Publications by authors named "Tania O Stean"

18 Publications

  • Page 1 of 1

Identification of clinical candidates from the benzazepine class of histamine H3 receptor antagonists.

Bioorg Med Chem Lett 2013 Dec 5;23(24):6890-6. Epub 2013 Oct 5.

GlaxoSmithKline R&D, Neurology Centre of Excellence for Drug Discovery, Harlow, Essex CM19 5AW, United Kingdom. Electronic address:

This Letter describes the discovery of GSK189254 and GSK239512 that were progressed as clinical candidates to explore the potential of H3 receptor antagonists as novel therapies for the treatment of Alzheimer's disease and other dementias. By carefully controlling the physicochemical properties of the benzazepine series and through the implementation of an aggressive and innovative screening strategy that employed high throughput in vivo assays to efficiently triage compounds, the medicinal chemistry effort was able to rapidly progress the benzazepine class of H3 antagonists through to the identification of clinical candidates with robust in vivo efficacy and excellent developability properties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2013.09.090DOI Listing
December 2013

The discovery of the benzazepine class of histamine H3 receptor antagonists.

Bioorg Med Chem Lett 2013 Dec 5;23(24):6897-901. Epub 2013 Oct 5.

GlaxoSmithKline R&D, Neurology CEDD, Harlow, Essex CM19 5AW, United Kingdom. Electronic address:

This Letter describes the discovery of a novel series of H3 receptor antagonists. The initial medicinal chemistry strategy focused on deconstructing and simplifying an early screening hit which rapidly led to the discovery of a novel series of H3 receptor antagonists based on the benzazepine core. Employing an H3 driven pharmacodynamic model, the series was then further optimised through to a lead compound that showed robust in vivo functional activity and possessed overall excellent developability properties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2013.09.089DOI Listing
December 2013

Effects of the selective 5-HT(7) receptor antagonist SB-269970 in animal models of psychosis and cognition.

Behav Brain Res 2012 Mar 16;228(1):211-8. Epub 2011 Dec 16.

Schizophrenia and Cognitive Disorders Discovery Performance Unit, Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline Research & Development Ltd, New Frontiers Science Park, Harlow, Essex, CM19 5AW, UK.

The 5-hydroxytryptamine7 (5-HT7) receptor is a G-protein coupled receptor for serotonin that has been implicated in the pathophysiology of psychiatric and neurological disorders including anxiety, depression and schizophrenia. A number of studies have attempted to evaluate the potential role of the 5-HT7 receptor in schizophrenia by utilising genetic or pharmacological tools but to date these have provided conflicting results. Here we investigate the effect of a selective 5-HT7 receptor antagonist, SB-269970, in in vivo psychosis and cognition models and relate efficacy to brain exposures of the compound. SB-269970 significantly attenuated amphetamine-induced rearing and circling in rats. A similar effect was observed in an N-methyl d-aspartic acid (NMDA) receptor antagonist driven psychosis model, where SB-269970 significantly reversed phencyclidine-induced hyperlocomotion, rearing and circling; although the effect was not as robust as with the 5-HT2a receptor antagonist positive control, MDL100,907. SB-269970 also attenuated a temporal deficit in novel object recognition (NOR), indicative of an improvement in recognition memory. Pharmacokinetic analysis of plasma and brain samples taken after behavioural testing confirmed that efficacy was achieved at doses and pre-treatment times where receptor occupancy was substantial. These findings highlight the anti-psychotic and pro-cognitive potential of 5-HT7 receptor antagonists and warrant further studies to explore their therapeutic potential in schizophrenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2011.12.009DOI Listing
March 2012

Tricyclic azepine derivatives as selective brain penetrant 5-HT6 receptor antagonists.

Bioorg Med Chem Lett 2008 Oct 7;18(20):5698-700. Epub 2008 Aug 7.

Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.

Starting from a benzazepine sulfonamide 5-HT(6) receptor antagonist lead with limited brain penetration, application of a strategy of conformational constraint and reduction of hydrogen bond donor count led to a novel series of tricyclic derivatives with high 5-HT(6) receptor affinity and excellent brain:blood ratios.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.08.010DOI Listing
October 2008

The identification of potent, selective and CNS penetrant furan-based inhibitors of B-Raf kinase.

