Publications by authors named "Tal Kafri"

44 Publications

Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research.

Genetics 2020 Dec 16;216(4):905-930. Epub 2020 Oct 16.

Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599.

The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well-annotated genome, wealth of genetic resources, and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost-effective, informative, and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole-genome sequencing. Here, we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array (MUGA), MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: (1) chromosomal sex determination, (2) discrimination between substrains from multiple commercial vendors, (3) diagnostic SNPs for popular laboratory strains, (4) detection of constructs used in genetically engineered mice, and (5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA, we genotyped 6899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays, both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived, and recombinant inbred lines. Here, we also report the detection of a substantial number of O and individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC, and an important new tool to increase the rigor and reproducibility of mouse research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1534/genetics.120.303596DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768238PMC
December 2020

A Single Synonymous Variant (c.354G>A [p.P118P]) in Confers Enhanced Specific Activity.

Int J Mol Sci 2019 Nov 15;20(22). Epub 2019 Nov 15.

Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA.

Synonymous variants within coding regions may influence protein expression and function. We have previously reported increased protein expression levels ex vivo (~120% in comparison to wild-type) from a synonymous polymorphism variant, c.354G>A [p.P118P], of the gene, encoding a plasma protease responsible for von Willebrand Factor (VWF) degradation. In the current study, we investigated the potential mechanism(s) behind the increased protein expression levels from this variant and its effect on ADAMTS13 physico-chemical properties. Cell-free assays showed enhanced translation of the c.354G>A variant and the analysis of codon usage characteristics suggested that introduction of the frequently used codon/codon pair(s) may have been potentially responsible for this effect. Limited proteolysis, however, showed no substantial influence of altered translation on protein conformation. Analysis of post-translational modifications also showed no notable differences but identified three previously unreported glycosylation markers. Despite these similarities, p.P118P variant unexpectedly showed higher specific activity. Structural analysis using modeled interactions indicated that subtle conformational changes arising from altered translation kinetics could affect interactions between an exosite of ADAMTS13 and VWF resulting in altered specific activity. This report highlights how a single synonymous nucleotide variation can impact cellular expression and specific activity in the absence of measurable impact on protein structure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms20225734DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888508PMC
November 2019

Gene Delivery to Human Limbal Stem Cells Using Viral Vectors.

Hum Gene Ther 2019 11 25;30(11):1336-1348. Epub 2019 Sep 25.

Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina.

Limbal stem cell (LSC) transplantation is a promising treatment for ocular surface diseases especially LSC deficiency. Genetic engineering represents an attractive strategy to increase the potential for success in LSC transplantations either by correcting autologous diseased LSCs or by decreasing the immunogenicity of allogeneic LSCs. Therefore, two popular viral vectors, adeno-associated viral (AAV) vector and lentiviral (LV) vector, were compared for gene delivery in human LSCs. Transduction efficiency was evaluated by flow cytometry, quantitation of viral genomes, and fluorescence microscopy after introducing eight self-complementary AAV serotypes or LV carrying a green fluorescent protein (GFP) cassette to fresh limbal epithelial cells, cultivated LSC colonies, or after corneal intrastromal injection into human explant tissue. For fresh limbal epithelial cells, AAV6 showed the highest transduction efficiency, followed by LV and AAV4 at 24 h after vector incubation, which did not directly correlate with internalized genome copy number. The colony formation efficiency, as well as colony size over time, showed no significant differences among AAV serotypes, LV, and nontreated controls. The percentage of GFP+ colonies at 14 days post-seeding was significantly higher in the LV group, which plateaued at 50% GFP+ upon serial passages. Interestingly, AAV6-treated colonies initially showed a variegated transduction phenotype with no GFP+ colonies in serial passages. Quantitative polymerase chain reaction and AAV6 capsid staining revealed that transduction was restricted to differentiated cells of LSC colonies at a post-entry step. Following central intrastromal injection of human corneas, both LV and AAV6 transduced the stroma and endothelial cells, and AAV6 also transduced cells of the epithelia. However, no transduction was observed in derived LSC colonies. The collective results demonstrate the effectiveness of LV for stable human LSC genetic engineering and an unreported phenomenon of AAV6 transduction restriction in multipotent cells derived from the human limbus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/hum.2019.071DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939591PMC
November 2019

Superior lentiviral vectors designed for BSL-0 environment abolish vector mobilization.

Gene Ther 2018 10 6;25(7):454-472. Epub 2018 Sep 6.

Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

Lentiviral vector mobilization following HIV-1 infection of vector-transduced cells poses biosafety risks to vector-treated patients and their communities. The self-inactivating (SIN) vector design has reduced, however, not abolished mobilization of integrated vector genomes. Furthermore, an earlier study demonstrated the ability of the major product of reverse transcription, a circular SIN HIV-1 vector comprising a single- long terminal repeat (LTR) to support production of high vector titers. Here, we demonstrate that configuring the internal vector expression cassette in opposite orientation to the LTRs abolishes mobilization of SIN vectors. This additional SIN mechanism is in part premised on induction of host PKR response to double-stranded RNAs comprised of mRNAs transcribed from cryptic transcription initiation sites around 3'SIN-LTR's and the vector internal promoter. As anticipated, PKR response following transfection of opposite orientation vectors, negatively affects their titers. Importantly, shRNA-mediated knockdown of PKR rendered titers of SIN HIV-1 vectors comprising opposite orientation expression cassettes comparable to titers of conventional SIN vectors. High-titer vectors carrying an expression cassette in opposite orientation to the LTRs efficiently delivered and maintained high levels of transgene expression in mouse livers. This study establishes opposite orientation expression cassettes as an additional PKR-dependent SIN mechanism that abolishes vector mobilization from integrated and episomal SIN lentiviral vectors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41434-018-0039-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478381PMC
October 2018

Correction to: Gene therapy knockdown of VEGFR2 in retinal endothelial cells to treat retinopathy.

Angiogenesis 2018 11;21(4):765

John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.

