenhagen, Gentofte, Denmark.

Background: Plasma copeptin is a surrogate of arginine vasopressin (AVP) secretion and is associated with a risk of renal and cardiovascular disease. We investigated associations between copeptin and renal events, cardiovascular events and mortality in type 1 diabetes (T1D).

Methods: We conducted a prospective cohort study on 658 individuals with T1D from Steno Diabetes Center Copenhagen. Plasma copeptin concentrations and conventional risk factors were assessed at baseline. The five endpoints were traced through national registries and electronic laboratory records.

Results: Baseline mean age was 55 ± 13 years and estimated glomerular filtration rate (eGFR) was 81 ± 26 mL/min/1.73 m2. The median follow-up was 6.2 years (interquartile range 5.8-6.7); 123 participants reached a combined renal endpoint [decline in eGFR ≥30%, end-stage kidney disease (ESKD) or all-cause mortality], 93 had a decrease in eGFR ≥30%, 21 developed ESKD, 94 experienced a combined cardiovascular endpoint and 58 died from all causes. Higher copeptin was associated with all endpoints in unadjusted Cox regression analyses. Upon adjustment for baseline eGFR, the associations were attenuated and remained significant only for the combined renal endpoint and decrease in eGFR ≥30%. Results were similar upon further adjustment for other risk factors, after which hazard ratios for the two renal endpoints were 2.27 (95% confidence interval 1.08-4.74) and 4.49 (1.77-11.4), respectively, for the highest versus the lowest quartile of copeptin.

Conclusions: Higher copeptin was an independent risk marker for a combined renal endpoint and decline in renal function. AVP may be a marker of renal damage or a factor whose contribution to renal and cardiovascular risk is partially mediated by renal damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfaa308DOI Listing
December 2020

FUT2-ABO epistasis increases the risk of early childhood asthma and Streptococcus pneumoniae respiratory illnesses.

Nat Commun 2020 12 16;11(1):6398. Epub 2020 Dec 16.

Department of Human Genetics, University of Chicago, Chicago, IL, USA.

Asthma with severe exacerbation is the most common cause of hospitalization among young children. We aim to increase the understanding of this clinically important disease entity through a genome-wide association study. The discovery analysis comprises 2866 children experiencing severe asthma exacerbation between ages 2 and 6 years, and 65,415 non-asthmatic controls, and we replicate findings in 918 children from the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) birth cohorts. We identify rs281379 near FUT2/MAMSTR on chromosome 19 as a novel risk locus (OR = 1.18 (95% CI = 1.11-1.25), P = 2.6 × 10) as well as a biologically plausible interaction between functional variants in FUT2 and ABO. We further discover and replicate a potential causal mechanism behind this interaction related to S. pneumoniae respiratory illnesses. These results suggest a novel mechanism of early childhood asthma and demonstrates the importance of phenotype-specificity for discovery of asthma genes and epistasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19814-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744576PMC
December 2020

Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline.

Kidney Int 2021 04 31;99(4):926-939. Epub 2020 Oct 31.

Division of Nephrology, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA.

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m at follow-up among those with eGFRcrea 60 mL/min/1.73m or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2020.09.030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010357PMC
April 2021

A Targeted Multiomics Approach to Identify Biomarkers Associated with Rapid eGFR Decline in Type 1 Diabetes.

Am J Nephrol 2020 14;51(10):839-848. Epub 2020 Oct 14.

Division of Nephrology, UT Health Science Center San Antonio, San Antonio, Texas, USA.

Background: Individuals with type 1 diabetes (T1D) demonstrate varied trajectories of estimated glomerular filtration rate (eGFR) decline. The molecular pathways underlying rapid eGFR decline in T1D are poorly understood, and individual-level risk of rapid eGFR decline is difficult to predict.

Methods: We designed a case-control study with multiple exposure measurements nested within 4 well-characterized T1D cohorts (FinnDiane, Steno, EDC, and CACTI) to identify biomarkers associated with rapid eGFR decline. Here, we report the rationale for and design of these studies as well as results of models testing associations of clinical characteristics with rapid eGFR decline in the study population, upon which "omics" studies will be built. Cases (n = 535) and controls (n = 895) were defined as having an annual eGFR decline of ≥3 and <1 mL/min/1.73 m2, respectively. Associations of demographic and clinical variables with rapid eGFR decline were tested using logistic regression, and prediction was evaluated using area under the curve (AUC) statistics. Targeted metabolomics, lipidomics, and proteomics are being performed using high-resolution mass-spectrometry techniques.