Bioorg Med Chem Lett 2008 Aug 24;18(15):4373-6. Epub 2008 Jun 24.

Department of Medicinal Chemistry, Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.

Modification of the potent imidazole-based B-Raf inhibitor SB-590885 resulted in the identification of a series of furan-based derivatives with enhanced CNS penetration. One such compound, SB-699393 (17), was examined in vivo to challenge the hypothesis that selective B-Raf inhibitors may be of value in the treatment of stroke.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.06.070DOI Listing
August 2008

GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer's disease brain and improves cognitive performance in preclinical models.

J Pharmacol Exp Ther 2007 Jun 27;321(3):1032-45. Epub 2007 Feb 27.

Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline, Third Ave., Harlow, Essex, CM19 5AW, UK.

6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) is a novel histamine H(3) receptor antagonist with high affinity for human (pK(i) = 9.59 -9.90) and rat (pK(i) = 8.51-9.17) H(3) receptors. GSK189254 is >10,000-fold selective for human H(3) receptors versus other targets tested, and it exhibited potent functional antagonism (pA(2) = 9.06 versus agonist-induced changes in cAMP) and inverse agonism [pIC(50) = 8.20 versus basal guanosine 5'-O-(3-[(35)S]thio)triphosphate binding] at the human recombinant H(3) receptor. In vitro autoradiography demonstrated specific [(3)H]GSK189254 binding in rat and human brain areas, including cortex and hippocampus. In addition, dense H(3) binding was detected in medial temporal cortex samples from severe cases of Alzheimer's disease, suggesting for the first time that H(3) receptors are preserved in late-stage disease. After oral administration, GSK189254 inhibited cortical ex vivo R-(-)-alpha-methyl[imidazole-2,5(n)-(3)H]histamine dihydrochloride ([(3)H]R-alpha-methylhistamine) binding (ED(50) = 0.17 mg/kg) and increased c-Fos immunoreactivity in prefrontal and somatosensory cortex (3 mg/kg). Microdialysis studies demonstrated that GSK189254 (0.3-3 mg/kg p.o.) increased the release of acetylcholine, noradrenaline, and dopamine in the anterior cingulate cortex and acetylcholine in the dorsal hippocampus. Functional antagonism of central H(3) receptors was demonstrated by blockade of R-alpha-methylhistamine-induced dipsogenia in rats (ID(50) = 0.03 mg/kg p.o.). GSK189254 significantly improved performance of rats in diverse cognition paradigms, including passive avoidance (1 and 3 mg/kg p.o.), water maze (1 and 3 mg/kg p.o.), object recognition (0.3 and 1 mg/kg p.o.), and attentional set shift (1 mg/kg p.o.). These data suggest that GSK189254 may have therapeutic potential for the symptomatic treatment of dementia in Alzheimer's disease and other cognitive disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.107.120311DOI Listing
June 2007

Structurally novel histamine H3 receptor antagonists GSK207040 and GSK334429 improve scopolamine-induced memory impairment and capsaicin-induced secondary allodynia in rats.

Biochem Pharmacol 2007 Apr 7;73(8):1182-94. Epub 2007 Jan 7.

Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline, Third Avenue, Harlow, Essex CM19 5AW, UK.

