Publications by authors named "Takeyoshi Eda"

5 Publications

  • Page 1 of 1

Dramatic response of BRAF V600E-mutant epithelioid glioblastoma to combination therapy with BRAF and MEK inhibitor: establishment and xenograft of a cell line to predict clinical efficacy.

Acta Neuropathol Commun 2019 07 25;7(1):119. Epub 2019 Jul 25.

From the Departments of Neurosurgery, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, Japan.

Epithelioid glioblastoma is a rare aggressive variant of glioblastoma (GBM) characterized by a dismal prognosis of about 6 months and frequent leptomeningeal dissemination. A recent study has revealed that 50% of epithelioid GBMs harbor three genetic alterations - BRAF V600E mutation, TERT promoter mutations, and homozygous deletions of CDKN2A/2B. Emerging evidence support the effectiveness of targeted therapies for brain tumors with BRAF V600E mutation. Here we describe a dramatic radiographical response to combined therapy with BRAF and MEK inhibitors in a patient with epithelioid GBM harboring BRAF V600E mutation, characterized by thick spinal dissemination. From relapsed tumor procured at autopsy, we established a cell line retaining the BRAF V600E mutation, TERT promoter mutation and CDKN2A/2B loss. Intracranial implantation of these cells into mice resulted in tumors closely resembling the original, characterized by epithelioid tumor cells and dissemination, and invasion into the perivascular spaces. We then confirmed the efficacy of treatment with BRAF and MEK inhibitor both in vitro and in vivo. Epithelioid GBM with BRAF V600E mutation can be considered a good treatment indication for precision medicine, and this patient-derived cell line should be useful for prediction of the tumor response and clarification of its biological characteristics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40478-019-0774-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659204PMC
July 2019

EGFRvIII Is Expressed in Cellular Areas of Tumor in a Subset of Glioblastoma.

Neurol Med Chir (Tokyo) 2019 Mar 21;59(3):89-97. Epub 2019 Feb 21.

Department of Pathology, Brain Research Institute, University of Niigata.

Epidermal growth factor receptor variant III (EGFRvIII) is a tumor-specific cell surface antigen often expressed in glioblastoma and has drawn much attention as a possible therapeutic target. We performed immunohistochemistry on histology sections of surgical specimens taken from 67 cases with glioblastoma, isocitrate dehydrogenase-wild type, and evaluated the morphological characteristics and distribution of the EGFRvIII-positive tumor cells. We then evaluated the localization of EGFRvIII-expression within the tumor and peritumoral areas. EGFRvIII immunopositivity was detected in 15 specimens taken from 13 patients, including two recurrent specimens taken from the same patient at relapse. Immunofluorescence staining demonstrated that EGFRvIII-positive cells were present in cells positive for glial fibrillary acidic protein (GFAP), and some showed astrocytic differentiation with multiple fine processes and others did not shown. The EGFRvIII-positive cells were located in cellular areas of the tumor, but not in the invading zone. In the two recurrent cases, EGFRvIII-positive cells were markedly decreased in one case and retained in the other. With regard to overall survival, univariate analysis indicated that EGFRvIII-expression in patients with glioblastoma was not significantly associated with a favorable outcome. Double-labeling immunofluorescence staining of EGFRvIII and GFAP showed that processes of large, well differentiated, GFAP-positive glia extend to and surround less differentiated, EGFRvIII-positive glial cells in cellular areas of tumor. However, in the tumor periphery, EGFRvIII-positive tumor cells were not observed. This finding suggests that EGFRvIII is involved in tumor proliferation, but that invading glioma cells lose their EGFRvIII expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2176/nmc.oa.2018-0078DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434422PMC
March 2019

Neurobehavioral deficits of epidermal growth factor-overexpressing transgenic mice: impact on dopamine metabolism.

Neurosci Lett 2013 Jun 10;547:21-5. Epub 2013 May 10.

Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.