Results: At baseline, the mean age was 43 years, diabetes duration was 27 years, eGFR was 94 mL/min/1.73 m2, and 62% of participants were normoalbuminuric. Over 7.6-year median follow-up, the mean annual change in eGFR in cases and controls was -5.7 and 0.6 mL/min/1.73 m2, respectively. Younger age, longer diabetes duration, and higher baseline HbA1c, urine albumin-creatinine ratio, and eGFR were significantly associated with rapid eGFR decline. The cross-validated AUC for the predictive model incorporating these variables plus sex and mean arterial blood pressure was 0.74 (95% CI: 0.68-0.79; p < 0.001).

Conclusion: Known risk factors provide moderate discrimination of rapid eGFR decline. Identification of blood and urine biomarkers associated with rapid eGFR decline in T1D using targeted omics strategies may provide insight into disease mechanisms and improve upon clinical predictive models using traditional risk factors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000510830DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606554PMC
October 2020

Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits.

PLoS Genet 2020 10 12;16(10):e1008718. Epub 2020 Oct 12.

Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.

The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1008718DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581004PMC
October 2020

Mendelian randomization analysis does not support causal associations of birth weight with hypertension risk and blood pressure in adulthood.

Eur J Epidemiol 2020 Jul 7;35(7):685-697. Epub 2020 May 7.

Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Skåne University Hospital Malmö, Lund University, 21741, Malmö, Sweden.

Epidemiology studies suggested that low birthweight was associated with a higher risk of hypertension in later life. However, little is known about the causality of such associations. In our study, we evaluated the causal association of low birthweight with adulthood hypertension following a standard analytic protocol using the study-level data of 183,433 participants from 60 studies (CHARGE-BIG consortium), as well as that with blood pressure using publicly available summary-level genome-wide association data from EGG consortium of 153,781 participants, ICBP consortium and UK Biobank cohort together of 757,601 participants. We used seven SNPs as the instrumental variable in the study-level analysis and 47 SNPs in the summary-level analysis. In the study-level analyses, decreased birthweight was associated with a higher risk of hypertension in adults (the odds ratio per 1 standard deviation (SD) lower birthweight, 1.22; 95% CI 1.16 to 1.28), while no association was found between genetically instrumented birthweight and hypertension risk (instrumental odds ratio for causal effect per 1 SD lower birthweight, 0.97; 95% CI 0.68 to 1.41). Such results were consistent with that from the summary-level analyses, where the genetically determined low birthweight was not associated with blood pressure measurements either. One SD lower genetically determined birthweight was not associated with systolic blood pressure (β = - 0.76, 95% CI - 2.45 to 1.08 mmHg), 0.06 mmHg lower diastolic blood pressure (β = - 0.06, 95% CI - 0.93 to 0.87 mmHg), or pulse pressure (β = - 0.65, 95% CI - 1.38 to 0.69 mmHg, all p > 0.05). Our findings suggest that the inverse association of birthweight with hypertension risk from observational studies was not supported by large Mendelian randomization analyses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10654-020-00638-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867117PMC
July 2020

Lipoprotein(a)and renal function decline, cardiovascular disease and mortality in type 2 diabetes and microalbuminuria.

J Diabetes Complications 2020 07 19;34(7):107593. Epub 2020 Apr 19.

Steno Diabetes Center Copenhagen, Niels Steensensvej 2, 2820 Gentofte, Denmark; University of Copenhagen, Copenhagen, Denmark. Electronic address:

Aims: Lipoprotein(a)(Lp(a)) has emerged as an independent risk marker for cardiovascular disease (CVD) in the general population and among persons with existing CVD. We investigated associations between serum Lp(a)concentrations and renal function decline, incident CVD and all-cause mortality in individuals with type 2 diabetes (T2D) and microalbuminuria.