GSK207040 (5-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-2-pyrazinecarboxamide) and GSK334429 (1-(1-methylethyl)-4-({1-[6-(trifluoromethyl)-3-pyridinyl]-4-piperidinyl}carbonyl)hexahydro-1H-1,4-diazepine) are novel and selective non-imidazole histamine H(3) receptor antagonists from distinct chemical series with high affinity for human (pK(i)=9.67+/-0.06 and 9.49+/-0.09, respectively) and rat (pK(i)=9.08+/-0.16 and 9.12+/-0.14, respectively) H(3) receptors expressed in cerebral cortex. At the human recombinant H(3) receptor, GSK207040 and GSK334429 were potent functional antagonists (pA(2)=9.26+/-0.04 and 8.84+/-0.04, respectively versus H(3) agonist-induced changes in cAMP) and exhibited inverse agonist properties (pIC(50)=9.20+/-0.36 and 8.59+/-0.04 versus basal GTPgammaS binding). Following oral administration, GSK207040 and GSK334429 potently inhibited cortical ex vivo [(3)H]-R-alpha-methylhistamine binding (ED(50)=0.03 and 0.35 mg/kg, respectively). Functional antagonism of central H(3) receptors was demonstrated by blockade of R-alpha-methylhistamine-induced dipsogenia in rats (ID(50)=0.02 and 0.11 mg/kg p.o. for GSK207040 and GSK334429, respectively). In more pathophysiologically relevant pharmacodynamic models, GSK207040 (0.1, 0.3, 1 and 3mg/kg p.o.) and GSK334429 (0.3, 1 and 3mg/kg p.o.) significantly reversed amnesia induced by the cholinergic antagonist scopolamine in a passive avoidance paradigm. In addition, GSK207040 (0.1, 0.3 and 1mg/kg p.o.) and GSK334429 (3 and 10mg/kg p.o.) significantly reversed capsaicin-induced reductions in paw withdrawal threshold, suggesting for the first time that blockade of H(3) receptors may be able to reduce tactile allodynia. Novel H(3) receptor antagonists such as GSK207040 and GSK334429 may therefore have therapeutic potential not only in dementia but also in neuropathic pain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2007.01.007DOI Listing
April 2007

SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models.

Eur J Pharmacol 2006 Dec 29;553(1-3):109-19. Epub 2006 Sep 29.

Neurology & GI Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, Essex, CM19 5AW, UK.

SB-399885 (N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide) has high affinity for human recombinant and native 5-HT(6) receptors, with pK(i) values 9.11+/-0.03 and 9.02+/-0.05, respectively and is a potent competitive antagonist (pA(2) 7.85+/-0.04). It displays over 200-fold selectivity for the 5-HT(6) receptor over all other receptors, ion channels and enzymes tested to date. SB-399885 inhibited ex vivo [(125)I]SB-258585 (4-Iodo-N-[4-methoxy-3-(4-methyl-piperazin-1-yl)-phenyl]-benzenesulfonamide) binding with an ED(50) of 2.0+/-0.24 mg/kg p.o. in rats. It had a minimum effective dose of 1 mg/kg p.o. in a rat maximal electroshock seizure threshold test and a long duration of action, overall demonstrating an excellent pharmacokinetic-pharmacodynamic correlation. Repeated administration of this agent (10 mg/kg p.o., b.i.d. for 7 days) significantly reversed a scopolamine-induced deficit (0.5 mg/kg i.p.) in a rat novel object recognition paradigm. Moreover, in aged rats (22 months old) SB-399885 (10 mg/kg p.o., b.i.d. for 7 days) fully reversed the age-dependent deficit in water maze spatial learning compared to vehicle-treated age-matched controls and significantly improved recall of the task measured by increases in the searching of the target quadrant on post-training days 1, 3 and 7. In vivo microdialysis in the rat medial prefrontal cortex demonstrated that acute SB-399885 (10 mg/kg p.o.) significantly increased extracellular acetylcholine levels. These data demonstrate that SB-399885 is a potent, selective, brain penetrant, orally active 5-HT(6) receptor antagonist with cognitive enhancing properties that are likely to be mediated by enhancements of cholinergic function. These studies provide further support for the potential therapeutic utility of 5-HT(6) receptor antagonists in disorders characterised by cognitive deficits such as Alzheimer's disease and schizophrenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2006.09.049DOI Listing
December 2006

Further validation of LABORAS using various dopaminergic manipulations in mice including MPTP-induced nigro-striatal degeneration.

J Neurosci Methods 2006 Sep 19;156(1-2):218-27. Epub 2006 Apr 19.

Neurology & GI CEDD, GlaxoSmithKline Pharmaceuticals, Harlow, Essex CM19 5AW, UK.

