Publications by authors named "Talaignair N Venkatraman"

17 Publications

  • Page 1 of 1

Neuroprotective Pentapeptide, CN-105, Improves Outcomes in Translational Models of Intracerebral Hemorrhage.

Neurocrit Care 2021 Jan 21. Epub 2021 Jan 21.

Department of Neurology, Duke University, Durham, NC, USA.

Background: Intracerebral hemorrhage (ICH) is a devastating form of cerebrovascular disease for which there are no approved pharmacological interventions that improve outcomes. Apolipoprotein E (apoE) has emerged as a promising therapeutic target given its isoform-specific neuroprotective properties and ability to modify neuroinflammatory responses. We developed a 5-amino acid peptide, CN-105, that mimics the polar face of the apoE helical domain involved in receptor interactions, readily crosses the blood-brain barrier, and improves outcomes in well-established preclinical ICH models. In the current study, we investigated the therapeutic potential of CN-105 in translational ICH models that account for hypertensive comorbidity, sex, species, and age.

Methods: In three separate experiments, we delivered three intravenous doses of CN-105 (up to 0.20 mg/kg) or vehicle to hypertensive male BPH/2 J mice, spontaneously hypertensive female rats, or 11-month-old male mice within 24-h of ICH. Neuropathological and neurobehavioral outcomes were determined over 3, 7, and 9 days, respectively.

Results: In spontaneously hypertensive male mice, there was a significant dose-dependent effect of CN-105 on vestibulomotor function at 0.05 and 0.20 mg/kg doses (p < 0.05; 95% CI: 0.91-153.70 and p < 0.001; 95% CI: 49.54-205.62), while 0.20 mg/kg also improved neuroseverity scores (p < 0.05; 95% CI: 0.27-11.00) and reduced ipsilateral brain edema (p < 0.05; 95% CI: - 0.037 to - 0.001). In spontaneously hypertensive female rats, CN-105 (0.05 mg/kg) had a significant effect on vestibulomotor function (p < 0.01; η  = 0.093) and neuroseverity scores (p < 0.05; η = 0.083), and reduced contralateral edema expansion (p < 0.01; 95% CI: - 1.41 to - 0.39). In 11-month-old male mice, CN-105 had a significant effect on vestibulomotor function (p < 0.001; η = 0.111) but not neuroseverity scores (p > 0.05; η = 0.034).

Conclusions: Acute treatment with CN-105 improves outcomes in translational ICH models independent of sex, species, age, or hypertensive comorbidity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12028-020-01184-yDOI Listing
January 2021

Author Correction: Neuroprotective pentapeptide CN-105 improves functional and histological outcomes in a murine model of intracerebral hemorrhage.

Sci Rep 2020 Apr 20;10(1):6898. Epub 2020 Apr 20.

Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.

An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-63178-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170870PMC
April 2020

Annexin A1 Bioactive Peptide Promotes Resolution of Neuroinflammation in a Rat Model of Exsanguinating Cardiac Arrest Treated by Emergency Preservation and Resuscitation.

Front Neurosci 2019 14;13:608. Epub 2019 Jun 14.

Systems Modeling of Perioperative Organ Injury Laboratory, Department of Anesthesiology, Duke University, Durham, NC, United States.