Methods: Prospective study including 198 individuals with T2D, microalbuminuria and no CVD. Yearly p-creatinine was measured after baseline in 176 of the participants. The renal endpoint was defined as decline in eGFR of >30% from baseline. CVD events and mortality were tracked from national registries. Cox regression analyses were applied both unadjusted and adjusted for traditional risk factors (sex, age, systolic blood pressure, LDL-cholesterol, smoking, HbA, creatinine and urinary albumin creatinine ratio (UAER)).

Results: Baseline mean (SD) age was 59 (9)years, eGFR 89 (17) mL/min/1.73 m, 77% were male, and median [IQR] UAER was 103 [38-242] mg/24-h. Median Lp(a)was 8.04 [3.42-32.3] mg/dL. Median follow-up was 6.1 years; 38 CVD events, 26 deaths and 43 renal events were recorded. For each doubling of baseline Lp(a), the following hazard ratios (95% confidence intervals) were found before and after adjustment respectively: 0.98 (0.84-1.15) and 1.01 (0.87-1.18) for decline in eGFR > 30%, 0.96 (0.81-1.13) and 0.99 (0.82-1.18) for CVD events, 1.04 (0.85-1.27) and 1.06 (0.87-1.30) for all-cause mortality.

Conclusions: In this cohort of individuals with T2D and microalbuminuria, the baseline concentration of Lp(a)was not a risk marker for renal function decline, CVD events or all-cause mortality.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdiacomp.2020.107593DOI Listing
July 2020

Plasma Metabolomics Identifies Markers of Impaired Renal Function: A Meta-analysis of 3089 Persons with Type 2 Diabetes.

J Clin Endocrinol Metab 2020 07;105(7)

Department of Epidemiology and Biostatistics, Amsterdam University Medical Center, Amsterdam, the Netherlands.

Context: There is a need for novel biomarkers and better understanding of the pathophysiology of diabetic kidney disease.

Objective: To investigate associations between plasma metabolites and kidney function in people with type 2 diabetes (T2D).

Design: 3089 samples from individuals with T2D, collected between 1999 and 2015, from 5 independent Dutch cohort studies were included. Up to 7 years follow-up was available in 1100 individuals from 2 of the cohorts.

Main Outcome Measures: Plasma metabolites (n = 149) were measured by nuclear magnetic resonance spectroscopy. Associations between metabolites and estimated glomerular filtration rate (eGFR), urinary albumin-to-creatinine ratio (UACR), and eGFR slopes were investigated in each study followed by random effect meta-analysis. Adjustments included traditional cardiovascular risk factors and correction for multiple testing.

Results: In total, 125 metabolites were significantly associated (PFDR = 1.5×10-32 - 0.046; β = -11.98-2.17) with eGFR. Inverse associations with eGFR were demonstrated for branched-chain and aromatic amino acids (AAAs), glycoprotein acetyls, triglycerides (TGs), lipids in very low-density lipoproteins (VLDL) subclasses, and fatty acids (PFDR < 0.03). We observed positive associations with cholesterol and phospholipids in high-density lipoproteins (HDL) and apolipoprotein A1 (PFDR < 0.05). Albeit some metabolites were associated with UACR levels (P < 0.05), significance was lost after correction for multiple testing. Tyrosine and HDL-related metabolites were positively associated with eGFR slopes before adjustment for multiple testing (PTyr = 0.003; PHDLrelated < 0.05), but not after.

Conclusions: This study identified metabolites associated with impaired kidney function in T2D, implying involvement of lipid and amino acid metabolism in the pathogenesis. Whether these processes precede or are consequences of renal impairment needs further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/clinem/dgaa173DOI Listing
July 2020

Genome-wide association study on coronary artery disease in type 1 diabetes suggests beta-defensin 127 as a risk locus.

Cardiovasc Res 2021 01;117(2):600-612

Folkhälsan Institute of Genetics, Folkhälsan Research Center, FI-00290 Helsinki, Finland.

Aims: Diabetes is a known risk factor for coronary artery disease (CAD). There is accumulating evidence that CAD pathogenesis differs for individuals with type 1 diabetes (T1D). However, the genetic background has not been extensively studied. We aimed to discover genetic loci increasing CAD susceptibility, especially in T1D, to examine the function of these discoveries and to study the role of the known risk loci in T1D.

