Publications by authors named "Takanobu Kato"

109 Publications

Inhibition of hepatitis C virus by vitamin D.

Vitam Horm 2021 12;117:227-238. Epub 2021 Jul 12.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan. Electronic address:

Until the development of direct-acting antivirals (DAAs), interferon (IFN)-based therapy had been the primary treatment strategy for patients with chronic hepatitis C, even though this therapy has a therapeutic limitations and considerable side effects. Therefore, many efforts have been made to improve the efficacy of treatment. Several clinical studies have clearly shown that supplementation with vitamin D of IFN-based therapy improves treatment efficacy. To clarify the molecular mechanisms of the effect of vitamin D on IFN-based therapy, several researchers have performed basic research with cell culture models of hepatitis C virus (HCV). Consequently, two vitamin D metabolites, 25-hydroxyvitamin D (25-(OH)D) and 1α,25-dihydroxyvitamin D (1α,25-(OH)D), have been suggested to have anti-HCV effects. 25-(OH)D inhibits HCV production by suppressing infectious virus assembly through reducing apolipoprotein expression, while 1α,25-(OH)D inhibits HCV production by modulating IFN signaling and/or inducing various host factors associated with the inhibition of viral genome replication. In addition, an antimicrobial peptide, LL-37, which is known to be partly regulated by vitamin D, was also reported to exhibit an anti-HCV effect by disrupting infectious viral particles directly. In conclusion, vitamin D supplementation improves the response rate of IFN-based therapy via the direct and/or indirect anti-HCV effects of vitamin D metabolites.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.vh.2021.06.006DOI Listing
July 2021

Amino Acid Polymorphism in Hepatitis B Virus Associated With Functional Cure.

Cell Mol Gastroenterol Hepatol 2021 Aug 2. Epub 2021 Aug 2.

Department of Virology II, National Institute of Infectious Diseases, Tokyo. Electronic address:

Background & Aims: To provide an adequate treatment strategy for chronic hepatitis B, it is essential to know which patients are expected to have a good prognosis and which patients do not require therapeutic intervention. Previously, we identified the substitution of isoleucine to leucine at amino acid 97 (I97L) in the hepatitis B core region as a key predictor among patients with stable hepatitis. In this study, we attempted to identify the point at which I97L affects the hepatitis B virus (HBV) life cycle and to elucidate the underlying mechanisms governing the stabilization of hepatitis.

Methods: To confirm the clinical features of I97L, we used a cohort of hepatitis B e antigen-negative patients with chronic hepatitis B infected with HBV-I97 wild-type (wt) or HBV-I97L. The effects of I97L on viral characteristics were evaluated by in vitro HBV production and infection systems with the HBV reporter virus and cell culture-generated HBV.

Results: The ratios of reduction in hepatitis B surface antigen and HBV DNA were higher in patients with HBV-I97L than in those with HBV-I97wt. HBV-I97L exhibited lower infectivity than HBV-I97wt in both infection systems with reporter HBV and cell culture-generated HBV. HBV-I97L virions exhibiting low infectivity primarily contained a single-stranded HBV genome. The lower efficiency of cccDNA synthesis was demonstrated after infection of HBV-I97L or transfection of the molecular clone of HBV-I97L.

Conclusions: The I97L substitution reduces the level of cccDNA through the generation of immature virions with single-stranded genomes. This I97L-associated low efficiency of cccDNA synthesis may be involved in the stabilization of hepatitis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcmgh.2021.07.013DOI Listing
August 2021

Identification of natural compounds extracted from crude drugs as novel inhibitors of hepatitis C virus.

Biochem Biophys Res Commun 2021 Aug 12;567:1-8. Epub 2021 Jun 12.

Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan. Electronic address:

Natural product-derived crude drugs are expected to yield an abundance of new drugs to treat infectious diseases. Hepatitis C virus (HCV) is an oncogenic virus that significantly impacts public health. In this study, we sought to identify anti-HCV compounds in extracts of natural products. A total of 110 natural compounds extracted from several herbal medicine plants were examined for antiviral activity against HCV. Using a Huh7-mCherry-NLS-IPS reporter system for HCV infection, we first performed a rapid screening for anti-HCV compounds extracted from crude drugs. The compounds threo-2,3-bis(4-hydroxy-3-methoxyphenyl)-3-butoxypropan-1-ol (#106) and medioresinol (#110), which were extracted from Crataegus cuneate, exhibited anti-HCV activity and significantly inhibited HCV production in a dose-dependent manner. Analyses using HCV pseudoparticle and subgenomic replicon systems indicated that compounds #106 and #110 specifically inhibit HCV RNA replication but not viral entry or translation. Interestingly, compound #106 also inhibited the replication and production of hepatitis A virus. Our findings suggest that C. cuneate is a new source for novel anti-hepatitis virus drug development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2021.06.022DOI Listing
August 2021

Biochemical and Structural Properties of Entecavir-Resistant Hepatitis B Virus Polymerase with L180M/M204V Mutations.

J Virol 2021 Jul 26;95(16):e0240120. Epub 2021 Jul 26.

Choju Medical Institute, Toyohashi, Japan.