Epidermal growth factor (EGF) and its family member neuregulin-1 are implicated in the etiology of schizophrenia. Our recent pharmacological studies indicate that EGF injections to neonatal and adult rats both induce neurobehavioral deficits relevant to schizophrenia. We, however, did not evaluate the genetic impact of EGF transgene on neurobehavioral traits. Here we analyzed transgenic mice carrying the transgene of mouse EGF cDNA. As compared to control littermates, heterozygous EGF transgenic mice had an increase in EGF mRNA levels and showed significant decreases in prepulse inhibition and context-dependent fear learning, but there were no changes in locomotor behaviors and sound startle responses. In addition, these transgenic mice exhibited higher behavioral sensitivity to the repeated cocaine injections. There were neurochemical alterations in metabolic enzymes of dopamine (i.e., tyrosine hydroxylase, dopa decarboxylase, catechol-O-methyl transferase) and monoamine contents in various brain regions of the EGF transgenic mice, but there were no apparent neuropathological signs in the brain. The present findings rule out the indirect influence of anti-EGF antibody production on the reported behavioral deficits of EGF-injected mice. These results support the argument that aberrant hyper-signals of EGF have significant impact on mouse behavioral traits and dopamine metabolism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2013.04.055DOI Listing
June 2013

Antipsychotic potential of quinazoline ErbB1 inhibitors in a schizophrenia model established with neonatal hippocampal lesioning.

J Pharmacol Sci 2010 14;114(3):320-31. Epub 2010 Oct 14.

Center for Transdisciplinary Research, Niigata University, Japan.

Hyper-signaling of the epidermal growth factor receptor family (ErbB) is implicated in the pathophysiology of schizophrenia. Various quinazoline inhibitors targeting ErbB1 or ErbB2 - 4 have been developed as anti-cancer agents and might be useful for antipsychotic treatment. In the present study, we used an animal model of schizophrenia established by neonatal hippocampal lesioning and evaluated the neurobehavioral consequences of ErbB1-inhibitor treatment. Subchronic administration of the ErbB1 inhibitor ZD1839 to the cerebroventricle of rats receiving neonatal hippocampal lesioning ameliorated deficits in prepulse inhibition as well as those in the latent inhibition of tone-dependent fear learning. There were no apparent adverse effects on basal learning scores or locomotor activity, however. The administration of other ErbB1 inhibitors, PD153035 and OSI-774, similarly attenuated the prepulse inhibition impairment of this animal model. In parallel, there were decreases in ErbB1 phosphorylation in animals treated with ErbB1 inhibitors. These results indicate an antipsychotic potential of quinazoline ErbB1 inhibitors. ErbB receptor tyrosine kinases may be novel therapeutic targets for schizophrenia or its related psychotic symptoms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1254/jphs.10099fpDOI Listing
June 2011

A cyclooxygenase-2 inhibitor ameliorates behavioral impairments induced by striatal administration of epidermal growth factor.

J Neurosci 2007 Sep;27(38):10116-27

Center for Transdisciplinary Research, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.

Consistent with the hypothesis that neuroinflammatory processes contribute to the neuropathology of schizophrenia, the protein levels of epidermal growth factor (EGF) and its receptor ErbB1 are abnormal in patients with schizophrenia. To evaluate neuropathological significance of this abnormality, we established an animal model for behavioral deficits by administering EGF into the striatum and evaluated the effects of cyclooxygenase-2 (Cox-2) inhibitor celecoxib. Intracranial infusion of EGF into the striatum of adult male rats activated ErbB1 and induced neurobehavioral impairments observed in several schizophrenia models. Unilateral EGF infusion to the striatum lowered prepulse inhibition (PPI) in a dose-dependent manner and impaired latent learning of active shock avoidance without affecting basal learning ability. Bilateral EGF infusion similarly affected PPI. In contrast, EGF infusion to the nucleus accumbens did not induce a behavioral deficit. Intrastriatal EGF infusion also increased Cox-2 expression, elevated tyrosine hydroxylase activity, and upregulated the levels of dopamine and its metabolites. Subchronic administration of celecoxib (10 mg/kg, p.o.) ameliorated the abnormalities in PPI and latent learning as well as normalized dopamine metabolism. We conclude that this EGF-triggered neuroinflammatory process is mediated in part by Cox-2 activity and perturbs dopamine metabolism to generate neurobehavioral abnormalities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.2368-07.2007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672673PMC
September 2007
-->