Methods And Results: We performed the largest genome-wide association study to date for CAD in T1D, comprising 4869 individuals with T1D (cases/controls: 941/3928). Two loci reached genome-wide significance, rs1970112 in CDKN2B-AS1 [odds ratio (OR) = 1.32, P = 1.50 × 10-8], and rs6055069 on DEFB127 promoter (OR = 4.17, P = 2.35 × 10-9), with consistent results in survival analysis. The CDKN2B-AS1 variant replicated (P = 0.04) when adjusted for diabetic kidney disease in three additional T1D cohorts (cases/controls: 434/3123). Furthermore, we explored the function of the lead discoveries with a cardio-phenome-wide analysis. Among the eight suggestive loci (P < 1 × 10-6), rs70962766 near B3GNT2 associated with central blood pressure, rs1344228 near CNTNAP5 with intima media thickness, and rs2112481 on GRAMD2B promoter with serum leucocyte concentration. Finally, we calculated genetic risk scores for individuals with T1D with the known susceptibility loci. General population risk variants were modestly but significantly associated with CAD also in T1D (P = 4.21 × 10-7).

Conclusion: While general population CAD risk loci had limited effect on the risk in T1D, for the first time, variants at the CDKN2B-AS1 locus were robustly associated with CAD in individuals with T1D. The novel finding on β-defensin DEFB127 promoter provides a link between diabetes, infection susceptibility, and CAD, although pending on future confirmation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvaa045DOI Listing
January 2021

GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI.

Sci Adv 2019 09 4;5(9):eaaw3095. Epub 2019 Sep 4.

Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.

Early childhood growth patterns are associated with adult health, yet the genetic factors and the developmental stages involved are not fully understood. Here, we combine genome-wide association studies with modeling of longitudinal growth traits to study the genetics of infant and child growth, followed by functional, pathway, genetic correlation, risk score, and colocalization analyses to determine how developmental timings, molecular pathways, and genetic determinants of these traits overlap with those of adult health. We found a robust overlap between the genetics of child and adult body mass index (BMI), with variants associated with adult BMI acting as early as 4 to 6 years old. However, we demonstrated a completely distinct genetic makeup for peak BMI during infancy, influenced by variation at the locus. These findings suggest that different genetic factors control infant and child BMI. In light of the obesity epidemic, these findings are important to inform the timing and targets of prevention strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.aaw3095DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904961PMC
September 2019

Protein-coding variants contribute to the risk of atopic dermatitis and skin-specific gene expression.

J Allergy Clin Immunol 2020 04 9;145(4):1208-1218. Epub 2019 Nov 9.

Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.

Background: Fifteen percent of atopic dermatitis (AD) liability-scale heritability could be attributed to 31 susceptibility loci identified by using genome-wide association studies, with only 3 of them (IL13, IL-6 receptor [IL6R], and filaggrin [FLG]) resolved to protein-coding variants.

Objective: We examined whether a significant portion of unexplained AD heritability is further explained by low-frequency and rare variants in the gene-coding sequence.

Methods: We evaluated common, low-frequency, and rare protein-coding variants using exome chip and replication genotype data of 15,574 patients and 377,839 control subjects combined with whole-transcriptome data on lesional, nonlesional, and healthy skin samples of 27 patients and 38 control subjects.

Results: An additional 12.56% (SE, 0.74%) of AD heritability is explained by rare protein-coding variation. We identified docking protein 2 (DOK2) and CD200 receptor 1 (CD200R1) as novel genome-wide significant susceptibility genes. Rare coding variants associated with AD are further enriched in 5 genes (IL-4 receptor [IL4R], IL13, Janus kinase 1 [JAK1], JAK2, and tyrosine kinase 2 [TYK2]) of the IL13 pathway, all of which are targets for novel systemic AD therapeutics. Multiomics-based network and RNA sequencing analysis revealed DOK2 as a central hub interacting with, among others, CD200R1, IL6R, and signal transducer and activator of transcription 3 (STAT3). Multitissue gene expression profile analysis for 53 tissue types from the Genotype-Tissue Expression project showed that disease-associated protein-coding variants exert their greatest effect in skin tissues.

Conclusion: Our discoveries highlight a major role of rare coding variants in AD acting independently of common variants. Further extensive functional studies are required to detect all potential causal variants and to specify the contribution of the novel susceptibility genes DOK2 and CD200R1 to overall disease susceptibility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2019.10.030DOI Listing
April 2020

Lipidomic analysis reveals sphingomyelin and phosphatidylcholine species associated with renal impairment and all-cause mortality in type 1 diabetes.