The article "Gene therapy knockdown of VEGFR2 in retinal endothelial cells to treat retinopathy", written by "Aaron B. Simmons, Colin A. Bretz, Haibo Wang, Eric Kunz, Kassem Hajj, Carson Kennedy, Zhihong Yang, Thipparat Suwanmanee, Tal Kafri and M. Elizabeth Hartnett", was originally published electronically on the publisher's internet portal (currently SpringerLink) on 05 May 2018 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on 20 June 2018 to © The Author(s) 2018 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10456-018-9626-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208888PMC
November 2018

Gene therapy knockdown of VEGFR2 in retinal endothelial cells to treat retinopathy.

Angiogenesis 2018 11 5;21(4):751-764. Epub 2018 May 5.

John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.

Inhibition of vascular endothelial growth factor (VEGF) in retinopathy of prematurity (ROP) raises concerns for premature infants because VEGF is essential for retinovascular development as well as neuronal and glial health. This study tested the hypothesis that endothelial cell-specific knockdown of VEGF receptor 2 (VEGFR2), or downstream STAT3, would inhibit VEGF-induced retinopathy without delaying physiologic retinal vascular development. We developed an endothelial cell-specific lentiviral vector that delivered shRNAs to VEGFR2 or STAT3 and a green fluorescent protein reporter under control of the VE-cadherin promoter. The specificity and efficacy of the lentiviral vector-driven shRNAs were validated in vitro and in vivo. In the rat oxygen-induced retinopathy model highly representative of human ROP, the effects of endothelial cell knockdown of VEGFR2 or STAT3 were determined on intravitreal neovascularization (IVNV), physiologic retinal vascular development [assessed as area of peripheral avascular/total retina (AVA)], retinal structure, and retinal function. Targeted knockdown of VEGFR2 or STAT3 specifically in retinal endothelial cells by subretinal injection of lentiviral vectors into postnatal day 8 rat pup eyes efficiently inhibited IVNV, and knockdown of VEGFR2 also reduced AVA and increased retinal thickness without altering retinal function. Taken together, our results support specific knockdown of VEGFR2 in retinal endothelial cells as a novel therapeutic method to treat retinopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10456-018-9618-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203654PMC
November 2018

Targeted Knockdown of Overexpressed VEGFA or VEGF164 in Müller cells maintains retinal function by triggering different signaling mechanisms.

Sci Rep 2018 01 31;8(1):2003. Epub 2018 Jan 31.

John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.

Oxygen-induced retinopathy (OIR) upregulates Müller cell vascular endothelial growth factor A (VEGFA) that causes intravitreal neovascularization similar to severe retinopathy of prematurity (ROP). Safety concerns exist with anti-VEGF treatment for ROP. We evaluated long-term knockdown of Müller cell-VEGFA with short-hairpin RNAs to VEGFA or VEGF via subretinal lentivirus delivery (L-VEGFAshRNA, L-VEGF164shRNA) on retinal structure and function in a rat OIR model. Lectin-stained retinal flat mounts analyzed for areas of avascular/total retina (AVA) and intravitreal neovascular/total retina (IVNV) showed initial significantly reduced IVNV by L-VEGFAshRNA and L-VEGF164shRNA compared to control, luciferase-shRNA lentivirus, without late recurrence. Spectral-domain optical coherence tomography (OCT) and immunohistochemical sections (IHC) demonstrated changes in retinal layer thicknesses in L-VEGFAshRNA or L-VEGF164shRNA  compared to control. Ganzfeld electroretinograms were increased in L-VEGFAshRNA or L-VEGF164shRNA compared to control. Erythropoietin (EPO), brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, neurotrophin-3 (NT-3) mRNAs were increased in L-VEGFAshRNA, but not L-VEGF164shRNA retinas. In cultured rat Müller cells, knockdown of VEGF upregulated NT-3 and EPO, whereas treatment with EPO activated neuroprotective signaling. Methods to reduce IVNV by selective knockdown of VEGFA, and particularly VEGF, in Müller cells may have fewer deleterious effects than nonselective VEGFA inhibition to all cells in the retina.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-20278-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792486PMC
January 2018

Toward Personalized Gene Therapy: Characterizing the Host Genetic Control of Lentiviral-Vector-Mediated Hepatic Gene Delivery.

Mol Ther Methods Clin Dev 2017 Jun 5;5:83-92. Epub 2017 Apr 5.

Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

The success of lentiviral vectors in curing fatal genetic and acquired diseases has opened a new era in human gene therapy. However, variability in the efficacy and safety of this therapeutic approach has been reported in human patients. Consequently, lentiviral-vector-based gene therapy is limited to incurable human diseases, with little understanding of the underlying causes of adverse effects and poor efficacy. To assess the role that host genetic variation has on efficacy of gene therapy, we characterized lentiviral-vector gene therapy within a set of 12 collaborative cross mouse strains. Lentiviral vectors carrying the firefly luciferase cDNA under the control of a liver-specific promoter were administered to female mice, with total-body and hepatic luciferase expression periodically monitored through 41 weeks post-vector administration. Vector copy number per diploid genome in mouse liver and spleen was determined at the end of this study. We identified major strain-specific contributions to overall success of transduction, vector biodistribution, maximum luciferase expression, and the kinetics of luciferase expression throughout the study. Our results highlight the importance of genetic variation on gene-therapeutic efficacy; provide new models with which to more rigorously assess gene therapy approaches; and suggest that redesigning preclinical studies of gene-therapy methodologies might be appropriate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.omtm.2017.03.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415322PMC
June 2017

Hematopoietic Stem cell transplantation and lentiviral vector-based gene therapy for Krabbe's disease: Present convictions and future prospects.