Entecavir (ETV) is a widely used anti-hepatitis B virus (HBV) drug. However, the emergence of resistant mutations in HBV reverse transcriptase (RT) results in treatment failure. To understand the mechanism underlying the development of ETV resistance by HBV RT, we analyzed the L180M, M204V, and L180M/M204V mutants using a combination of biochemical and structural techniques. ETV-triphosphate (ETV-TP) exhibited competitive inhibition with dGTP in both wild-type (wt) RT and M204V RT, as observed using Lineweaver-Burk plots. In contrast, RT L180M or L180M/M204V did not fit either competitive, uncompetitive, noncompetitive, or typical mixed inhibition, although ETV-TP was a competitive inhibitor of dGTP. Crystallography of HIV RT, mimicking HBV RT L180M/M204V, showed that the F115 bulge (F88 in HBV RT) caused by the F160M mutation induced deviated binding of dCTP from its normal tight binding position. Modeling of ETV-TP on the deviated dCTP indicated that a steric clash could occur between ETV-TP methylene and the 3'-end nucleoside ribose. ETV-TP is likely to interact primarily with HBV RT M171 prior to final accommodation at the deoxynucleoside triphosphate (dNTP) binding site (Y. Yasutake, S. Hattori, H. Hayashi, K. Matsuda, et al., Sci Rep 8:1624, 2018, https://doi.org/10.1038/s41598-018-19602-9). Therefore, in HBV RT L180M/M204V, ETV-TP may be stuck at M171, a residue that is conserved in almost all HBV isolates, leading to the strange inhibition pattern observed in the kinetic analysis. Collectively, our results provide novel insights into the mechanism of ETV resistance of HBV RT caused by L180M and M204V mutations. HBV infects 257 million people in the world, who suffer from elevated risks of liver cirrhosis and cancer. ETV is one of the most potent anti-HBV drugs, and ETV resistance mutations in HBV RT have been extensively studied. Nevertheless, the mechanisms underlying ETV resistance have remained elusive. We propose an attractive hypothesis to explain ETV resistance and effectiveness using a combination of kinetic and structural analyses. ETV is likely to have an additional interaction site, M171, beside the dNTP pocket of HBV RT; this finding indicates that nucleos(t)ide analogues (NAs) recognizing multiple interaction sites within RT may effectively inhibit the enzyme. Modification of ETV may render it more effective and enable the rational design of efficient NA inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.02401-20DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312879PMC
July 2021

Emergence of hepatitis C virus genotype 2c infection among human immunodeficiency virus-infected men who have sex with men in Tokyo, Japan.

Sex Transm Dis 2021 Jun 1. Epub 2021 Jun 1.

Department of Internal Medicine, Tokyo Metropolitan Health and Hospitals Corporation Ohkubo Hospital, Tokyo, Japan Department of Infectious Diseases, University of Tokyo Hospital, Tokyo, Japan Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan Department of Laboratory Medicine, Tokyo Medical University, Tokyo, Japan AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan Division of General Internal Medicine/Division of Infectious Diseases, Jichi Medical University Hospital, Tochigi, Japan.

Abstract: We report on hepatitis C virus genotype 2c infection in 12 human immunodeficiency virus-infected men who have sex with men in Tokyo, Japan. The uncommon strains from the 12 patients were genetically clustered; they suggested an emerging outbreak in this population at high risk of sexually transmitted infections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/OLQ.0000000000001480DOI Listing
June 2021

MafF Is an Antiviral Host Factor That Suppresses Transcription from Hepatitis B Virus Core Promoter.

J Virol 2021 07 12;95(15):e0076721. Epub 2021 Jul 12.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.

Hepatitis B virus (HBV) is a stealth virus that exhibits only minimal induction of the interferon system, which is required for both innate and adaptive immune responses. However, 90% of acutely infected adults can clear the virus, suggesting the presence of additional mechanisms that facilitate viral clearance. Here, we report that Maf bZIP transcription factor F (MafF) promotes host defense against infection with HBV. Using a small interfering RNA (siRNA) library and an HBV/NanoLuc (NL) reporter virus, we screened to identify anti-HBV host factors. Our data showed that silencing of led to a 6-fold increase in luciferase activity after HBV/NL infection. Overexpression of MafF reduced HBV core promoter transcriptional activity, which was relieved upon mutation of the putative MafF binding region. Loss of MafF expression through CRISPR/Cas9 editing (in HepG2-hNTCP-C4 cells) or siRNA silencing (in primary hepatocytes [PXB cells]) induced HBV core RNA and HBV pregenomic RNA (pgRNA) levels, respectively, after HBV infection. MafF physically binds to the HBV core promoter and competitively inhibits HNF-4α binding to an overlapping sequence in the HBV enhancer II sequence (EnhII), as seen by chromatin immunoprecipitation (ChIP) analysis. MafF expression was induced by interleukin-1β (IL-1β) or tumor necrosis factor alpha (TNF-α) treatment in both HepG2 and PXB cells, in an NF-κB-dependent manner. Consistently, expression levels were significantly enhanced and positively correlated with the levels of these cytokines in patients with chronic HBV infection, especially in the immune clearance phase. HBV is a leading cause of chronic liver diseases, infecting about 250 million people worldwide. HBV has developed strategies to escape interferon-dependent innate immune responses. Therefore, the identification of other anti-HBV mechanisms is important for understanding HBV pathogenesis and developing anti-HBV strategies. MafF was shown to suppress transcription from the HBV core promoter, leading to significant suppression of the HBV life cycle. Furthermore, MafF expression was induced in chronic HBV patients and in primary human hepatocytes (PXB cells). This induction correlated with the levels of inflammatory cytokines (IL-1β and TNF-α). These data suggest that the induction of MafF contributes to the host's antiviral defense by suppressing transcription from selected viral promoters. Our data shed light on a novel role for MafF as an anti-HBV host restriction factor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00767-21DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274605PMC
July 2021

Identification of Two Critical Neutralizing Epitopes in the Receptor Binding Domain of Hepatitis B Virus preS1.

J Virol 2020 Dec 9. Epub 2020 Dec 9.