Sci Rep 2019 11 8;9(1):16398. Epub 2019 Nov 8.

Steno Diabetes Center Copenhagen, Gentofte, Denmark.

There is an urgent need for a better molecular understanding of the pathophysiology underlying development and progression of diabetic nephropathy. The aim of the current study was to identify novel associations between serum lipidomics and diabetic nephropathy. Non-targeted serum lipidomic analyses were performed with mass spectrometry in 669 individuals with type 1 diabetes. Cross-sectional associations of lipid species with estimated glomerular filtration rate (eGFR) and urinary albumin excretion were assessed. Moreover, associations with register-based longitudinal follow-up for progression to a combined renal endpoint including ≥30% decline in eGFR, ESRD and all-cause mortality were evaluated. Median follow-up time was 5.0-6.4 years. Adjustments included traditional risk factors and multiple testing correction. In total, 106 lipid species were identified. Primarily, alkyl-acyl phosphatidylcholines, triglycerides and sphingomyelins demonstrated cross-sectional associations with eGFR and macroalbuminuria. In longitudinal analyses, thirteen lipid species were associated with the slope of eGFR or albuminuria. Of these lipids, phosphatidylcholine and sphingomyelin species, PC(O-34:2), PC(O-34:3), SM(d18:1/24:0), SM(d40:1) and SM(d41:1), were associated with lower risk of the combined renal endpoint. PC(O-34:3), SM(d40:1) and SM(d41:1) were associated with lower risk of all-cause mortality while an SM(d18:1/24:0) was associated with lower risk of albuminuria group progression. We report distinct associations between lipid species and risk of renal outcomes in type 1 diabetes, independent of traditional markers of kidney function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-52916-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841673PMC
November 2019

Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function.

J Clin Invest 2020 01;130(1):335-344

Center for Human Genetics, Bioscientia, Ingelheim, Germany.

BACKGROUNDProteinuria is considered an unfavorable clinical condition that accelerates renal and cardiovascular disease. However, it is not clear whether all forms of proteinuria are damaging. Mutations in CUBN cause Imerslund-Gräsbeck syndrome (IGS), which is characterized by intestinal malabsorption of vitamin B12 and in some cases proteinuria. CUBN encodes for cubilin, an intestinal and proximal tubular uptake receptor containing 27 CUB domains for ligand binding.METHODSWe used next-generation sequencing for renal disease genes to genotype cohorts of patients with suspected hereditary renal disease and chronic proteinuria. CUBN variants were analyzed using bioinformatics, structural modeling, and epidemiological methods.RESULTSWe identified 39 patients, in whom biallelic pathogenic variants in the CUBN gene were associated with chronic isolated proteinuria and early childhood onset. Since the proteinuria in these patients had a high proportion of albuminuria, glomerular diseases such as steroid-resistant nephrotic syndrome or Alport syndrome were often the primary clinical diagnosis, motivating renal biopsies and the use of proteinuria-lowering treatments. However, renal function was normal in all cases. By contrast, we did not found any biallelic CUBN variants in proteinuric patients with reduced renal function or focal segmental glomerulosclerosis. Unlike the more N-terminal IGS mutations, 37 of the 41 proteinuria-associated CUBN variants led to modifications or truncations after the vitamin B12-binding domain. Finally, we show that 4 C-terminal CUBN variants are associated with albuminuria and slightly increased GFR in meta-analyses of large population-based cohorts.CONCLUSIONCollectively, our data suggest an important role for the C-terminal half of cubilin in renal albumin reabsorption. Albuminuria due to reduced cubilin function could be an unexpectedly common benign condition in humans that may not require any proteinuria-lowering treatment or renal biopsy.FUNDINGATIP-Avenir program, Fondation Bettencourt-Schueller (Liliane Bettencourt Chair of Developmental Biology), Agence Nationale de la Recherche (ANR) Investissements d'avenir program (ANR-10-IAHU-01) and NEPHROFLY (ANR-14-ACHN-0013, to MS), Steno Collaborative Grant 2018 (NNF18OC0052457, to TSA and MS), Heisenberg Professorship of the German Research Foundation (KO 3598/5-1, to AK), Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Centre (SFB) KIDGEM 1140 (project 246781735, to CB), and Federal Ministry of Education and Research (BMB) (01GM1515C, to CB).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI129937DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934218PMC
January 2020

Editorial: Novel Biomarkers for Type 2 Diabetes.