J Neurosci Res 2016 11;94(11):1152-68

Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

Currently, presymtomatic hematopoietic stem and progenitor cell transplantation (HSPCT) is the only therapeutic modality that alleviates Krabbe's disease (KD)-induced central nervous system damage. However, all HSPCT-treated patients exhibit severe deterioration in peripheral nervous system function characterized by major motor and expressive language pathologies. We hypothesize that a combination of several mechanisms contribute to this phenomenon, including 1) nonoptimal conditioning protocols with consequent inefficient engraftment and biodistribution of donor-derived cells and 2) insufficient uptake of donor cell-secreted galactocerebrosidease (GALC) secondary to a naturally low expression level of the cation-independent mannose 6-phosphate-receptor (CI-MPR). We have characterized the effects of a busulfan (Bu) based conditioning regimen on the efficacy of HSPCT in prolonging twi mouse average life span. There was no correlation between the efficiency of bone marrow engraftment of donor cells and twi mouse average life span. HSPCT prolonged the average life span of twi mice, which directly correlated with the aggressiveness of the Bu-mediated conditioning protocols. HSPC transduced with lentiviral vectors carrying the GALC cDNA under control of cell-specific promoters were efficiently engrafted in twi mouse bone marrow. To facilitate HSPCT-mediated correction of GALC deficiency in target cells expressing low levels of CI-MPR, a novel GALC fusion protein including the ApoE1 receptor was developed. Efficient cellular uptake of the novel fusion protein was mediated by a mannose-6-phosphate-independent mechanism. The novel findings described here elucidate some of the cellular mechanisms that impede the cure of KD patients by HSPCT and concomitantly open new directions to enhance the therapeutic efficacy of HSPCT protocols for KD. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.23847DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027985PMC
November 2016

Insights into the Pathogenesis and Treatment of Krabbe Disease.

Pediatr Endocrinol Rev 2016 Jun;13 Suppl 1:689-96

Krabbe disease (globoid cell leukodystrophy, GLD) is an inherited disease caused by a deficiency in the lysosomal enzyme galactocerebrosidase (GALC). The major galactosylated lipid degraded by GALC is galactosylceramide. However, GALC is also responsible for the degradation of galactosylsphingosine (psychosine), a highly cytotoxic glycolipid. It has been hypothesized that GALC-deficiency leads to psychosine accumulation that preferentially kills oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system. Krabbe disease has traditionally been considered a white matter disease characterized by the loss and disorganization of myelin, infiltration of multinucleated monocytes/macrophages (globoid cells) and lymphocytes, and dysregulation of pro-inflammatory cytokines and chemokines. However, new studies have revealed unexpected neuronal deficiencies. Infantile Krabbe disease is believed to be the most common and aggressive form. However, juvenile and adult onset forms have been described. Children affected with infantile Krabbe disease present with motor dysfunction, cognitive decline, intractable seizures, and premature death between two to five years of age. Murine, canine, and primate models of GALC deficiency have been described and have played an important role in our understanding of this invariably fatal disease. Although there is no cure for Krabbe disease, hematopoietic stem cell transplantation can slow the progression of disease. Recent pre-clinical data indicate that simulataneously targeting multiple pathogenic mechanisms greatly increases efficacy in the murine model of Krabbe disease. A better understanding of the underlying pathogenesis will identify new therapeutic targets that may further increase efficacy.
View Article and Find Full Text PDF

Download full-text PDF

Source
June 2016

Post-translational Down-regulation of Melanoma Antigen-A11 (MAGE-A11) by Human p14-ARF Tumor Suppressor.

J Biol Chem 2015 Oct 1;290(41):25174-87. Epub 2015 Sep 1.

From the Laboratories for Reproductive Biology, Department of Pediatrics, Lineberger Comprehensive Cancer Center, Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599

X-linked primate-specific melanoma antigen-A11 (MAGE-A11) is a human androgen receptor (AR) coactivator and proto-oncogene expressed at low levels in normal human reproductive tract tissues and at higher levels in castration-resistant prostate cancer where it is required for androgen-dependent cell growth. In this report, we show that MAGE-A11 is targeted for degradation by human p14-ARF, a tumor suppressor expressed from an alternative reading frame of the p16 cyclin-dependent kinase inhibitor INK4a/ARF gene. MAGE-A11 degradation by the proteasome was mediated by an interaction with p14-ARF and was independent of lysine ubiquitination. A dose-dependent inverse relationship between MAGE-A11 and p14-ARF correlated with p14-ARF inhibition of the MAGE-A11-induced increase in androgen-dependent AR transcriptional activity and constitutive activity of a splice variant-like AR. Reciprocal stabilization between MAGE-A11 and AR did not protect against degradation promoted by p14-ARF. p14-ARF prevented MAGE-A11 interaction with the E2F1 oncoprotein and inhibited the MAGE-A11-induced increase in E2F1 transcriptional activity. Post-translational down-regulation of MAGE-A11 promoted by p14-ARF was independent of HDM2, the human homologue of mouse double minute 2, an E3 ubiquitin ligase inhibited by p14-ARF. However, MAGE-A11 had a stabilizing effect on HDM2 in the absence or presence of p14-ARF and cooperated with HDM2 to increase E2F1 transcriptional activity in the absence of p14-ARF. We conclude that degradation of MAGE-A11 promoted by the human p14-ARF tumor suppressor contributes to low levels of MAGE-A11 in nontransformed cells and that higher levels of MAGE-A11 associated with low p14-ARF increase AR and E2F1 transcriptional activity and promote the development of castration-resistant prostate cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M115.663641DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599020PMC
October 2015

Generation of a stable packaging cell line producing high-titer PPT-deleted integration-deficient lentiviral vectors.

Mol Ther Methods Clin Dev 2015 22;2:15025. Epub 2015 Jul 22.

Gene Therapy Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina, USA ; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina, USA.

The risk of insertional mutagenesis inherent to all integrating exogenous expression cassettes was the impetus for the development of various integration-defective lentiviral vector (IDLV) systems. These systems were successfully employed in a plethora of preclinical applications, underscoring their clinical potential. However, current production of IDLVs by transient plasmid transfection is not optimal for large-scale production of clinical grade vectors. Here, we describe the development of the first tetracycline-inducible stable IDLV packaging cell line comprising the D64E integrase mutant and the VSV-G envelope protein. A conditional self-inactivating (cSIN) vector and a novel polypurine tract (PPT)-deleted vector were incorporated into the newly developed stable packaging cell line by transduction and stable transfection, respectively. High-titer (~10(7) infectious units (IU)/ml) cSIN vectors were routinely generated. Furthermore, screening of single-cell clones stably transfected with PPT-deleted vector DNA resulted in the identification of highly efficient producer cell lines generating IDLV titers higher than 10(8) IU/mL, which upon concentration increased to 10(10) IU/ml. IDLVs generated by stable producer lines efficiently transduce CNS tissues of rodents. Overall, the availability of high-titer IDLV lentivirus packaging cell line described here will significantly facilitate IDLV-based basic science research, as well as preclinical and clinical applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/mtm.2015.25DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510976PMC
August 2015

Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: preclinical evaluation supporting an ongoing adeno-associated virus clinical trial.