Department of Virology II, National Institute of Infectious Diseases

Hepatitis B virus (HBV) infection is a major public health problem. Human hepatocytes are infected with HBV via binding between the preS1 region in the large envelope protein of HBV and sodium taurocholate cotransporting polypeptide. Although several monoclonal antibodies (MAbs) that recognize the receptor binding domain in preS1 and neutralize HBV infection have been isolated, details of neutralizing epitopes are not understood. In this study, we generated 13 MAbs targeting the preS1 receptor binding domain from preS1-specific memory B cells derived from DNA immunized mice. The MAbs were classified into three groups according to the epitope regions, designated epitopes I-III. A virus neutralization assay revealed that MAbs recognizing epitopes I and III neutralized HBV infection, suggesting that these domains are critical epitopes for viral neutralization. In addition, a neutralization assay against multiple genotypes of HBV revealed that epitope I is a semi-pangenotypic neutralizing epitope, whereas epitope III is a genotype-specific epitope. We also showed that neutralizing MAbs against preS1 could neutralize HBV bearing vaccine-induced escape mutation. These findings provide insight into novel immunoprophylaxis for the prevention and treatment of HBV infection. The HBV preS1 2-47 aa region (preS1/2-47) is essential for virus binding with sodium taurocholate cotransporting polypeptide. Several MAbs targeting preS1/2-47 have been reported to neutralize HBV infection; however, which region in preS1/2-47 contains the critical neutralizing epitope for HBV infection is unclear. Here, we generated several MAbs targeting preS1/2-47 and found that MAbs recognizing the N- or C-terminus of preS1/2-47 remarkably neutralized HBV infection. We further confirmed the neutralizing activity of anti-preS1 MAbs against HBV with vaccine escape mutation. These data clarified the relationship between the antibody epitope and the virus neutralizing activity and also suggested the potential ability of a vaccine antigen containing the preS1 region to overcome the weakness of current HB vaccines comprising the small S protein.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01680-20DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092832PMC
December 2020

MCPIP1 reduces HBV-RNA by targeting its epsilon structure.

Sci Rep 2020 11 27;10(1):20763. Epub 2020 Nov 27.

Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan.

Hepatitis B virus (HBV) is the major causative factor of chronic viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. We previously demonstrated that a proinflammatory cytokine IL-1β reduced the level of HBV RNA. However, the mechanism underlying IL-1β-mediated viral RNA reduction remains incompletely understood. In this study, we report that immune regulator Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) can reduce HBV RNA in hepatocytes. MCPIP1 expression level was higher in the liver tissue of HBV-infected patients and mice. Overexpression of MCPIP1 decreased HBV RNA, whereas ablating MCPIP1 in vitro enhanced HBV production. The domains responsible for RNase activity or oligomerization, were required for MCPIP1-mediated viral RNA reduction. The epsilon structure of HBV RNA was important for its antiviral activity and cleaved by MCPIP1 in the cell-free system. Lastly, knocking out MCPIP1 attenuated the anti-HBV effect of IL-1β, suggesting that MCPIP1 is required for IL-1β-mediated HBV RNA reduction. Overall, these results suggest that MCPIP1 may be involved in the antiviral effect downstream of IL-1β.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-77166-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699622PMC
November 2020

N-Terminal PreS1 Sequence Regulates Efficient Infection of Cell-Culture-Generated Hepatitis B Virus.

Hepatology 2021 02 31;73(2):520-532. Epub 2020 Oct 31.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.

Background And Aims: An efficient cell-culture system for hepatitis B virus (HBV) is indispensable for research on viral characteristics and antiviral reagents. Currently, for the HBV infection assay in cell culture, viruses derived from HBV genome-integrated cell lines of HepG2.2.15 or HepAD-38 are commonly used. However, these viruses are not suitable for the evaluation of polymorphism-dependent viral characteristics or resistant mutations against antiviral reagents. HBV obtained by the transient transfection of the ordinary HBV molecular clone has limited infection efficiencies in cell culture.

Approach And Results: We found that an 11-amino-acid deletion (d11) in the preS1 region enhances the infectivity of cell-culture-generated HBV (HBVcc) to sodium taurocholate cotransporting polypeptide-transduced HepG2 (HepG2/NTCP) cells. Infection of HBVcc derived from a d11-introduced genotype C strain (GTC-d11) was ~10-fold more efficient than infection of wild-type GTC (GTC-wt), and the number of infected cells was comparable between GTC-d11- and HepG2.2.15-derived viruses when inoculated with the same genome equivalents. A time-dependent increase in pregenomic RNA and efficient synthesis of covalently closed circular DNA were detected after infection with the GTC-d11 virus. The involvement of d11 in the HBV large surface protein in the enhanced infectivity was confirmed by an HBV reporter virus and hepatitis D virus infection system. The binding step of the GTC-d11 virus onto the cell surface was responsible for this efficient infection.

Conclusions: This system provides a powerful tool for studying the infection and propagation of HBV in cell culture and also for developing the antiviral strategy against HBV infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.31308DOI Listing
February 2021

The Beginning of Ending Hepatitis C Virus: A Summary of the 26th International Symposium on Hepatitis C Virus and Related Viruses.

Viruses 2020 03 11;12(3). Epub 2020 Mar 11.

Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea.

Hepatitis C virus (HCV) infects ~71 million people worldwide, and 399,000 people die annually due to HCV-related liver cirrhosis and hepatocellular carcinoma. The use of direct-acting antivirals results in a sustained virologic response in >95% of patients with chronic HCV infection. However, several issues remain to be solved to eradicate HCV. At the 26th International Symposium on Hepatitis C Virus and Related Viruses (HCV2019) held in Seoul, South Korea, October 5-8, 2019, virologists, immunologists, and clinical scientists discussed these remaining issues and how we can achieve the elimination of HCV.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v12030302DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150740PMC
March 2020

Anti-viral effects of interferon-λ3 on hepatitis B virus infection in cell culture.

Hepatol Res 2020 Mar 5;50(3):283-291. Epub 2020 Jan 5.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.

Aim: Interferon (IFN)-λ3 is known to have antiviral effects against various pathogens. Recently, it has been reported that the production of IFN-λ3 in colon cells after the administration of nucleotide analogs is expected to reduce hepatitis B surface antigen in chronic hepatitis B patients. Here, we aimed to prove the antiviral effects of IFN-λ3 on hepatitis B virus (HBV) by using an in vitro HBV production and infection system.

Methods: We used HepG2.2.15-derived HBV as an inoculum and the replication-competent molecular clone of HBV as a replication model.