Front Endocrinol (Lausanne) 2019 27;10:649. Epub 2019 Sep 27.

Steno Diabetes Center Copenhagen, Gentofte, Denmark.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fendo.2019.00649DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776920PMC
September 2019

Whole Genome Sequencing Identifies CRISPLD2 as a Lung Function Gene in Children With Asthma.

Chest 2019 12 23;156(6):1068-1079. Epub 2019 Sep 23.

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA.

Background: Asthma is a common respiratory disorder with a highly heterogeneous nature that remains poorly understood. The objective was to use whole genome sequencing (WGS) data to identify regions of common genetic variation contributing to lung function in individuals with a diagnosis of asthma.

Methods: WGS data were generated for 1,053 individuals from trios and extended pedigrees participating in the family-based Genetic Epidemiology of Asthma in Costa Rica study. Asthma affection status was defined through a physician's diagnosis of asthma, and most participants with asthma also had airway hyperresponsiveness (AHR) to methacholine. Family-based association tests for single variants were performed to assess the associations with lung function phenotypes.

Results: A genome-wide significant association was identified between baseline FEV/FVC ratio and a single-nucleotide polymorphism in the top hit cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) (rs12051168; P = 3.6 × 10 in the unadjusted model) that retained suggestive significance in the covariate-adjusted model (P = 5.6 × 10). Rs12051168 was also nominally associated with other related phenotypes: baseline FEV (P = 3.3 × 10), postbronchodilator (PB) FEV (7.3 × 10), and PB FEV/FVC ratio (P = 2.7 × 10). The identified baseline FEV/FVC ratio and rs12051168 association was meta-analyzed and replicated in three independent cohorts in which most participants with asthma also had confirmed AHR (combined weighted z-score P = .015) but not in cohorts without information about AHR.

Conclusions: These findings suggest that using specific asthma characteristics, such as AHR, can help identify more genetically homogeneous asthma subgroups with genotype-phenotype associations that may not be observed in all children with asthma. CRISPLD2 also may be important for baseline lung function in individuals with asthma who also may have AHR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chest.2019.08.2202DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904857PMC
December 2019

Genome-Wide Association Study of Apparent Treatment-Resistant Hypertension in the CHARGE Consortium: The CHARGE Pharmacogenetics Working Group.

Am J Hypertens 2019 11;32(12):1146-1153

Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK.

Background: Only a handful of genetic discovery efforts in apparent treatment-resistant hypertension (aTRH) have been described.

Methods: We conducted a case-control genome-wide association study of aTRH among persons treated for hypertension, using data from 10 cohorts of European ancestry (EA) and 5 cohorts of African ancestry (AA). Cases were treated with 3 different antihypertensive medication classes and had blood pressure (BP) above goal (systolic BP ≥ 140 mm Hg and/or diastolic BP ≥ 90 mm Hg) or 4 or more medication classes regardless of BP control (nEA = 931, nAA = 228). Both a normotensive control group and a treatment-responsive control group were considered in separate analyses. Normotensive controls were untreated (nEA = 14,210, nAA = 2,480) and had systolic BP/diastolic BP < 140/90 mm Hg. Treatment-responsive controls (nEA = 5,266, nAA = 1,817) had BP at goal (<140/90 mm Hg), while treated with one antihypertensive medication class. Individual cohorts used logistic regression with adjustment for age, sex, study site, and principal components for ancestry to examine the association of single-nucleotide polymorphisms with case-control status. Inverse variance-weighted fixed-effects meta-analyses were carried out using METAL.

Results: The known hypertension locus, CASZ1, was a top finding among EAs (P = 1.1 × 10-8) and in the race-combined analysis (P = 1.5 × 10-9) using the normotensive control group (rs12046278, odds ratio = 0.71 (95% confidence interval: 0.6-0.8)). Single-nucleotide polymorphisms in this locus were robustly replicated in the Million Veterans Program (MVP) study in consideration of a treatment-responsive control group. There were no statistically significant findings for the discovery analyses including treatment-responsive controls.