Hum Gene Ther 2015 Feb 21;26(2):69-81. Epub 2015 Jan 21.

1 Gene Therapy Center, University of North Carolina , Chapel Hill, NC 27599.

Vector capsid dose-dependent inflammation of transduced liver has limited the ability of adeno-associated virus (AAV) factor IX (FIX) gene therapy vectors to reliably convert severe to mild hemophilia B in human clinical trials. These trials also identified the need to understand AAV neutralizing antibodies and empty AAV capsids regarding their impact on clinical success. To address these safety concerns, we have used a scalable manufacturing process to produce GMP-grade AAV8 expressing the FIXR338L gain-of-function variant with minimal (<10%) empty capsid and have performed comprehensive dose-response, biodistribution, and safety evaluations in clinically relevant hemophilia models. The scAAV8.FIXR338L vector produced greater than 6-fold increased FIX specific activity compared with wild-type FIX and demonstrated linear dose responses from doses that produced 2-500% FIX activity, associated with dose-dependent hemostasis in a tail transection bleeding challenge. More importantly, using a bleeding model that closely mimics the clinical morbidity of hemophilic arthropathy, mice that received the scAAV8.FIXR338L vector developed minimal histopathological findings of synovitis after hemarthrosis, when compared with mice that received identical doses of wild-type FIX vector. Hemostatically normal mice (n=20) and hemophilic mice (n=88) developed no FIX antibodies after peripheral intravenous vector delivery. No CD8(+) T cell liver infiltrates were observed, despite the marked tropism of scAAV8.FIXR338L for the liver in a comprehensive biodistribution evaluation (n=60 animals). With respect to the role of empty capsids, we demonstrated that in vivo FIXR338L expression was not influenced by the presence of empty AAV particles, either in the presence or absence of various titers of AAV8-neutralizing antibodies. Necropsy of FIX(-/-) mice 8-10 months after vector delivery revealed no microvascular or macrovascular thrombosis in mice expressing FIXR338L (plasma FIX activity, 100-500%). These preclinical studies demonstrate a safety:efficacy profile supporting an ongoing phase 1/2 human clinical trial of the scAAV8.FIXR338L vector (designated BAX335).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/hum.2014.106DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326268PMC
February 2015

Functional analysis of the putative integrin recognition motif on adeno-associated virus 9.

J Biol Chem 2015 Jan 17;290(3):1496-504. Epub 2014 Nov 17.

From the Gene Therapy Center, Department of Genetics, and Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516

Adeno-associated viruses (AAVs) display a highly conserved NGR motif on the capsid surface. Earlier studies have established this tripeptide motif as being essential for integrin-mediated uptake of recombinant AAV serotype 2 (AAV2) in cultured cells. However, functional attributes of this putative integrin recognition motif in other recombinant AAV serotypes displaying systemic transduction in vivo remain unknown. In this study, we dissect the biology of an integrin domain capsid mutant derived from the human isolate AAV9 in mice. The AAV9/NGA mutant shows decreased systemic transduction in mice. This defective phenotype was accompanied by rapid clearance of mutant virions from the blood circulation and nonspecific sequestration by the spleen. Transient vascular hyperpermeability, induced by histamine coinjection, exacerbated AAV9/NGA uptake by the spleen but not the liver. However, such treatment did not affect AAV9 virions, suggesting a potential entry/post-entry defect for the mutant in different tissues. Further characterization revealed modestly decreased cell surface binding but a more pronounced defect in the cellular entry of mutant virions. These findings were corroborated by the observation that blocking multiple integrins adversely affected recombinant AAV9 transduction in different cell types, albeit with variable efficiencies. From a structural perspective, we observed that the integrin recognition motif is located in close proximity to the galactose binding footprint on AAV9 capsids and postulate that this feature could influence cell surface attachment, cellular uptake at the tissue level, and systemic clearance by the reticuloendothelial system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M114.608281DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340397PMC
January 2015

CCR5 Gene Editing of Resting CD4(+) T Cells by Transient ZFN Expression From HIV Envelope Pseudotyped Nonintegrating Lentivirus Confers HIV-1 Resistance in Humanized Mice.

Mol Ther Nucleic Acids 2014 Sep 30;3:e198. Epub 2014 Sep 30.

Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA.

CCR5 disruption by zinc finger nucleases (ZFNs) is a promising method for HIV-1 gene therapy. However, successful clinical translation of this strategy necessitates the development of a safe and effective method for delivery into relevant cells. We used non-integrating lentivirus (NILV) for transient expression of ZFNs and pseudotyped the virus with HIV-envelope for targeted delivery to CD4(+) T cells. Both activated and resting primary CD4(+) T cells transduced with CCR5-ZFNs NILV showed resistance to HIV-1 infection in vitro. Furthermore, NILV transduced resting CD4(+) T cells from HIV-1 seronegative individuals were resistant to HIV-1 challenge when reconstituted into NOD-scid IL2rγc null (NSG) mice. Likewise, endogenous virus replication was suppressed in NSG mice reconstituted with CCR5-ZFN-transduced resting CD4(+) T cells from treatment naïve as well as ART-treated HIV-1 seropositive patients. Taken together, NILV pseudotyped with HIV envelope provides a simple and clinically viable strategy for HIV-1 gene therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/mtna.2014.52DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222653PMC
September 2014

Quantitative analyses of retinal vascular area and density after different methods to reduce VEGF in a rat model of retinopathy of prematurity.

Invest Ophthalmol Vis Sci 2014 Feb 4;55(2):737-44. Epub 2014 Feb 4.

Department of Ophthalmology, The John Moran Eye Center, University of Utah, Salt Lake City, Utah.

Purpose: Targeted inhibition of Müller cell (MC)-produced VEGF or broad inhibition of VEGF with an intravitreal anti-VEGF antibody reduces intravitreal neovascularization in a rat model of retinopathy of prematurity (ROP). In this study, we compared the effects of these two approaches on retinal vascular development and capillary density in the inner and deep plexi in the rat ROP model.