Neuroinflammation initiated by damage-associated molecular patterns, including high mobility group box 1 protein (HMGB1), has been implicated in adverse neurological outcomes following lethal hemorrhagic shock and polytrauma. Emergency preservation and resuscitation (EPR) is a novel method of resuscitation for victims of exsanguinating cardiac arrest, shown in preclinical studies to improve survival with acceptable neurological recovery. Sirtuin 3 (SIRT3), the primary mitochondrial deacetylase, has emerged as a key regulator of metabolic and energy stress response pathways in the brain and a pharmacological target to induce a neuronal pro-survival phenotype. This study aims to examine whether systemic administration of an Annexin-A1 bioactive peptide (ANXA1sp) could resolve neuroinflammation and induce sirtuin-3 regulated cytoprotective pathways in a novel rat model of exsanguinating cardiac arrest and EPR. Adult male rats underwent hemorrhagic shock and ventricular fibrillation, induction of profound hypothermia, followed by resuscitation and rewarming using cardiopulmonary bypass (EPR). Animals randomly received ANXA1sp (3 mg/kg, in divided doses) or vehicle. Neuroinflammation (HMGB1, TNFα, IL-6, and IL-10 levels), cerebral cell death (TUNEL, caspase-3, pro and antiapoptotic protein levels), and neurologic scores were assessed to evaluate the inflammation resolving effects of ANXA1sp following EPR. Furthermore, western blot analysis and immunohistochemistry were used to interrogate the mechanisms involved. Compared to vehicle controls, ANXA1sp effectively reduced expression of cerebral HMGB1, IL-6, and TNFα and increased IL-10 expression, which were associated with improved neurological scores. ANXA1sp reversed EPR-induced increases in expression of proapoptotic protein Bax and reduction in antiapoptotic protein Bcl-2, with a corresponding decrease in cerebral levels of cleaved caspase-3. Furthermore, ANXA1sp induced autophagic flux (increased LC3II and reduced p62 expression) in the brain. Mechanistically, these findings were accompanied by upregulation of the mitochondrial protein deacetylase Sirtuin-3, and its downstream targets FOXO3a and MnSOD in ANXA1sp-treated animals. Our data provide new evidence that engaging pro-resolving pharmacological strategies such as Annexin-A1 biomimetic peptides can effectively attenuate neuroinflammation and enhance the neuroprotective effects of EPR after exsanguinating cardiac arrest.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnins.2019.00608DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587399PMC
June 2019

ABC Transporter Inhibition Plus Dexamethasone Enhances the Efficacy of Convection Enhanced Delivery in H3.3K27M Mutant Diffuse Intrinsic Pontine Glioma.

Neurosurgery 2020 05;86(5):742-751

Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.

Background: An impermeable blood-brain barrier and drug efflux via ATP-binding cassette (ABC) transporters such as p-glycoprotein may contribute to underwhelming efficacy of peripherally delivered agents to treat diffuse intrinsic pontine glioma (DIPG).

Objective: To explore the pharmacological augmentation of convection-enhanced delivery (CED) infusate for DIPG.

Methods: The efficacy of CED dasatinib, a tyrosine kinase inhibitor, in a transgenic H3.3K27M mutant murine model was assessed. mRNA expression of ABCB1 (p-glycoprotein) was analyzed in 14 tumor types in 274 children. In Vitro viability studies of dasatinib, the p-glycoprotein inhibitor, tariquidar, and dexamethasone were performed in 2 H3.3K27M mutant cell lines. Magnetic resonance imaging (MRI) was used to evaluate CED infusate (gadolinium/dasatinib) distribution in animals pretreated with tariquidar and dexamethasone. Histological assessment of apoptosis was performed.

Results: Continuous delivery CED dasatinib improved median overall survival (OS) of animals harboring DIPG in comparison to vehicle (39.5 and 28.5 d, respectively; P = .0139). Mean ABCB1 expression was highest in K27M gliomas. In Vitro, the addition of tariquidar and dexamethasone further enhanced the efficacy of dasatinib (P < .001). In Vivo, MRI demonstrated no difference in infusion dispersion between animals pretreated with dexamethasone plus tariquidar prior to CED dasatinib compared to the CED dasatinib. However, tumor apoptosis was the highest in the pretreatment group (P < .001). Correspondingly, median OS was longer in the pretreatment group (49 d) than the dasatinib alone group (39 d) and no treatment controls (31.5 d, P = .0305).

Conclusion: ABC transporter inhibition plus dexamethasone enhances the efficacy of CED dasatinib, resulting in enhanced tumor cellular apoptosis and improved survival in H3.3K27M mutant DIPG.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/neuros/nyz212DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443593PMC
May 2020

BAG3 (Bcl-2-Associated Athanogene-3) Coding Variant in Mice Determines Susceptibility to Ischemic Limb Muscle Myopathy by Directing Autophagy.