Conclusion: This genomic discovery effort for aTRH identified CASZ1 as an aTRH risk locus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajh/hpz150DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856621PMC
November 2019

Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen.

J Am Soc Nephrol 2019 10 19;30(10):2000-2016. Epub 2019 Sep 19.

Department of Biostatistics and.

Background: Although diabetic kidney disease demonstrates both familial clustering and single nucleotide polymorphism heritability, the specific genetic factors influencing risk remain largely unknown.

Methods: To identify genetic variants predisposing to diabetic kidney disease, we performed genome-wide association study (GWAS) analyses. Through collaboration with the Diabetes Nephropathy Collaborative Research Initiative, we assembled a large collection of type 1 diabetes cohorts with harmonized diabetic kidney disease phenotypes. We used a spectrum of ten diabetic kidney disease definitions based on albuminuria and renal function.

Results: Our GWAS meta-analysis included association results for up to 19,406 individuals of European descent with type 1 diabetes. We identified 16 genome-wide significant risk loci. The variant with the strongest association (rs55703767) is a common missense mutation in the collagen type IV alpha 3 chain ( gene, which encodes a major structural component of the glomerular basement membrane (GBM). Mutations in are implicated in heritable nephropathies, including the progressive inherited nephropathy Alport syndrome. The rs55703767 minor allele (Asp326Tyr) is protective against several definitions of diabetic kidney disease, including albuminuria and ESKD, and demonstrated a significant association with GBM width; protective allele carriers had thinner GBM before any signs of kidney disease, and its effect was dependent on glycemia. Three other loci are in or near genes with known or suggestive involvement in this condition ( or renal biology ( and ).

Conclusions: The 16 diabetic kidney disease-associated loci may provide novel insights into the pathogenesis of this condition and help identify potential biologic targets for prevention and treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2019030218DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779358PMC
October 2019

A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity.

Hum Mol Genet 2019 10;28(19):3327-3338

Unidad de Investigacion Medica en Bioquımica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.

Although hundreds of genome-wide association studies-implicated loci have been reported for adult obesity-related traits, less is known about the genetics specific for early-onset obesity and with only a few studies conducted in non-European populations to date. Searching for additional genetic variants associated with childhood obesity, we performed a trans-ancestral meta-analysis of 30 studies consisting of up to 13 005 cases (≥95th percentile of body mass index (BMI) achieved 2-18 years old) and 15 599 controls (consistently <50th percentile of BMI) of European, African, North/South American and East Asian ancestry. Suggestive loci were taken forward for replication in a sample of 1888 cases and 4689 controls from seven cohorts of European and North/South American ancestry. In addition to observing 18 previously implicated BMI or obesity loci, for both early and late onset, we uncovered one completely novel locus in this trans-ancestral analysis (nearest gene, METTL15). The variant was nominally associated with only the European subgroup analysis but had a consistent direction of effect in other ethnicities. We then utilized trans-ancestral Bayesian analysis to narrow down the location of the probable causal variant at each genome-wide significant signal. Of all the fine-mapped loci, we were able to narrow down the causative variant at four known loci to fewer than 10 single nucleotide polymorphisms (SNPs) (FAIM2, GNPDA2, MC4R and SEC16B loci). In conclusion, an ethnically diverse setting has enabled us to both identify an additional pediatric obesity locus and further fine-map existing loci.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz161DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859434PMC
October 2019

Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration.

Nat Commun 2019 09 2;10(1):3927. Epub 2019 Sep 2.

Center for Craniofacial and Dental Genetics, Department of Oral Biology School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

The duration of pregnancy is influenced by fetal and maternal genetic and non-genetic factors. Here we report a fetal genome-wide association meta-analysis of gestational duration, and early preterm, preterm, and postterm birth in 84,689 infants. One locus on chromosome 2q13 is associated with gestational duration; the association is replicated in 9,291 additional infants (combined P = 3.96 × 10). Analysis of 15,588 mother-child pairs shows that the association is driven by fetal rather than maternal genotype. Functional experiments show that the lead SNP, rs7594852, alters the binding of the HIC1 transcriptional repressor. Genes at the locus include several interleukin 1 family members with roles in pro-inflammatory pathways that are central to the process of parturition. Further understanding of the underlying mechanisms will be of great public health importance, since giving birth either before or after the window of term gestation is associated with increased morbidity and mortality.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11881-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718389PMC
September 2019

Editorial: The Role of Genetic and Lifestyle Factors in Metabolic Diseases.