Methods: In the rat model of ROP, pups received 1 μL of (1) subretinal lentivector-driven short hairpin RNA (shRNA) to knockdown MC-VEGFA (VEGFA.shRNA) or control luciferase shRNA, or (2) intravitreal anti-VEGF antibody (anti-VEGF) or control isotype goat immunoglobulin G (IgG). Analyses of lectin-stained flat mounts at postnatal day 18 (p18) included: vascular/total retinal areas (retinal vascular coverage) and pixels of fluorescence/total retinal area (capillary density) of the inner and deep plexi determined with the Syncroscan microscope, and angles between cleavage planes of mitotic vascular figures labeled with anti-phosphohistone H3 and vessel length.

Results: Retinal vascular coverage and density increased in both plexi between p8 and p18 in room air (RA) pups. Compared with RA, p18 ROP pups had reduced vascular coverage and density of both plexi. Compared with respective controls, VEGFA.shRNA treatment significantly increased vascular density in the deep plexus, whereas anti-VEGF reduced vascular density in the inner and deep plexi. Vascular endothelial growth factor-A.shRNA caused more cleavage angles predicting vessel elongation and fewer mitotic figures, whereas anti-VEGF treatment led to patterns of pathologic angiogenesis.

Conclusions: Targeted treatment with lentivector-driven VEGFA.shRNA permitted physiologic vascularization of the vascular plexi and restored normal orientation of dividing vascular cells, suggesting that regulation of VEGF signaling by targeted treatment may be beneficial.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.13-13429DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915769PMC
February 2014

Targeting Müller cell-derived VEGF164 to reduce intravitreal neovascularization in the rat model of retinopathy of prematurity.

Invest Ophthalmol Vis Sci 2014 Feb 10;55(2):824-31. Epub 2014 Feb 10.

Department of Ophthalmology, The John Moran Eye Center, University of Utah, Salt Lake City, Utah.

Purpose: To determine whether knockdown of Müller cell-derived VEGFA-splice variant, VEGF164, which is upregulated in the rat retinopathy of prematurity (ROP) model, safely inhibits intravitreal neovascularization (IVNV).

Methods: Short hairpin RNAs for VEGF164 (VEGF164.shRNAs) or luciferase.shRNA control were cloned into lentivectors with CD44 promoters that specifically target Müller cells. Knockdown efficiency, off-target effects, and specificity were tested in HEK reporter cell lines that expressed green fluorescent protein (GFP)-tagged VEGF164 or VEGF120 with flow cytometry or in rat Müller cells (rMC-1) by real-time PCR. In the rat oxygen-induced retinopathy (OIR) ROP model, pups received 1 μL subretinal lentivector-driven luciferase.shRNA, VEGFA.shRNA, or VEGF164.shRNA at postnatal day 8 (P8). Analyses at P18 and P25 included: IVNV and avascular retina (AVA); retinal and serum VEGF (ELISA); density of phosphorylated VEGFR2 (p-VEGFR2) in lectin-labeled retinal endothelial cells (ECs; immunohistochemistry); TUNEL staining and thickness of inner nuclear (INL) and outer nuclear layers (ONL) in retinal cryosections; and pup weight gain.

Results: In HEK reporter and in rMC-1 cells and in comparison to lucifferase.shRNA, VEGFA.shRNA reduced both VEGF120 and VEGF164, but VEGF164.shRNA only reduced VEGF164 and not VEGF120. Compared with luciferase.shRNA, VEGFA.shRNA and VEGF164.shRNA reduced retinal VEGF and IVNV without affecting AVA at P18 and P25. At P25, VEGF164.shRNA more effectively maintained IVNV inhibition than VEGFA.shRNA. VEGFA.shRNA and VEGF164.shRNA reduced pVEGFR2 in retinal ECs at P18, but VEGFA.shRNA increased it at P25. VEGFA.shRNA increased TUNEL+ cells at P18 and decreased ONL thickness at P18 and P25. VEGFA.shRNA and VEGF164.shRNA did not affect pup weight gain and serum VEGF.

Conclusions: Short hairpin RNA to Müller cell VEGF164 maintained long-term inhibition of IVNV and limited cell death compared with shRNA to VEGFA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.13-13755DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920823PMC
February 2014

Evolutionary etiology of high-grade astrocytomas.

Proc Natl Acad Sci U S A 2013 Oct 10;110(44):17933-8. Epub 2013 Oct 10.

Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702.

Glioblastoma (GBM), the most common brain malignancy, remains fatal with no effective treatment. Analyses of common aberrations in GBM suggest major regulatory pathways associated with disease etiology. However, 90% of GBMs are diagnosed at an advanced stage (primary GBMs), providing no access to early disease stages for assessing disease progression events. As such, both understanding of disease mechanisms and the development of biomarkers and therapeutics for effective disease management are limited. Here, we describe an adult-inducible astrocyte-specific system in genetically engineered mice that queries causation in disease evolution of regulatory networks perturbed in human GBM. Events yielding disease, both engineered and spontaneous, indicate ordered grade-specific perturbations that yield high-grade astrocytomas (anaplastic astrocytomas and GBMs). Impaired retinoblastoma protein RB tumor suppression yields grade II histopathology. Additional activation of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) network drives progression to grade III disease, and further inactivation of phosphatase and tensin homolog (PTEN) yields GBM. Spontaneous missense mutation of tumor suppressor Trp53 arises subsequent to KRAS activation, but before grade III progression. The stochastic appearance of mutations identical to those observed in humans, particularly the same spectrum of p53 amino acid changes, supports the validity of engineered lesions and the ensuing interpretations of etiology. Absence of isocitrate dehydrogenase 1 (IDH1) mutation, asymptomatic low grade disease, and rapid emergence of GBM combined with a mesenchymal transcriptome signature reflect characteristics of primary GBM and provide insight into causal relationships.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1317026110DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816471PMC
October 2013

Short hairpin RNA-mediated knockdown of VEGFA in Müller cells reduces intravitreal neovascularization in a rat model of retinopathy of prematurity.

Am J Pathol 2013 Sep;183(3):964-74

The John A. Moran Eye Center, The University of Utah, Salt Lake City, Utah, USA.