Results: By administering IFN-λ3 to HepG2 cells transfected with the HBV molecular clone, the production of hepatitis B surface antigen and hepatitis B core-related antigen was reduced dose-dependently. IFN-λ3 treatment also reduced the number of HBV-positive cells and the synthesis of covalently closed circular DNA after infection of HepG2.2.15-derived HBV to sodium taurocholate cotransporting polypeptide-transduced HepG2 cells. The inhibitory effect on HBV infection by IFN-λ3 was confirmed by using a recombinant a HBV reporter virus system. To elucidate the underlying mechanisms of the anti-HBV effect of IFN-λ3, we assessed the transcription of HBV RNA and the production of core-associated HBV DNA in HBV molecular clone-transfected HepG2 cells, and found that both parameters were reduced by IFN-λ3.

Conclusions: We observed that the administration of IFN-λ3 inhibits HBV infection and the production of HBV proteins at the HBV RNA transcription level. This finding provides novel insight into the treatment of chronic hepatitis B patients with the administration or induction of IFN-λ3.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/hepr.13449DOI Listing
March 2020

Hepatitis B Virus Genotype-Dependent Vulnerability of Infected Cells to Immune Reaction in the Early Phase of Infection.

Front Microbiol 2019 18;10:2427. Epub 2019 Oct 18.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.

Infection with hepatitis B virus (HBV) genotype (GT)-A has been reported to predispose patients to chronic infection. To explore the immune responses in infection with different HBV genotypes and clarify the genotype-dependent pathogenicity, a system mimicking the immune reaction during the early phase of HBV infection is indispensable. To this end, we established a coculture system with the replication-competent HBV molecular clone-transfected HepG2 cells and immortalized human natural killer (NK) cells, NK-92MI. Using this system, we evaluated HBV genotype dependency in NK functions and cell death of HBV positive HepG2 cells induced by NK cells or administration of tumor necrosis factor (TNF) by use of flow cytometry. After coculture with NK cells, we found that GT-A-positive HepG2 cells exhibited lower susceptibility to NK cell-induced cell death than GT-B- or GT-C-positive HepG2 cells. The NK responses of degranulation and cytokine production were not different among transfected HBV genotypes in cocultured cells. The expression levels of death receptors in HBV-transfected HepG2 cells were not different. In GT-A-positive cells, a similar low susceptibility was detected by the external administration of TNF, although relatively higher susceptibility was observed in GT-B- and GT-C-positive cells than in GT-A-positive cells. The activation of caspase signaling was revealed to be responsible for this genotype-dependent susceptibility. In conclusion, our results indicate that the HBV genotype does not influence the NK cell function itself but rather cell vulnerability through the TNF signal pathway. This observation may explain the high chronicity rate of HBV GT-A strains even in adult infections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2019.02427DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813626PMC
October 2019

Evaluation of in vitro screening and diagnostic kits for hepatitis B virus infection.

J Clin Virol 2019 08 29;117:37-42. Epub 2019 May 29.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan. Electronic address:

Background: For the diagnosis of hepatitis B virus (HBV) infection, the detection and quantification of hepatitis B surface antigen (HBsAg) and HBV DNA are used. Several kits are available for this purpose, and there is a growing need for the evaluation of these kits because their performance may be affected by HBV genotype- or strain-specific polymorphisms.

Objectives And Study Design: In this study, we used International Standards and the established regional reference panel to evaluate the performance of two HBV DNA quantitative kits, five HBsAg qualitative kits, seven HBsAg quantitative kits and three rapid immune-chromatographic tests for HBsAg.

Results: The quantification values of two HBV DNA quantitative kits exhibited excellent correlation. In the evaluation of HBsAg qualitative and quantitative kits, the titers of several specimens in the HBV-positive panel were below the detection limits of a few kits, and the specimens were determined as HBV-negative. Notably, the quantitative kit results exhibited low correlation values. However, when these data were analyzed for each genotype, the correlations improved. These results suggest that the HBsAg quantification data are influenced by HBV genotypes. The novel rapid immune-chromatographic test exhibited the comparable level of sensitivity to the HBsAg quantitative kits.

Conclusions: We evaluated the performance of kits for the detection of HBV infection. The HBV DNA quantification data correlated with an excellent agreement, whereas the HBsAg quantification data were affected by HBV genotype. Such evaluations will be useful for estimating the quality of currently available and new HBV assay kits, and for the quality control of these kits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcv.2019.05.011DOI Listing
August 2019

Impact of novel NS5A resistance-associated substitutions of hepatitis C virus detected in treatment-experienced patients.

Sci Rep 2019 04 5;9(1):5722. Epub 2019 Apr 5.

Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.

Resistance-associated substitutions (RASs) of hepatitis C virus (HCV) in the NS5A region impair the efficacy of NS5A inhibitors. In this study, we evaluated the characteristics of the novel RASs observed in treatment-failure patients, A92K and a deletion at P32 (P32del), and the susceptibility of viruses with these RASs to various anti-HCV reagents by using JFH-1 based recombinant HCV with NS5A from a genotype 1b Con1 strain (JFH1/5ACon1). We introduced A92K or P32del solely or in combination with Q24K, L28M, R30Q or L31F into the NS5A of JFH1/5ACon1. Viruses harboring R30Q/A92K showed high extracellular core antigens and infectivity titers, whereas the other viruses with RASs showed low replication levels and infectivity titers. All the viruses with A92K or P32del were markedly resistant to ledipasvir, velpatasvir and elbasvir. Interestingly, viruses with R30Q/A92K were more susceptible to grazoprevir than viruses without RAS. All the viruses had a similar susceptibility to ribavirin and sofosbuvir. In conclusion, combination RASs R30Q/A92K enhanced virus production whereas other RASs impaired virus replication. Both A92K and P32del conferred severe resistance even to second generation NS5A inhibitors. However, these viruses were susceptible to grazoprevir, ribavirin and sofosbuvir. Thus, combination regimens with these reagents may eradicate viruses harboring A92K or P32del.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-42114-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450881PMC
April 2019

Activation of protein kinase R by hepatitis C virus RNA-dependent RNA polymerase.

Virology 2019 03 29;529:226-233. Epub 2019 Jan 29.

Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan. Electronic address:

Hepatitis C virus (HCV) was shown to activate protein kinase R (PKR), which inhibits expression of interferon (IFN) and IFN-stimulated genes by controlling the translation of newly transcribed mRNAs. However, it is unknown exactly how HCV activates PKR. To address the molecular mechanism(s) of PKR activation mediated by HCV infection, we examined the effects of viral proteins on PKR activation. Here, we show that expression of HCV NS5B strongly induced PKR and eIF2α phosphorylation, and attenuated MHC class I expression. In contrast, expression of Japanese encephalitis virus RNA-dependent RNA polymerase did not induce phosphorylation of PKR. Co-immunoprecipitation analyses showed that HCV NS5B interacted with PKR. Furthermore, expression of NS5B with polymerase activity-deficient mutation failed to phosphorylate PKR, suggesting that RNA polymerase activity is required for PKR activation. These results suggest that HCV activates PKR by association with NS5B, resulting in translational suppression of MHC class I to establish chronic infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2019.01.024DOI Listing
March 2019

Combinations of two drugs among NS3/4A inhibitors, NS5B inhibitors and non-selective antiviral agents are effective for hepatitis C virus with NS5A-P32 deletion in humanized-liver mice.

J Gastroenterol 2019 May 25;54(5):449-458. Epub 2019 Jan 25.

Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Background: The emergence of a deletion mutant at hepatitis C virus (HCV) NS5A-P32 (P32del) has recently been reported in a subset of chronic hepatitis C patients who experience virologic failure after direct-acting antiviral drug (DAA) treatment. This mutation confers extremely high resistance to NS5A inhibitors. No effective treatment has been established for cases with this mutation.

Methods: We used a JFH1-based recombinant virus with NS5A from a genotype 1b strain to introduce a P32del mutation. We inoculated human hepatocyte chimeric mice with sera from a patient with ledipasvir/sofosbuvir therapy failure carrying a genotype 1b HCV with NS5A L31M and P32del or from a DAA-naïve patient carrying wild-type virus.

Results: JFH1-based chimeric viruses with P32del showed sufficient levels of replication for in vitro assay despite the suppression of viral growth and infectious virus production. Variants with P32del exhibited severe resistance to all tested NS5A inhibitors, including daclatasvir, ledipasvir, elbasvir and velpatasvir, but were as susceptible to NS3/4A inhibitors, NS5B inhibitors, interferon alfa-2b, and ribavirin as wild-type viruses in the in vitro assay. The P32del mutant virus caused persistent infection in all inoculated chimeric mice with high viral titer and frequency. The virus was resistant to the ledipasvir/GS-558093 (a nucleotide analog inhibitor of NS5B polymerase) regimen but susceptible to either simeprevir plus GS-558093 or peg-interferon alfa-2b, compared to the wild-type virus.

Conclusion: Therapies combining at least two drugs among NS3/4A inhibitors, NS5B inhibitors and non-selective antiviral agents may be effective for HCV-infected patients with NS5A-P32del.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00535-018-01541-xDOI Listing
May 2019

Establishment of Replication-Competent HCV Strain with Minimum Modifications.

Methods Mol Biol 2019 ;1911:73-83

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.

The HCV cell culture system, consisting of the JFH-1 strain and HuH-7 cells, has been broadly used to assess the complete HCV life cycle in cultured cells. However, being able to use multiple HCV strains in such a system is vital for future studies of this virus. We recently established a novel HCV cell culture system using another HCV genotype 2a strain, J6CF, which replicates in chimpanzees but not in cultured cells. We identified effective cell culture-adaptive mutations and established a replication-competent J6CF strain with minimum modifications in cultured cells. The strategy of how we established the replication-competent HCV strain and how we identified the effective cell culture-adaptive mutations is described here and could prove useful for establishing other replication-competent HCV strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-8976-8_4DOI Listing
June 2019

High-throughput neutralization assay for multiple flaviviruses based on single-round infectious particles using dengue virus type 1 reporter replicon.

Sci Rep 2018 11 9;8(1):16624. Epub 2018 Nov 9.

Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.

Diseases caused by the genus Flavivirus, including dengue virus (DENV) and Zika virus (ZIKV), have a serious impact on public health worldwide. Due to serological cross-reactivity among flaviviruses, current enzyme-linked immunosorbent assay (ELISA) for IgM/G cannot reliably distinguish between infection by different flaviviruses. In this study, we developed a reporter-based neutralization assay using single-round infectious particles (SRIPs) derived from representative flaviviruses. SRIPs were generated by transfection of human embryonic kidney 293 T cells with a plasmid encoding premembrane and envelope (prME) proteins from DENV1-4, ZIKV, Japanese encephalitis virus, West Nile virus, yellow fever virus, Usutu virus, and tick-borne encephalitis virus, along with a plasmid carrying DENV1 replicon containing the luciferase gene and plasmid for expression of DENV1 capsid. Luciferase activity of SRIPs-infected cells was well correlated with number of infected cells, and each reporter SRIP was specifically neutralized by sera from mice immunized with each flavivirus antigen. Our high-throughput reporter SRIP-based neutralization assay for multiple flaviviruses is a faster, safer, and less laborious diagnostic method than the conventional plaque reduction neutralization test to screen the cause of primary flavivirus infection. The assay may also contribute to the evaluation of vaccine efficacy and assist in routine surveillance and outbreak response to flaviviruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-34865-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226426PMC
November 2018

Vitamin D derivatives inhibit hepatitis C virus production through the suppression of apolipoprotein.