Circulation 2017 Jul 25;136(3):281-296. Epub 2017 Apr 25.

From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville.

Background: Critical limb ischemia is a manifestation of peripheral artery disease that carries significant mortality and morbidity risk in humans, although its genetic determinants remain largely unknown. We previously discovered 2 overlapping quantitative trait loci in mice, and , that affected limb muscle survival and stroke volume after femoral artery or middle cerebral artery ligation, respectively. Here, we report that a variant (Ile81Met) segregates with tissue protection from hind-limb ischemia.

Methods: We treated mice with either adeno-associated viruses encoding a control (green fluorescent protein) or 2 BAG3 (Bcl-2-associated athanogene-3) variants, namely Met81 or Ile81, and subjected the mice to hind-limb ischemia.

Results: We found that the BAG3 Ile81Met variant in the C57BL/6 (BL6) mouse background segregates with protection from tissue necrosis in a shorter congenic fragment of (C.B6-). BALB/c mice treated with adeno-associated virus encoding the BL6 BAG3 variant (Ile81; n=25) displayed reduced limb-tissue necrosis and increased limb tissue perfusion compared with Met81- (n=25) or green fluorescent protein- (n=29) expressing animals. BAG3, but not BAG3, improved ischemic muscle myopathy and muscle precursor cell differentiation and improved muscle regeneration in a separate, toxin-induced model of injury. Systemic injection of adeno-associated virus-BAG3 (n=9), but not BAG3 (n=10) or green fluorescent protein (n=5), improved ischemic limb blood flow and limb muscle histology and restored muscle function (force production). Compared with BAG3, BAG3 displayed improved binding to the small heat shock protein (HspB8) in ischemic skeletal muscle cells and enhanced ischemic muscle autophagic flux.

Conclusions: Taken together, our data demonstrate that genetic variation in BAG3 plays an important role in the prevention of ischemic tissue necrosis. These results highlight a pathway that preserves tissue survival and muscle function in the setting of ischemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024873DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537727PMC
July 2017

Neuroprotective pentapeptide CN-105 improves functional and histological outcomes in a murine model of intracerebral hemorrhage.

Sci Rep 2016 10 7;6:34834. Epub 2016 Oct 7.

Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA.

Presently, no pharmacological treatments have been demonstrated to improve long-term functional outcomes following intracerebral hemorrhage (ICH). Clinical evidence associates apolipoprotein E (apoE) genotype with ICH incidence and outcome. While apoE modifies neuroinflammatory responses through its adaptive role in glial downregulation, intact apoE holoprotein is too large to cross the blood-brain barrier (BBB). Therefore, we developed a 5-amino acid peptide - CN-105 - that mimics the polar face of the apoE helical domain involved in receptor interactions. In the current study, we investigated the therapeutic potential of CN-105 in a mouse model of ICH. Three doses of CN-105 (0.05 mg/kg) was administered by tail vein injection within 24 hours after ICH induction. Functional assessment showed durable improvement in vestibulomotor performance after CN-105 treatment, as quantified by increased Rotarod latencies on Days 1-5 post-ICH, and long-term improvement in neurocognitive performance, as quantified by reduced Morris water maze latencies on Days 29-32 post-ICH. Further, brain water content was significantly reduced, neuroinflammation was decreased and hippocampal CA3 neuronal survival was increased, although hemorrhage volume was not affected by CN-105. We concluded, therefore, that pentapeptide CN-105 improved short- and long-term neurobehavioral outcomes in a murine model of ICH, suggesting therapeutic potential for patients with acute ICH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep34834DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054364PMC
October 2016

Anticancer therapeutic potential of Mn porphyrin/ascorbate system.

Free Radic Biol Med 2015 Dec 20;89:1231-47. Epub 2015 Oct 20.

Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, United States. Electronic address:

Ascorbate (Asc) as a single agent suppressed growth of several tumor cell lines in a mouse model. It has been tested in a Phase I Clinical Trial on pancreatic cancer patients where it exhibited no toxicity to normal tissue yet was of only marginal efficacy. The mechanism of its anticancer effect was attributed to the production of tumoricidal hydrogen peroxide (H2O2) during ascorbate oxidation catalyzed by endogenous metalloproteins. The amount of H2O2 could be maximized with exogenous catalyst that has optimized properties for such function and is localized within tumor. Herein we studied 14 Mn porphyrins (MnPs) which differ vastly with regards to their redox properties, charge, size/bulkiness and lipophilicity. Such properties affect the in vitro and in vivo ability of MnPs (i) to catalyze ascorbate oxidation resulting in the production of H2O2; (ii) to subsequently employ H2O2 in the catalysis of signaling proteins oxidations affecting cellular survival pathways; and (iii) to accumulate at site(s) of interest. The metal-centered reduction potential of MnPs studied, E1/2 of Mn(III)P/Mn(II)P redox couple, ranged from -200 to +350 mV vs NHE. Anionic and cationic, hydrophilic and lipophilic as well as short- and long-chained and bulky compounds were explored. Their ability to catalyze ascorbate oxidation, and in turn cytotoxic H2O2 production, was explored via spectrophotometric and electrochemical means. Bell-shape structure-activity relationship (SAR) was found between the initial rate for the catalysis of ascorbate oxidation, vo(Asc)ox and E1/2, identifying cationic Mn(III) N-substituted pyridylporphyrins with E1/2>0 mV vs NHE as efficient catalysts for ascorbate oxidation. The anticancer potential of MnPs/Asc system was subsequently tested in cellular (human MCF-7, MDA-MB-231 and mouse 4T1) and animal models of breast cancer. At the concentrations where ascorbate (1mM) and MnPs (1 or 5 µM) alone did not trigger any alteration in cell viability, combined treatment suppressed cell viability up to 95%. No toxicity was observed with normal human breast epithelial HBL-100 cells. Bell-shape relationship, essentially identical to vo(Asc)oxvs E1/2, was also demonstrated between MnP/Asc-controlled cytotoxicity and E1/2-controlled vo(Asc)ox. Magnetic resonance imaging studies were conducted to explore the impact of ascorbate on T1-relaxivity. The impact of MnP/Asc on intracellular thiols and on GSH/GSSG and Cys/CySS ratios in 4T1 cells was assessed and cellular reduction potentials were calculated. The data indicate a significant increase in cellular oxidative stress induced by MnP/Asc. Based on vo(Asc)oxvs E1/2 relationships and cellular toxicity, MnTE-2-PyP(5+) was identified as the best catalyst among MnPs studied. Asc and MnTE-2-PyP(5+) were thus tested in a 4T1 mammary mouse flank tumor model. The combination of ascorbate (4 g/kg) and MnTE-2-PyP(5+) (0.2mg/kg) showed significant suppression of tumor growth relative to either MnTE-2-PyP(5+) or ascorbate alone. About 7-fold higher accumulation of MnTE-2-PyP(5+) in tumor vs normal tissue was found to contribute largely to the anticancer effect.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2015.10.416DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684782PMC
December 2015

Effects of deep hypothermic circulatory arrest on the blood brain barrier in a cardiopulmonary bypass model--a pilot study.

Heart Lung Circ 2014 Oct 23;23(10):981-4. Epub 2014 May 23.

Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA. Electronic address:

Background: Neurologic injury is common after cardiac surgery and disruption of the blood brain barrier (BBB) has been proposed as a contributing factor. We sought to study BBB characteristics in a rodent model of cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA).

Methods: Adult rats were subjected to CPB/DHCA or to sham surgery. Analysis included Western blotting of relevant BBB proteins in addition to in vivo brain magnetic resonance imaging (MRI) with a clinically used low-molecular contrast agent.

Results: While quantitative analysis of BBB proteins revealed similar expression levels, MRI showed evidence of BBB disruption after CPB/DHCA compared to sham surgery.