The automated behavioural apparatus, LABORAS (Laboratory Animal Behaviour Observation, Registration and Analysis System), has been further validated with respect to the ability of the system to detect behavioural impairments in mice, following various dopaminergic manipulations. Initially data were obtained from mice administered with amphetamine, haloperidol, SCH23390, apomorphine and L-DOPA, with the focus on locomotor and grooming activities. The data recorded by LABORAS on administration of these pharmacological tool compounds, is comparable with published findings using standard LMA systems and conventional observer methods. In addition the home cage behaviour of mice administered with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using an acute dosing regimen was also investigated. In LABORAS, mice subjected to MPTP lesioning showed deficits in spontaneous motor activity at day 6-7 post-MPTP administration, over a 24 h test period, as compared to saline treated controls. The data captured and analysed using LABORAS, suggests that the automated system is able to detect both pharmacologically and lesion-induced changes in behaviour of mice, reliably and efficiently.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2006.03.013DOI Listing
September 2006

Bicyclic heteroarylpiperazines as selective brain penetrant 5-HT6 receptor antagonists.

Bioorg Med Chem Lett 2005 Nov;15(21):4867-71

Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.

Starting from the potent and selective but poorly brain penetrant 5-HT6 receptor antagonist SB-271046, a successful strategy for improving brain penetration was adopted involving conformational constraint with concomitant reduction in hydrogen bond count. This provided a series of bicyclic heteroarylpiperazines with high 5-HT6 receptor affinity. 5-Chloroindole 699929 combined high 5-HT6 receptor affinity with excellent brain penetration and also had good oral bioavailability in both rat and dog.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2005.06.107DOI Listing
November 2005

8-Piperazinyl-2,3-dihydropyrrolo[3,2-g]isoquinolines: potent, selective, orally bioavailable 5-HT1 receptor ligands.

Bioorg Med Chem Lett 2005 Oct;15(19):4370-4

High Throughput Chemistry, Discovery Research, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow Essex CM19 5AW, UK.

The novel 8-piperazinyl-2,3-dihydropyrroloisoquinoline template was synthesized in nine steps. The template was N-substituted to give a series of compounds showing binding to human cloned 5-HT1A, 5-HT1B and 5-HT1D receptors with pKi's greater than 9 and selectivities up to 1000-fold against other serotonin, dopamine and adrenergic receptors. Several compounds were shown to possess weak partial agonist activity in cloned receptors, which translated to antagonism in in vitro studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2005.06.042DOI Listing
October 2005

Postsynaptic 5-HT1B receptors modulate electroshock-induced generalised seizures in rats.

Br J Pharmacol 2005 Mar;144(5):628-35

Neurology & GI-CEDD, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW.

1. Although an important regulatory role for serotonin (5-HT) in seizure activation and propagation is well established, relatively little is known of the function of specific 5-HT receptor subtypes on seizure modulation. 2. The aim of the present study was to investigate the role of 5-HT(1A, 1B and 1D) receptors in modulating generalised seizures in the rat maximal electroshock seizure threshold (MEST) test. 3. The mixed 5-HT receptor agonists SKF 99101 (5-20 mg kg(-1) i.p.) and RU 24969 (1-5 mg kg(-1) i.p.), 0.5 h pretest, both produced marked dose-related increases in seizure threshold. These agents share high affinity for 5-HT(1A, 1B and 1D) receptors. 4. Antiseizure effects induced by submaximal doses of these agonists were maintained following p-chlorophenylalanine (150 mg kg(-1) i.p. x 3 days)-induced 5-HT depletion. 5. The anticonvulsant action of both SKF 99101 (15 mg kg(-1) i.p.) and RU 24969 (2.5 mg kg(-1) i.p.) was dose-dependently abolished by the selective 5-HT1B receptor antagonist SB-224289 (0.1-3 mg kg(-1) p.o., 3 h pretest) but was unaffected by the selective 5-HT1A receptor antagonist WAY 100635 (0.01-0.3 mg kg(-1) s.c., 1 h pretest). This indicates that 5-HT1B receptors are primarily involved in mediating the anticonvulsant properties of these agents. 6. In addition, the ability of the 5-HT(1B/1D) receptor antagonist GR 127935 (0.3-3 mg kg(-1) s.c., 60 min pretest) to dose-dependently inhibit SKF 99101-induced elevation of seizure threshold also suggests possible downstream involvement of 5-HT1D receptors in the action of this agonist, although confirmation awaits the identification of a selective 5-HT1D receptor antagonist. 7. Overall, these data demonstrate that stimulation of postsynaptic 5-HT1B receptors inhibits electroshock-induced seizure spread in rats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.bjp.0706027DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1576040PMC
March 2005

A novel behavioural registration system LABORAS and the social interaction paradigm detect long-term functional deficits following middle cerebral artery occlusion in the rat.