Antiviral Res 2018 12 16;160:55-63. Epub 2018 Oct 16.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan. Electronic address:

Supplementation with vitamin D (VD) has been reported to improve the efficacy of interferon-based therapy for chronic hepatitis C. We found that 25-hydroxyvitamin D (25-(OH)D), one of the metabolites of VD, has antiviral effects by inhibiting the infectious virus production of the hepatitis C virus (HCV). In this study, to clarify the underlying mechanisms of the anti-HCV effects, we searched VD derivatives that have anti-HCV effects and identified the common target molecule in the HCV life cycle by using an HCV cell culture system. After infection of Huh-7.5.1 cells with cell culture-generated HCV, VD derivatives were added to culture media, and the propagation of HCV was assessed by measuring the HCV core antigen levels in culture media and cell lysates. To determine the step in the HCV life cycle affected by these compounds, the single-cycle virus production assay was used with a CD81-negative cell line. Of the 14 structural derivatives of VD, an anti-HCV effect was detected in 9 compounds. Cell viability was not affected by these effective compounds. The 2 representative VD derivatives inhibited the infectious virus production in the single-cycle virus production assay. Treatment with these compounds and 25-(OH)D suppressed the expression of apolipoprotein A1 and C3, which are known to be involved in infectious virus production of HCV, and the knockdown of these apolipoproteins reduced infectious virus production. In conclusion, we identified several compounds with anti-HCV activity by screening VD derivatives. These compounds reduce the infectious virus production of HCV by suppressing the expression of apolipoproteins in host cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2018.10.014DOI Listing
December 2018

Evaluation of antiviral effects of novel NS5A inhibitors in hepatitis C virus cell culture system with full-genome infectious clones.

Antiviral Res 2018 10 15;158:161-170. Epub 2018 Aug 15.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan. Electronic address:

Nonstructural protein 5A (NS5A) inhibitors of hepatitis C virus (HCV) are known to have potent anti-viral effects; however, these inhibitors have limited activities on strains with resistant-associated substitutions or non-genotype 1 strains. To overcome these shortcomings, novel NS5A inhibitors have been developed and approved for clinical application. The aim of this study was to evaluate the anti-viral effect of novel NS5A inhibitors (derivatives of odalasvir) on HCV genotype 2 strains in a cell culture system. Chimeric JFH-1 viruses replaced with NS5A of genotypes 1 and 2 were utilized to assess the genotype-specific potencies of NS5A inhibitors. We also examined full-genome infectious clones of JFH-1, J6cc, and J8cc to confirm the effects of NS5A inhibitors on genotype 2 strains. All chimeric viruses were capable of replication at similar levels in cell culture. We examined the anti-viral effects of derivatives of the novel NS5A inhibitor and compared with the first-generation NS5A inhibitor, daclatasvir (DCV). These compounds inhibited replication of chimeric JFH-1 viruses with NS5A of genotypes 1 and 2 at low concentrations in comparison with DCV. The EC values of J6cc and J8cc to these compounds were more than 100-fold lower than that of DCV. By long-term culture in the presence of these compounds, we obtained highly resistant variants and identified the responsible substitutions. In conclusion, novel NS5A inhibitors displayed improved potency against HCV genotype 2 strains compared with DCV. However, the activity of these compounds was impaired by emerging resistance-associated substitutions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2018.08.008DOI Listing
October 2018

IL-1β/ATF3-mediated induction of Ski2 expression enhances hepatitis B virus x mRNA degradation.

Biochem Biophys Res Commun 2018 09 25;503(3):1854-1860. Epub 2018 Jul 25.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan. Electronic address:

Hepatitis B virus (HBV) -x protein is a transcriptional regulator required for the HBV life cycle. HBx also induces complications in the host such as hepatocellular carcinoma. We previously showed that HBx mRNA is degraded by the Ski2/RNA exosome complex. In the present study, we report the regulation of this system through the control of Ski2 expression. We identified interleukin (IL) -1β as an inducer of expression from the Ski2 promoter. IL-1β induced the expression of ATF3 transcription factor, which in turn binds to cyclic AMP-responsive element sequence in the Ski2 promoter and is responsible for Ski2 promoter induction by IL-1β. We previously reported that Ski2 expression increases HBx mRNA degradation; consistent with those data, we showed here that HBx mRNA is degraded in response to IL-1β treatment. Interestingly, HBx also significantly induced Ski2 expression. To our knowledge, this is the first report to show activation of the Ski2/RNA exosome complex by both the host and HBV. Understanding the regulation of the Ski2/RNA exosome system is expected to facilitate prevention of HBx-mediated complications through targeting the posttranscriptional degradation of HBx mRNA; and will also help shedding a light on the role of RNA decay systems in inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.07.126DOI Listing
September 2018

Evaluation of in vitro screening and diagnostic kits for hepatitis C virus infection.

J Clin Virol 2018 08 11;105:97-102. Epub 2018 Jun 11.

Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan. Electronic address:

Background: To detect infection by hepatitis C virus (HCV), a reliable kit with high sensitivity and specificity is indispensable. Detection kits for anti-HCV antibodies (anti-HCV) are used for screening, and quantification kits for HCV RNA and core antigen are used for definite diagnosis of HCV infection.

Objectives: We evaluated the performance of these kits using International Standards and a regional reference panel with HCV negative and positive specimens.

Study Design: In vitro diagnostic kits (10 anti-HCV, two HCV RNA, and three HCV core antigen) were included.

Results: Nearly all specimens in the regional reference panel were correctly identified by all anti-HCV detection kits (one false-positive was observed in one kit). Both HCV RNA quantification kits also correctly identified and quantified HCV RNA titers, without genotype-specific differences. Among the HCV core antigen kits, International Standard values were inconsistent. The sensitivities of these kits were insufficient to detect HCV in positive specimens in the regional reference panel.

Conclusions: In vitro diagnostic kits assessing anti-HCV and HCV RNA have sufficient sensitivities and specificities to screen and detect HCV infection. However, HCV core antigen quantification kits have some limitations in their sensitivities and consistencies for diagnosis of HCV infection. Quality control with International Standards and a regional reference panel is important to maintain the performances of diagnostic kits for HCV infection and to verify the clinical reliability of these kits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcv.2018.06.008DOI Listing
August 2018

Interferon sensitivity-determining region of hepatitis C virus influences virus production and interferon signaling.

Oncotarget 2018 Jan 21;9(5):5627-5640. Epub 2017 Dec 21.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.