Conclusions: Combining molecular BBB analysis and MRI technology in a rodent model is a highly translatable approach to study adverse neurologic outcomes following CPB/DHCA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hlc.2014.04.131DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4175088PMC
October 2014

pH-sensitive NMDA inhibitors improve outcome in a murine model of SAH.

Neurocrit Care 2014 Feb;20(1):119-31

Multidisciplinary Neuroprotection Laboratories, Durham, NC, USA.

Background: Despite intensive research, neurological morbidity from delayed cerebral ischemia remains common after aneurysmal subarachnoid hemorrhage (SAH). In the current study, we evaluate the neuroprotective effects of a pH-dependent GluN2B subunit-selective NMDA receptor antagonist in a murine model of SAH.

Methods: Following induction of SAH, 12 ± 2 week old male C57-BL/6 mice received NP10075, a pH-dependent NMDA receptor antagonist, or vehicle. In a separate series of experiments, NP10075 and the non-pH sensitive NMDA antagonist, NP10191, were administered to normoglycemic and hyperglycemic mice. Both histological (right middle cerebral artery diameter, NeuN, and Fluoro-Jade B staining) and functional endpoints (rotarod latency and neuroseverity score) were evaluated to assess the therapeutic benefit of NP10075.

Results: Administration of NP10075 was well tolerated and had minimal hemodynamic effects following SAH. Administration of the pH-sensitive NMDA antagonist NP10075, but not NP10191, was associated with a durable improvement in the functional performance of both normoglycemic and hyperglycemic animals. NP10075 was also associated with a reduction in vasospasm in the middle cerebral artery associated with hemorrhage. There was no significant difference between treatment with nimodipine + NP10075, as compared to NP10075 alone.

Conclusions: These data demonstrate that use of a pH-dependent NMDA antagonist has the potential to work selectively in areas of ischemia known to undergo acidic pH shifts, and thus may be associated with selective regional efficacy and fewer behavioral side effects than non-selective NMDA antagonists.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12028-013-9944-9DOI Listing
February 2014

ApolipoproteinE mimetic peptides improve outcome after focal ischemia.

Exp Neurol 2013 Mar 6;241:67-74. Epub 2012 Dec 6.

Department of Medicine (Neurology), Duke University School of Medicine, Durham, NC 27710, USA.

Growing clinical evidence implicates isoform-specific effects of apolipoprotein E (apoE) in reducing neuroinflammation and mediating adaptive responses following ischemic and traumatic brain injury. However, the intact apoE holoprotein does not cross the blood-brain barrier and thus has limited therapeutic potential. We have created a small peptide, COG1410 (acetyl-AS-Aib-LRKL-Aib-KRLL-amide), derived from the apoE receptor-binding region. COG1410 retains the anti-inflammatory and neuroprotective biological properties of the intact holoprotein and penetrates the blood-brain barrier. In the current study, we utilized a murine model of transient focal cerebral ischemia and reperfusion to demonstrate that intravenous (IV) administration of COG1410 reduces infarct volume and radiographic progression of infarct, and improves functional outcome as assessed by rotarod when delivered up to 4h after ischemia onset.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2012.11.027DOI Listing
March 2013

Xenon neuroprotection in experimental stroke: interactions with hypothermia and intracerebral hemorrhage.

Anesthesiology 2012 Dec;117(6):1262-75

University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.

Background: Xenon has been proven to be neuroprotective in experimental brain injury. The authors hypothesized that xenon would improve outcome from focal cerebral ischemia with a delayed treatment onset and prolonged recovery interval.

Methods: Rats were subjected to 70 min temporary focal ischemia. Ninety minutes later, rats were treated with 0, 15, 30, or 45% Xe for 20 h or 0 or 30% Xe for 8, 20, or 44 h. Outcome was measured after 7 days. In another experiment, after ischemia, rats were maintained at 37.5° or 36.0°C for 20 h with or without 30% Xe. Outcome was assessed 28 days later. Finally, mice were subjected to intracerebral hemorrhage with or without 30% Xe for 20 h. Brain water content, hematoma volume, rotarod function, and microglial activation were measured.