Vascular endothelial growth factor (VEGF) A is implicated in aberrant angiogenesis and intravitreous neovascularization (IVNV) in retinopathy of prematurity (ROP). However, VEGFA also regulates retinal vascular development and functions as a retinal neural survival factor. By using a relevant ROP model, the 50/10 oxygen-induced retinopathy (OIR) model, we previously found that broad inhibition of VEGFA bioactivity using a neutralizing antibody to rat VEGF significantly reduced IVNV area compared with control IgG but also significantly reduced body weight gain in the pups, suggesting an adverse effect. Therefore, we propose that knockdown of up-regulated VEGFA in cells that overexpress it under pathological conditions would reduce IVNV without affecting physiological retinal vascular development or overall pup growth. Herein, we determined first that the VEGFA mRNA signal was located within the inner nuclear layer corresponding to CRALBP-labeled Müller cells of pups in the 50/10 OIR model. We then developed a lentiviral-delivered miR-30eembedded shRNA against VEGFA that targeted Müller cells. Reduction of VEGFA by lentivector VEGFA-shRNAetargeting Müller cells efficiently reduced 50/10 OIR up-regulated VEGFA and IVNV in the model, without adversely affecting physiological retinal vascular development or pup weight gain. Knockdown of VEGFA in rat Müller cells by lentivector VEGFA-shRNA significantly reduced VEGFR2 phosphorylation in retinal vascular endothelial cells. Our results suggest that targeted knockdown of overexpressed VEGFA in Müller cells safely reduces IVNV in a relevant ROP model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2013.05.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763762PMC
September 2013

Integration-deficient lentiviral vectors expressing codon-optimized R338L human FIX restore normal hemostasis in Hemophilia B mice.

Mol Ther 2014 Mar 14;22(3):567-574. Epub 2013 Aug 14.

Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA. Electronic address:

Integration-deficient lentiviral vectors (IDLVs) have been shown to transduce a wide spectrum of target cells and organs in vitro and in vivo and to maintain long-term transgene expression in nondividing cells. However, epigenetic silencing of episomal vector genomes reduces IDLV transgene expression levels and renders these safe vectors less efficient. In this article, we describe for the first time a complete correction of factor IX (FIX) deficiency in hemophilia B mice by IDLVs carrying a novel, highly potent human FIX cDNA. A 50-fold increase in human FIX cDNA potency was achieved by combining two mechanistically independent yet synergistic strategies: (i) optimization of the human FIX cDNA codon usage to increase human FIX protein production per vector genome and (ii) generation of a highly catalytic mutant human FIX protein in which the arginine residue at position 338 was substituted with leucine. The enhanced human FIX activity was not associated with liver damage or with the formation of human FIX-directed inhibitory antibodies and rendered IDLV-treated FIX-knockout mice resistant to a challenging tail-clipping assay. A novel S1 nuclease-based B1-quantitative polymerase chain reaction assay showed low levels of IDLV integration in mouse liver. Overall, this study demonstrates that IDLVs carrying an improved human FIX cDNA safely and efficiently cure hemophilia B in a mouse model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/mt.2013.188DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944325PMC
March 2014

Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an intracranial model of breast cancer.

PLoS One 2013 1;8(5):e61359. Epub 2013 May 1.

Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.

Introduction: Breast cancer brain metastases (BCBM) are a challenging consequence of advanced BC. Nanoparticle agents, including liposomes, have shown enhanced delivery to solid tumors and brain. We compared pharmacokinetics (PK) and efficacy of PEGylated liposomal doxorubicin (PLD) with non-liposomal doxorubicin (NonL-doxo) in an intracranial model of BC.

Methods: Athymic mice were inoculated intracerebrally with MDA-MB-231-BR-luciferase-expressing cells. Tumor-bearing mice were administered PLD or NonL-doxo at 6 mg/kg IV × 1 and were euthanized prior to and 0.083, 1, 3, 6, 24, 72 and 96 h post-treatment. Samples were processed to measure sum total doxorubicin via HPLC. PLD and NonL-doxo were administered IV weekly as single agents (6 mg/kg) or in combination (4.5 mg/kg) with the PARP inhibitor, ABT-888, PO 25 mg/kg/day. Efficacy was assessed by survival and bioluminescence.

Results: Treatment with PLD resulted in approximately 1,500-fold higher plasma and 20-fold higher intracranial tumor sum total doxorubicin AUC compared with NonL-doxo. PLD was detected at 96 h; NonL-doxo was undetectable after 24 h in plasma and tumor. Median survival of PLD-treated animals was 32 days (d, [CI] 31-38), which was significantly longer than controls (26d [CI 25-28]; p = 0.0012) or NonL-doxo treatment (23.5d [CI 18-28], p = 0.0002). Combination treatment with PLD/ABT-888 yielded improved survival compared to NonL-doxo/ABT-888 (35d [CI 31-38] versus 29.5d [CI 25-34]; p = 0.006).

Conclusions: PLD provides both PK and efficacy advantage over NonL-doxo in the treatment of an in vivo model of BCBM. The results provide preclinical rationale to translate findings into early phase trials of PLD, with or without ABT-888, for patients with BCBM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061359PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641071PMC
November 2013

Adeno-associated virus capsid antigen presentation is dependent on endosomal escape.

J Clin Invest 2013 Mar 1;123(3):1390-401. Epub 2013 Feb 1.

Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

Adeno-associated virus (AAV) vectors are attractive for gene delivery-based therapeutics, but data from recent clinical trials have indicated that AAV capsids induce a cytotoxic T lymphocyte (CTL) response that eliminates transduced cells. In this study, we used traditional pharmacological agents and AAV mutants to elucidate the pathway of capsid cross-presentation in AAV-permissive cells. Endosomal acidification inhibitors blocked AAV2 antigen presentation by over 90%, while proteasome inhibitors completely abrogated antigen presentation. Using mutant viruses that are defective for nuclear entry, we observed a 90% decrease in capsid antigen presentation. Different antigen presentation efficiencies were achieved by selectively mutating virion nuclear localization signals. Low antigen presentation was demonstrated with basic region 1 (BR1) mutants, despite relatively high transduction efficiency, whereas there was no difference in antigen presentation between BR2 and BR3 mutants defective for transduction, as compared with wild-type AAV2. These results suggest that effective AAV2 capsid antigen presentation is dependent on AAV virion escape from the endosome/lysosome for antigen degradation by proteasomes, but is independent of nuclear uncoating. These results should facilitate the design of effective strategies to evade capsid-specific CTL-mediated elimination of AAV-transduced target cells in future clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI66611DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582142PMC
March 2013

Dominant-negative androgen receptor inhibition of intracrine androgen-dependent growth of castration-recurrent prostate cancer.