Front Endocrinol (Lausanne) 2019 17;10:475. Epub 2019 Jul 17.

Steno Diabetes Center Copenhagen, Gentofte, Denmark.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fendo.2019.00475DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650930PMC
July 2019

A catalog of genetic loci associated with kidney function from analyses of a million individuals.

Nat Genet 2019 06 31;51(6):957-972. Epub 2019 May 31.

Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clincial Sciences in Malmö, Lund University, Malmö, Sweden.

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0407-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698888PMC
June 2019

Utility of Plasma Concentration of Trimethylamine N-Oxide in Predicting Cardiovascular and Renal Complications in Individuals With Type 1 Diabetes.

Diabetes Care 2019 08 23;42(8):1512-1520. Epub 2019 May 23.

Steno Diabetes Center Copenhagen, Gentofte, Denmark.

Objective: Trimethylamine N-oxide (TMAO) is suggested as an independent gut microbiota-derived risk factor for cardiovascular and renal disease. We investigated associations between plasma TMAO concentrations and cardio-renal outcomes in a prospective study of individuals with type 1 diabetes.

Research Design And Methods: Plasma TMAO was measured at baseline in 1,159 individuals with type 1 diabetes (58% male, mean ± SD age 46 ± 13 years). End points were all-cause and cardiovascular mortality, cardiovascular disease (CVD), and renal events tracked from national registries. Associations between TMAO and end points were tested using Cox regression models.

Results: After 15.0 (6.7-19.3) (median [interquartile range]) years of follow-up, we recorded all-cause and cardiovascular mortality ( = 363 and 120, respectively), combined CVD ( = 406), coronary outcome (myocardial infarction and coronary intervention) ( = 163), stroke ( = 115), hospitalization for heart failure ( = 81), and end-stage renal disease ( = 144). In univariate analyses, higher TMAO concentrations were associated with all end points ( ≤ 0.005). Except for stroke and heart failure, all end points remained significantly associated with higher TMAO concentrations after adjustment for conventional cardiovascular risk factors ( ≤ 0.003). After further adjustment for baseline estimated glomerular filtration rate (eGFR), results became insignificant for all end points. TMAO was inversely associated with baseline eGFR ( = 0.29; < 0.001).

Conclusions: In individuals with type 1 diabetes, higher concentrations of plasma TMAO were associated with mortality, CVD events, and poor renal outcome, independent of conventional risk factors. However, the association became insignificant after further adjustment for baseline eGFR. This could reflect TMAO as a renal function marker or a risk factor for micro- and macrovascular complications mediated through impaired renal function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/dc19-0048DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082641PMC
August 2019

Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.

Nat Genet 2019 05 1;51(5):804-814. Epub 2019 May 1.

Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.

Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0403-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522365PMC
May 2019

Low-frequency variation in TP53 has large effects on head circumference and intracranial volume.

Nat Commun 2019 01 21;10(1):357. Epub 2019 Jan 21.

School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW, 2308, Australia.

Cranial growth and development is a complex process which affects the closely related traits of head circumference (HC) and intracranial volume (ICV). The underlying genetic influences shaping these traits during the transition from childhood to adulthood are little understood, but might include both age-specific genetic factors and low-frequency genetic variation. Here, we model the developmental genetic architecture of HC, showing this is genetically stable and correlated with genetic determinants of ICV. Investigating up to 46,000 children and adults of European descent, we identify association with final HC and/or final ICV + HC at 9 novel common and low-frequency loci, illustrating that genetic variation from a wide allele frequency spectrum contributes to cranial growth. The largest effects are reported for low-frequency variants within TP53, with 0.5 cm wider heads in increaser-allele carriers versus non-carriers during mid-childhood, suggesting a previously unrecognized role of TP53 transcripts in human cranial development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-07863-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341110PMC
January 2019

Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits.

Am J Hum Genet 2019 01 27;104(1):112-138. Epub 2018 Dec 27.

School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2018.12.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323610PMC
January 2019