Results: Cerebral infarct sizes (mean±SD) for 0, 15, 30, and 45% Xe were 212±27, 176±55, 160±32, and 198±54 mm, respectively (P=0.023). Neurologic scores (median±interquartile range) followed a similar pattern (P=0.002). Infarct size did not vary with treatment duration, but neurologic score improved (P=0.002) at all xenon exposure durations (8, 20, and 44 h). Postischemic treatment with either 30% Xe or subtherapeutic hypothermia (36°C) had no effect on 28-day outcome. Combination of these interventions provided long-term benefit. Xenon improved intracerebral hemorrhage outcome measures.

Conclusion: Xenon improved focal ischemic outcome at 7, but not 28 days postischemia. Xenon combined with subtherapeutic hypothermia produced sustained recovery benefit. Xenon improved intracerebral hemorrhage outcome. Xenon may have potential for clinical stroke therapy under carefully defined conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0b013e3182746b81DOI Listing
December 2012

Mn porphyrins as novel molecular magnetic resonance imaging contrast agents.

J Endourol 2012 Nov 4;26(11):1420-4. Epub 2012 Oct 4.

Department of Urology/Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.

Background And Purpose: In this study, we investigated the potential of a new class of therapeutic Mn porphyrins as molecular MRI probes for prostate cancer imaging. Two compounds of different bioavailibility were investigated: Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) and Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)). These compounds have previously been shown to have adjunctive antineoplastic activity through their actions as powerful superoxide dismutase mimics, peroxynitrite scavengers, and modulators of cellular redox-based signaling pathways. Strong paramagnetic MRI contrast properties and affinity for cancer cells suggest their potential application as novel diagnostic imaging agents.

Materials And Methods: MRI experiments were performed at 7.0T on a Bruker Biospec horizontal bore scanner. All in-vivo experiments were performed on 12 C57 black mice implanted with RM-9 prostate cancer cells on the hind limb. Two mg/kg of MnTnHex-2-PyP(5+) (n=6) and 8 mg/kg MnTE-2-PyP(5+) (n=6) were administered intraperitoneally 90 minutes before imaging. All the images were collected using a volume coil and processed using Paravision 4.0.

Results: Phantom studies reveal remarkably high T1 relaxivity changes for both metalloporphyrins, which are twofold to threefold higher than commercially available gadolinium chelates. Observable detection limits using conventional T1-weighted MRI are in the low micromolar range for both compounds. In vivo, MR relaxation changes in prostate tumor xenografts were readily observed after a single injection of either MnTE-2-PyP(5+)or MnTnHex-2-PyP(5+), with tumor contrast to background ratio greatest after MnTE-2-PyP(5+) administration.

Conclusion: After a single dose of MnTE-2-PyP(5+), contrast changes in prostate tumors are up to sixfold greater than in surrounding, noncancerous tissues, suggesting the potential use of this metalloporphyrin as a novel diagnostic probe for detecting prostate malignancy using MRI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/end.2012.0171DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495112PMC
November 2012

Mn-porphyrins as novel molecular magnetic resonance imaging contrast agents.

J Endourol 2011 Nov 3:1420-4. Epub 2011 Nov 3.

Department of Urology/Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.

Background And Purpose: In this study, we investigated the potential of a new class of therapeutic Mn porphyrins as molecular MRI probes for prostate cancer imaging. Two compounds of different bioavailibility were investigated: Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5 +)) and Mn(III) mesotetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5 +)). These compounds have previously been shown to have adjunctive antineoplastic activity through their actions as powerful superoxide dismutase mimics, peroxynitrite scavengers, and modulators of cellular redox-based signaling pathways. Strong paramagnetic MRI contrast properties and affinity for cancer cells suggest their potential application as novel diagnostic imaging agents.

Materials And Methods: MRI experiments were performed at 7.0T on a Bruker Biospec horizontal bore scanner. All in-vivo experiments were performed on 12 C57 black mice implanted with RM-9 prostate cancer cells on the hind limb. Two mg/kg of MnTnHex-2-PyP(5 +) (n = 6) and 8 mg/kg MnTE-2-PyP(5 +) (n = 6) were administered intraperitoneally 90 minutes before imaging. All the images were collected using a volume coil and processed using Paravision 4.0.