PLoS One 2012 17;7(1):e30192. Epub 2012 Jan 17.

Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, United States of America.

Background: Prostate cancer (CaP) is the second leading cause of cancer death in American men. Androgen deprivation therapy is initially effective in CaP treatment, but CaP recurs despite castrate levels of circulating androgen. Continued expression of the androgen receptor (AR) and its ligands has been linked to castration-recurrent CaP growth.

Principal Finding: In this report, the ligand-dependent dominant-negative ARΔ142-337 (ARΔTR) was expressed in castration-recurrent CWR-R1 cell and tumor models to elucidate the role of AR signaling. Expression of ARΔTR decreased CWR-R1 tumor growth in the presence and absence of exogenous testosterone (T) and improved survival in the presence of exogenous T. There was evidence for negative selection of ARΔTR transgene in T-treated mice. Mass spectrometry revealed castration-recurrent CaP dihydrotestosterone (DHT) levels sufficient to activate AR and ARΔTR. In the absence of exogenous testosterone, CWR-R1-ARΔTR and control cells exhibited altered androgen profiles that implicated epithelial CaP cells as a source of intratumoral AR ligands.

Conclusion: The study provides in vivo evidence that activation of AR signaling by intratumoral AR ligands is required for castration-recurrent CaP growth and that epithelial CaP cells produce sufficient active androgens for CaP recurrence during androgen deprivation therapy. Targeting intracrine T and DHT synthesis should provide a mechanism to inhibit AR and growth of castration-recurrent CaP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030192PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260230PMC
June 2012

The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles.

Retrovirology 2011 Jun 24;8:51. Epub 2011 Jun 24.

Gene Therapy Center University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.

Background: The process of HIV-1 genomic RNA (gRNA) encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ). Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site) from the 5' untranslated region (UTR). Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV) vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles.

Results: We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ). Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons); however, the cDNA forms are episomes predominantly in the 1-LTR circle form.

Conclusions: Premised on encapsidation of a heterologous RNA into HIV-1 viral particles, our findings define a functional HIV-1 packaging system as comprising the 5' UTR cis elements, Gag, and the Rev/RRE system, in which the Rev/RRE system is required to make the RNA amenable to the ensuing interaction between Gag and the canonical packaging signal for subsequent encapsidation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1742-4690-8-51DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131246PMC
June 2011

AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis.

PLoS Pathog 2011 May 19;7(5):e1002053. Epub 2011 May 19.

Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America.

Barriers to infection act at multiple levels to prevent viruses, bacteria, and parasites from commandeering host cells for their own purposes. An intriguing hypothesis is that if a cell experiences stress, such as that elicited by inflammation, endoplasmic reticulum (ER) expansion, or misfolded proteins, then subcellular barriers will be less effective at preventing viral infection. Here we have used models of cystic fibrosis (CF) to test whether subcellular stress increases susceptibility to adeno-associated virus (AAV) infection. In human airway epithelium cultured at an air/liquid interface, physiological conditions of subcellular stress and ER expansion were mimicked using supernatant from mucopurulent material derived from CF lungs. Using this inflammatory stimulus to recapitulate stress found in diseased airways, we demonstrated that AAV infection was significantly enhanced. Since over 90% of CF cases are associated with a misfolded variant of Cystic Fibrosis Transmembrane Conductance Regulator (ΔF508-CFTR), we then explored whether the presence of misfolded proteins could independently increase susceptibility to AAV infection. In these models, AAV was an order of magnitude more efficient at transducing cells expressing ΔF508-CFTR than in cells expressing wild-type CFTR. Rescue of misfolded ΔF508-CFTR under low temperature conditions restored viral transduction efficiency to that demonstrated in controls, suggesting effects related to protein misfolding were responsible for increasing susceptibility to infection. By testing other CFTR mutants, G551D, D572N, and 1410X, we have shown this phenomenon is common to other misfolded proteins and not related to loss of CFTR activity. The presence of misfolded proteins did not affect cell surface attachment of virus or influence expression levels from promoter transgene cassettes in plasmid transfection studies, indicating exploitation occurs at the level of virion trafficking or processing. Thus, we surmised that factors enlisted to process misfolded proteins such as ΔF508-CFTR in the secretory pathway also act to restrict viral infection. In line with this hypothesis, we found that AAV trafficked to the microtubule organizing center and localized near Golgi/ER transport proteins. Moreover, AAV infection efficiency could be modulated with siRNA-mediated knockdown of proteins involved in processing ΔF508-CFTR or sorting retrograde cargo from the Golgi and ER (calnexin, KDEL-R, β-COP, and PSMB3). In summary, our data support a model where AAV exploits a compromised secretory system and, importantly, underscore the gravity with which a stressed subcellular environment, under internal or external insults, can impact infection efficiency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1002053DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098238PMC
May 2011

Notable reduction in illegitimate integration mediated by a PPT-deleted, nonintegrating lentiviral vector.

Mol Ther 2011 Mar 14;19(3):547-56. Epub 2010 Dec 14.

Gene Therapy Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA.

Nonintegrating lentiviral vectors present a means of reducing the risk of insertional mutagenesis in nondividing cells and enabling short-term expression of potentially hazardous gene products. However, residual, integrase-independent integration raises a concern that may limit the usefulness of this system. Here we present a novel 3' polypurine tract (PPT)-deleted lentiviral vector that demonstrates impaired integration efficiency and, when packaged into integrase-deficient particles, significantly reduced illegitimate integration. Cells transduced with PPT-deleted vectors exhibited predominantly 1-long terminal repeat (LTR) circles and a low level of linear genomes after reverse transcription (RT). Importantly, the PPT-deleted vector exhibited titers and in vitro and in vivo expression levels matching those of conventional nonintegrating lentiviral vectors. This safer nonintegrating lentiviral vector system will support emerging technologies, such as those based on transient expression of zinc-finger nucleases (ZFNs) for gene editing, as well as reprogramming factors for inducing pluripotency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/mt.2010.277DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048187PMC
March 2011

Proteasome inhibitors enhance gene delivery by AAV virus vectors expressing large genomes in hemophilia mouse and dog models: a strategy for broad clinical application.