Brain Res 2005 Jan;1031(1):118-24

Neurology and GI CEDD, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex CMI9 5AW, UK.

Following stroke, patients suffer a wide range of disabilities including motor impairment, anxiety and depression. However, to date, characterisation of rodent stroke models has concentrated mainly on the investigation of motor deficits. The aim of the present studies was therefore to investigate home cage behaviour (as assessed by a recently developed automatic behavioural classification system, LABORAS) and social behaviour (as a measure of anxiety) in rats following transient middle cerebral artery occlusion (tMCAO). Rats subjected to tMCAO (90 min) showed deficits in general home cage behaviours including locomotion, rearing, grooming and drinking for up to 7 weeks post occlusion, as compared with sham operated controls. In addition, a significant decrease in the total duration of social interaction was also observed in occluded rats compared with shams. The data shows that in addition to motor deficits, animals display changes in home cage behaviour and decreased social behaviour which, in contrast to motor function, are prolonged over time. Transient MCAO in rats may therefore provide a pre-clinical model to investigate agents offering symptomatic relief for ischaemia-induced motor deficits and anxiety over time following injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2004.10.036DOI Listing
January 2005

LABORAS: Initial pharmacological validation of a system allowing continuous monitoring of laboratory rodent behaviour.

J Neurosci Methods 2003 Nov;130(1):83-92

Neurology and GI CEDD, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.

A newly developed apparatus for automated behavioural analysis, Laboratory Animal Behaviour Observation, Registration and Analysis System (LABORAS), has been further validated with respect to the ability of the system to detect the pharmacodynamic effects of standard pharmacological tools. Data were obtained from rats administered with mCPP (reversal with SB242084), 8-OH-DPAT (reversal with WAY100635), amphetamine (reversal with haloperidol) and angiotensin, with the focus on locomotor activity, feeding and drinking behaviours. The data captured and analysed by LABORAS, suggests that the automated system is able to detect pharmacologically induced changes in behaviour, reliably and efficiently, with a significant reduction in the number of animals required, and reduced operator input.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0165-0270(03)00227-9DOI Listing
November 2003

Evidence for a selective role of the delta-opioid agonist [8R-(4bS*,8aalpha,8abeta, 12bbeta)]7,10-Dimethyl-1-methoxy-11-(2-methylpropyl)oxycarbonyl 5,6,7,8,12,12b-hexahydro-(9H)-4,8-methanobenzofuro[3,2-e]pyrrolo[2,3-g]isoquinoline hydrochloride (SB-235863) in blocking hyperalgesia associated with inflammatory and neuropathic pain responses.

J Pharmacol Exp Ther 2003 Dec 9;307(3):1079-89. Epub 2003 Oct 9.

Department of Neurobiology Research, GlaxoSmithKline Chemicals, Milano, Italy.

The specific involvement of the delta-opioid receptor in the control of nociception was explored by investigating the pharmacological activity in vivo of a selective, orally active, and centrally penetrant delta-opioid agonist. [8R-(4bS*,8aalpha,8abeta,12bbeta)]7,10-dimethyl-1-methoxy-11-(2-methylpropyl)oxycarbonyl 5,6,7,8,12,12b-hexahydro-(9H)-4,8-methanobenzofuro[3,2-e]pyrrolo[2,3-g]isoquinoline hydrochloride (SB-235863) is a new pyrrolomorphinan with high affinity (Ki = 4.81 +/- 0.39 nM) for the delta-opioid receptor, full agonist activity, and binding selectivity versus the mu- and kappa-opioid receptors of 189-fold and 52-fold, respectively. Perorally administered SB-236863 was inactive in the rat tail-flick and hot-plate tests of acute pain response, but potently reversed thermal hyperalgesia in rats resulting from a carrageenan-induced inflammatory response. This activity could be blocked by the delta-opioid antagonist naltrindole (3 mg/kg s.c.), but selective mu- and kappa-opioid antagonists were ineffective. Naltrindole (1 microg i.c.v.) also blocked the activity of 10 mg/kg (p.o.) SB-235863, showing that the compound activates delta-opioid receptor sites in the central nervous system. SB-235863 was additionally effective at reversing chronic hyperalgesia in the Seltzer rat model of partial sciatic nerve ligation after peroral administration. These data show that the delta-opioid receptor plays a selective role in regulating evoked and lasting changes in nociceptive pain signaling. Classical side effects of mu- and kappa-opioid receptor activation (slowing of gastrointestinal transit and motor incoordination, respectively) were not observed after administration of 70 mg/kg (p.o.) SB-235863, nor was evoked seizure activity affected. These results suggest a selective and limited role of delta-opioid receptors in the modulation of nociception.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.103.055590DOI Listing
December 2003