Results: Phantom studies reveal remarkably high T1 relaxivity changes for both metalloporphyrins, which are twofold to threefold higher than commercially available gadolinium chelates. Observable detection limits using conventional T1-weighted MRI are in the low micromolar range for both compounds. In vivo, MR relaxation changes in prostate tumor xenografts were readily observed after a single injection of either MnTE-2-PyP(5 +) or MnTnHex-2-PyP(5 +), with tumor contrast to background ratio greatest after MnTE-2-PyP(5 +) administration.

Conclusion: After a single dose of MnTE-2-PyP(5 +), contrast changes in prostate tumors are up to sixfold greater than in surrounding, noncancerous tissues, suggesting the potential use of this metalloporphyrin as a novel diagnostic probe for detecting prostate malignancy using MRI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/end.2011.0133DOI Listing
November 2011

Shank3 mutant mice display autistic-like behaviours and striatal dysfunction.

Nature 2011 Apr 20;472(7344):437-42. Epub 2011 Mar 20.

Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are poorly understood. SHANK3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for the development of 22q13 deletion syndrome (Phelan-McDermid syndrome) and other non-syndromic ASDs. Here we show that mice with Shank3 gene deletions exhibit self-injurious repetitive grooming and deficits in social interaction. Cellular, electrophysiological and biochemical analyses uncovered defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. Our findings demonstrate a critical role for SHANK3 in the normal development of neuronal connectivity and establish causality between a disruption in the Shank3 gene and the genesis of autistic-like behaviours in mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature09965DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090611PMC
April 2011

Biochemical abnormalities of the medial temporal lobe and medial prefrontal cortex in late-life depression.

Psychiatry Res 2009 Apr;172(1):49-54

The Departments of Radiology, Duke University Medical Center, Durham, NC, United States.

We utilized single-voxel (1)H magnetic resonance spectroscopy (MRS) to investigate biochemical abnormalities related to late-life depression in the medial prefrontal cortex and medial temporal lobe. Fourteen elderly subjects whose depression responded to treatment and 12 nondepressed subjects were enrolled. Subjects were scanned using a GE 3.0 Tesla whole body MR scanner. Metabolite concentrations were quantified using the LC Model software and adjusted for CSF and ratio of gray to white matter. ANCOVA models tested for group differences while controlling for age and sex. Older previously depressed individuals showed significantly reduced concentrations of total N-acetyl aspartate (NAA), choline, and creatine in the prefrontal cortex and significantly elevated left medial temporal lobe concentrations of NAA and myo-inositol. There were no significant group differences in right temporal metabolite concentrations. The prefrontal cortex observations suggest that reduced neuronal, phospolipid, and energy metabolism is present even in clinically improved depression. In contrast, elevated NAA and myo-inositol concentrations in the left medial temporal lobe could be associated with neuronal and glial cell changes in the amygdala.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pscychresns.2008.07.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659332PMC
April 2009

Single-voxel 1H PRESS at 4.0 T: precision and variability of measurements in anterior cingulate and hippocampus.

NMR Biomed 2006 Jun;19(4):484-91

Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA.

The precision [coefficient of variation or CV (%) = 100SD/X] of single-voxel point resolved spectroscopic data was characterized bilaterally, in anterior cingulate and in hippocampus, at 4.0 T in a healthy subject. Data acquisition was replicated 10 times after voxel repositioning and readjusting higher order shims. Precision measurements show that the scan-to-scan precision is better in anterior cingulate than in hippocampus, with an average CV of 9.2% (for total NAA, tCho and Cr) in anterior cingulate and 13.9% in hippocampus. Variability measurements made by the same method in 24 healthy subjects and in 29 schizophrenia patients showed that there is substantial biological variability in metabolite levels, even in healthy subjects. Simple calculations suggest that more than 200 subjects would be needed to detect a 5% difference in NAA between patients and controls.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.1055DOI Listing
June 2006
-->