Mol Ther 2010 Nov 10;18(11):1907-16. Epub 2010 Aug 10.

Gene Therapy Center, University of North Carolina at Chapel Hill, North Carolina 27599-7352, USA.

Delivery of genes that are larger than the wild-type adeno-associated virus (AAV) 4,681 nucleotide genome is inefficient using AAV vectors. We previously demonstrated in vitro that concurrent proteasome inhibitor (PI) treatment improves transduction by AAV vectors encoding oversized transgenes. In this study, an AAV vector with a 5.6 kilobase (kb) factor VIII expression cassette was used to test the effect of an US Food and Drug Administration-approved PI (bortezomib) treatment concurrent with vector delivery in vivo. Intrahepatic vector delivery resulted in factor VIII expression that persisted for >1 year in hemophilia mice. Single-dose bortezomib given with AAV2 or AAV8 factor VIII vector enhanced expression on average ~600 and ~300%, respectively. Moreover, coadministration of AAV8.canineFVIII (1 × 10(13) vg/kg) and bortezomib in hemophilia A dogs (n = 4) resulted in normalization of the whole blood clotting time (WBCT) and 90% reduction in hemorrhages for >32 months compared to untreated hemophilia A dogs (n = 3) or dogs administered vector alone (n = 3). Demonstration of long-term phenotypic correction of hemophilia A dogs with combination adjuvant bortezomib and AAV vector expressing the oversized transgene establishes preclinical studies that support testing in humans and provides a working paradigm to facilitate a significant expansion of therapeutic targets for human gene therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/mt.2010.170DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990516PMC
November 2010

Regulation of AMPA receptor channels and synaptic plasticity by cofilin phosphatase Slingshot in cortical neurons.

J Physiol 2010 Jul 4;588(Pt 13):2361-71. Epub 2010 May 4.

Department of Physiology and Biophysics and New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, NY 14214, USA.

Cofilin, the major actin depolymerizing factor, modulates actin dynamics that contribute to spine morphology, synaptic transmission and plasticity. Much evidence implicates the cofilin inactivation kinase LIMK in synaptic function, but little is known about the cofilin activation phosphatase Slingshot in this regard. In this study, we found that suppressing endogenous Slingshot with small RNA interference or function-blocking antibody led to a dramatic reduction of AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) in cortical neurons. Perturbation of Slingshot function also diminished the ability to express synaptic plasticity. Inactivating cofilin or disturbing actin dynamics reduced AMPAR-EPSCs in a Slingshot-dependent manner. Moreover, surface GluR 1 and synaptic GluR2/3 clusters were reduced by Slingshot knockdown. Our data suggest that Slingshot plays a pivotal role in AMPAR trafficking and synaptic transmission by controlling actin cytoskeleton via cofilin activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/jphysiol.2009.186353DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2915513PMC
July 2010

Epigenetic activation of unintegrated HIV-1 genomes by gut-associated short chain fatty acids and its implications for HIV infection.

Proc Natl Acad Sci U S A 2009 Nov 20;106(44):18786-91. Epub 2009 Oct 20.

Gene Therapy Center, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA.

Integration of HIV-1 linear DNA into the host chromatin is an essential step in the viral life cycle. However, the majority of reverse-transcribed, nuclear-imported viral genomes remain episomal, either as linear or circular DNA. To date, these nonintegrated viral genomes are largely considered "dead-end products" of reverse transcription. Indeed, limited gene expression from nonintegrated HIV-1 has been reported, although the mechanism that renders nonintegrating HIV-1 genomes incapable of supporting efficient viral replication has not been fully elucidated. Here, we demonstrate that nonintegrating HIV-1 and HIV-1-based vector genomes are organized into chromatin structures and enriched with histone modifications typical of transcriptionally silenced chromatin. Gene expression and replication of nonintegrating HIV-1 was notably increased in vitro upon exposure to histone deacetylase inhibitors (HDACi) in the form of various short-chain fatty acids (SCFAs) known to be endogenously produced by normal microbial-gut flora. Furthermore, we demonstrated genetic and functional crosstalk between episomal and integrated vector/viral genomes, resulting in recombination between integrated and nonintegrated HIV-1, as well as mobilization of episomal vector genomes by productive viral particles encoded by integrated viral genomes. Finally, we propose a mechanism describing the role of episomal HIV-1 forms in the viral life cycle in a SCFA-rich gut environment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.0905859106DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773968PMC
November 2009

A large U3 deletion causes increased in vivo expression from a nonintegrating lentiviral vector.

Mol Ther 2008 Dec 16;16(12):1968-76. Epub 2008 Sep 16.

Gene Therapy Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA.

The feasibility of using nonintegrating lentiviral vectors has been demonstrated by recent studies showing their ability to maintain transgene expression both in vitro and in vivo. Furthermore, human immunodeficiency virus-1 (HIV-1) vectors packaged with a mutated integrase were able to correct retinal disease in a mouse model. Interestingly, these results differ from earlier studies in which first-generation nonintegrating lentiviral vectors yielded insignificant levels of transduction. However, to date, a rigorous characterization of transgene expression from the currently used self-inactivating (SIN) nonintegrating lentiviral vectors has not been published. In this study, we characterize transgene expression from SIN nonintegrating lentiviral vectors. Overall, we found that nonintegrating vectors express transgenes at a significantly lower level than their integrating counterparts. Expression from nonintegrating vectors was improved upon introducing a longer deletion in the vector's U3 region. A unique shuttle-vector assay indicated that the relative abundance of the different episomal forms was not altered by the longer U3 deletion. Interestingly, the longer U3 deletion did not enhance expression in the corpus callosum of the rat brain, suggesting that the extent of silencing of episomal transcription is influenced by tissue-specific factors. Finally, and for the first time, episomal expression in the mouse liver was potent and sustained.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/mt.2008.199DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587457PMC
December 2008