The design of 8,8-dimethyl[1,6]naphthyridines as potential anticonvulsant agents.

Bioorg Med Chem Lett 2003 May;13(10):1627-9

Neurology & GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research & Development Limited, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.

Starting from a series of 7-linked tetrahydroisoquinoline derivatives, as exemplified by SB-270664, a new series of 8,8-dimethylnaphthyridine compounds has been identified. SAR studies around these attractive leads have provided compounds such as 12 which display excellent anticonvulsant activity and an encouraging pharmacokinetic profile in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-894x(03)00288-9DOI Listing
May 2003

SB-656104-A: a novel 5-HT(7) receptor antagonist with improved in vivo properties.

Bioorg Med Chem Lett 2002 Nov;12(22):3341-4

GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex, UK.

A focused SAR study around the previously reported selective 5-HT(7) receptor antagonist, SB-269970-A has resulted in the identification of a structurally related analogue having an improved pharmacokinetic profile. Replacement of the phenolic group in SB-269970-A with an indole moiety, and replacement of the piperidinyl 4-methyl group with a heterocyclic ring system proved to be the key changes leading to the identification of SB-656104-A.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-894x(02)00690-xDOI Listing
November 2002

Pharmacological profile of SB-357134: a potent, selective, brain penetrant, and orally active 5-HT(6) receptor antagonist.

Pharmacol Biochem Behav 2002 Apr;71(4):645-54

Neurology-CEDD, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Essex CM19 5AW, Harlow, UK.

N-(2,5-Dibromo-3-fluorophenyl)-4-methoxy-3-piperazin-1-ylbenzenesulfonamide (SB-357134) potently inhibited [125I]SB-258585 and [3H]LSD binding in a HeLa cell line expressing human 5-HT(6) receptors (pK(i)=8.6 and 8.54, respectively). Furthermore, SB-357134 inhibited [125I]SB-258585 binding in human caudate--putamen and in rat and pig striatum membranes (pK(i)=8.82, 8.44, and 8.61, respectively). SB-357134 displayed over 200-fold selectivity for the 5-HT(6) receptor versus 72 other receptors and enzymes. 5-HT-stimulated cyclic AMP (cAMP) accumulation in human 5-HT(6) receptors was competitively antagonised by SB-357134 (pA(2)=7.63). SB-357134 inhibited ex vivo [125I]SB-258585 binding in the rat with an ED(50) of 4.9 +/- 1.3 mg/kg po, 4 h postdose. In the rat maximal electroshock seizure threshold (MEST) test, SB-357134 produced a potent and dose-dependent increase in seizure threshold, with a minimum effective dose of 0.1 mg/kg po. At 10 mg/kg po, maximum activity occurred between 4 and 6 h postdose. Good exposure was observed with SB-357134 at 10 mg/kg po, reaching maximal blood and brain concentrations of 4.3 +/- 0.2 and 1.3 +/- 0.06 microM, respectively, 1 h postdose. In addition, SB-357134 (10 mg/kg po) enhanced memory and learning following chronic administration (twice a day for 7 days) in the rat water maze. Overall, these studies demonstrate that SB-357134 is a potent, selective, brain penetrant, and orally active 5-HT(6) receptor antagonist.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0091-3057(01)00742-0DOI Listing
April 2002