The number of amino acid substitutions in the interferon (IFN) sensitivity-determining region (ISDR) of hepatitis C virus (HCV) NS5A is a strong predictor for the outcome of IFN-based treatment. To assess the involvement of ISDR in the HCV life cycle and to clarify the molecular mechanisms influencing IFN susceptibility, we used recombinant JFH-1 viruses with NS5A of the genotype 1b Con1 strain (JFH1/5ACon1) and with NS5A ISDR containing 7 amino acid substitutions (JFH1/5ACon1/i-7mut), and compared the virus propagation and the induction of interferon-stimulated genes (ISGs). By transfecting RNAs of these strains into HuH-7-derived cells, we found that the efficiency of infectious virus production of JFH1/5ACon1/i-7mut was attenuated compared with JFH1/5ACon1. After transfecting full-length HCV RNA into HepaRG cells, the mRNA expression of ISGs was sufficiently induced by IFN treatment in JFH1/5ACon1/i-7mut-transfected but not in JFH1/5ACon1-transfected cells. These data suggested that the NS5A-mediated inhibition of ISG induction was deteriorated by amino acid substitutions in the ISDR. In conclusion, using recombinant JFH-1 viruses, we demonstrated that HCV NS5A is associated with infectious virus production and the inhibition of IFN signaling, and amino acid substitutions in the NS5A ISDR deteriorate these functions. These observations explain the strain-specific evasion of IFN signaling by HCV.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.23562DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814163PMC
January 2018

Resistance mutations of hepatitis B virus in entecavir-refractory patients.

Hepatol Commun 2017 04 9;1(2):110-121. Epub 2017 Mar 9.

Department of Virology II National Institute of Infectious Diseases Tokyo Japan.

The emergence of resistance mutations in the reverse transcriptase gene of hepatitis B virus (HBV) is associated with treatment failure. Entecavir (ETV) is one of the most potent anti-HBV reagents; it has a very low resistance rate and is used as the first-line treatment for chronic hepatitis B. In this study, we isolated HBVs in 4 ETV-refractory patients (2 with viral breakthrough, 1 with partial virological response, and 1 with flare-up) and assessed ETV resistance using replication-competent 1.38-fold HBV genome-length molecular clones. The full genome sequences of infected HBVs in ETV-refractory patients were determined. The HBV molecular clones were generated with the patient-derived sequences. After transfection of these molecular clones into HepG2 cells, viral replications and ETV susceptibilities were evaluated by measuring the amount of intracellular core-particle-associated HBV DNA using Southern blotting and real-time polymerase chain reaction. Among these cases, ETV-resistant variants were detected in 2 patients with viral breakthrough and responsible amino acid mutations in reverse transcriptase were successfully identified in these variants. No ETV-resistant mutation was detected in the other cases. The identified ETV-resistant mutations did not confer resistance to tenofovir disoproxil fumarate. : The HBV replication model with patient-derived sequences is useful for assessing replication efficiency, susceptibility to anti-HBV reagents, and responsible resistance mutations and can aid in choosing the appropriate treatment strategy for treatment-failure cases of chronic hepatitis B. ( 2017;1:110-121).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep4.1022DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721430PMC
April 2017

Effects of vaccine-acquired polyclonal anti-HBs antibodies on the prevention of HBV infection of non-vaccine genotypes.

J Gastroenterol 2017 09 14;52(9):1051-1063. Epub 2017 Feb 14.

Disease Biomarker Analysis and Molecular Regulation, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-Ku, Kawasaki, 216-8511, Japan.

Background: In universal hepatitis B (HB) vaccination, single vaccine-derived polyclonal anti-HBs antibodies (anti-HBs) need to inhibit infection of HB viruses (HBV) of non-vaccine genotypes. We experimentally addressed this issue.

Methods: Anti-HBs-positive sera were obtained by vaccination with genotype A- or C-derived HBs antigen (HBsAg, gtA-sera or gtC-sera). Their reactivity to genotype A- and C-derived HBsAg (gtA-Ag and gtC-Ag) was measured by ELISA. The capacity of sera to neutralize HBV was evaluated using an in vitro infection model.

Results: Of 135 anti-gtA-Ag-reactive gtA-sera, 134 (99.3%) were anti-gtC-Ag-reactive. All (100%) 120 anti-gtC-Ag-reactive gtC-sera were anti-gtA-Ag-reactive. The reactivity to gtA-Ag was strongly correlated with that to gtC-Ag (gtA-sera, ρ = 0.989; gtC-sera, ρ = 0.953; p < 0.01). In gtA-sera (n = 10), anti-HBs to gtA-Ag were less completely absorbed with gtC-Ag (96.4%) than with gtA-Ag (100%, p < 0.05). Similarly, in gtC-sera (n = 10), anti-HBs to gtC-Ag were less completely absorbed with gtA-Ag (96.0%) than with gtC-Ag (100%, p < 0.01). Thus, 3.6 and 4.0% of anti-HBs in gtA-sera and gtC-sera were vaccine genotype HBsAg-specific, respectively. In the neutralization test, gtA-sera (n = 4) and gtC-sera (n = 3) with anti-HBs titers adjusted to 100 mIU/mL equally inhibited genotype C HBV infection (92.8 vs. 95.4%, p = 0.44). However, at 30 mIU/mL, the gtA-sera less effectively inhibited infection than the gtC-sera (60.2 vs. 90.2%, p < 0.05).

Conclusions: Vaccination with genotype A- or C-derived HBsAg provided polyclonal anti-HBs that sufficiently bound to non-vaccine genotype HBsAg. However, a small portion of anti-HBs were specific to the vaccine genotype HBsAg. High anti-HBs titers would be required to prevent HBV infection of non-vaccine genotypes. UMIN/CTR UMIN000014363.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00535-017-1316-3DOI Listing
September 2017

Baseline quasispecies selection and novel mutations contribute to emerging resistance-associated substitutions in hepatitis C virus after direct-acting antiviral treatment.

Sci Rep 2017 01 30;7:41660. Epub 2017 Jan 30.

Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.

Resistance-associated substitutions (RASs) in hepatitis C virus (HCV) appear upon failure of treatment with direct-acting antivirals (DAAs). However, their origin has not been clarified in detail. Among 11 HCV genotype 1b patients who experienced virologic failure with asunaprevir (ASV)/daclatasvir (DCV), 10 had major NS5A L31M/V-Y93H variants after treatment. L31M/V-Y93H variants were detected as a minor clone before therapy in 6 patients and were the most closely related to the post-treatment variants by phylogenetic tree analysis in 4 patients. Next, to consider the involvement of a trace amount of pre-existing variants below the detection limit, we analysed human hepatocyte chimeric mice infected with DAA-naïve patient serum. L31V-Y93H variants emerged after treatment with ledipasvir (LDV)/GS-558093 (nucleotide NS5B inhibitor) and decreased under the detection limit, but these variants were dissimilar to the L31V-Y93H variants reappearing after ASV/DCV re-treatment. Finally, to develop an infection derived from a single HCV clone, we intrahepatically injected full-genome HCV RNA (engineered based on the wild-type genotype 1b sequence) into chimeric mice. A new Y93H mutation actually occurred in this model after LDV monotherapy failure. In conclusion, post-treatment RASs appear by 2 mechanisms: the selection of pre-existing substitutions among quasispecies and the generation of novel mutations during therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep41660DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278351PMC
January 2017

Amino Acid Mutations in the NS4A Region of Hepatitis C Virus Contribute to Viral Replication and Infectious Virus Production.

J Virol 2017 02 31;91(4). Epub 2017 Jan 31.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan

Hepatitis C virus (HCV) strain JFH-1, which belongs to genotype 2a, replicates autonomously in cultured cells, whereas another genotype 2a strain, J6CF, does not. Previously, we found that replacement of the NS3 helicase and NS5B-to-3'X regions of J6CF with those of JFH-1 confers J6CF replication competence. In this study, we aimed to identify the minimum modifications within these genomic regions needed to establish replication-competent J6CF. We previously identified 4 mutations in the NS5B-to-3'X region that could be used instead of replacement of this region to confer J6CF replication competence. Here, we induced cell culture-adaptive mutations in J6CF by the long-term culture of J6CF/JFH-1 chimeras composed of JFH-1 NS5B-to-3'X or individual parts of this but not the NS3 helicase region. After 2 months of culture, efficient HCV replication and infectious virus production in chimeric RNA-transfected cells were observed, and several amino acid mutations in NS4A were identified in replicating HCV genomes. The introduction of NS4A mutations into the J6CF/JFH-1 chimeras enhanced viral replication and infectious virus production. Immunofluorescence microscopy demonstrated that some of these mutations altered the subcellular localization of the coexpressed NS3 protein and affected the interaction between NS3 and NS4A. Finally, introduction of the most effective NS4A mutation, A1680E, into J6CF contributed to its replication competence in cultured cells when introduced in conjunction with four previously identified adaptive mutations in the NS5B-to-3'X region. In conclusion, we identified an adaptive mutation in NS4A that confers J6CF replication competence when introduced in conjunction with 4 mutations in NS5B-to-3'X and established a replication-competent J6CF strain with minimum essential modifications in cultured cells.

Importance: The HCV cell culture system using the JFH-1 strain and HuH-7 cells can be used to assess the complete HCV life cycle in cultured cells. This cell culture system has been used to develop direct-acting antivirals against HCV, and the ability to use various HCV strains within this system is important for future studies. In this study, we aimed to establish a novel HCV cell culture system using another HCV genotype 2a strain, J6CF, which replicates in chimpanzees but not in cultured cells. We identified an effective cell culture-adaptive mutation in NS4A and established a replication-competent J6CF strain in cultured cells with minimum essential modifications. The described strategy can be used in establishing a novel HCV cell culture system, and the replication-competent J6CF clone composed of the minimum essential modifications needed for cell culture adaptation will be valuable as another representative of genotype 2a strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.02124-16DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286874PMC
February 2017

Induction of humoural and cellular immunity by immunisation with HCV particle vaccine in a non-human primate model.

Gut 2018 02 26;67(2):372-379. Epub 2016 Oct 26.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.

Objective: Although HCV is a major cause of chronic liver disease worldwide, there is currently no prophylactic vaccine for this virus. Thus, the development of an HCV vaccine that can induce both humoural and cellular immunity is urgently needed. To create an effective HCV vaccine, we evaluated neutralising antibody induction and cellular immune responses following the immunisation of a non-human primate model with cell culture-generated HCV (HCVcc).

Design: To accomplish this, 10 common marmosets were immunised with purified, inactivated HCVcc in combination with two different adjuvants: the classically used aluminum hydroxide (Alum) and the recently established adjuvant: CpG oligodeoxynucleotide (ODN) wrapped by schizophyllan (K3-SPG).

Results: The coadministration of HCVcc with K3-SPG efficiently induced immune responses against HCV, as demonstrated by the production of antibodies with specific neutralising activity against chimaeric HCVcc with structural proteins from multiple HCV genotypes (1a, 1b, 2a and 3a). The induction of cellular immunity was also demonstrated by the production of interferon-γ mRNA in spleen cells following stimulation with the HCV core protein. These changes were not observed following immunisation with HCVcc/Alum preparation. No vaccination-related abnormalities were detected in any of the immunised animals.

Conclusions: The current preclinical study demonstrated that a vaccine included both HCVcc and K3-SPG induced humoural and cellular immunity in marmosets. Vaccination with this combination resulted in the production of antibodies exhibiting cross-neutralising activity against multiple HCV genotypes. Based on these findings, the vaccine created in this study represents a promising, potent and safe prophylactic option against HCV.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/gutjnl-2016-312208DOI Listing
February 2018

Effects of Resistance-Associated NS5A Mutations in Hepatitis C Virus on Viral Production and Susceptibility to Antiviral Reagents.

Sci Rep 2016 10 5;6:34652. Epub 2016 Oct 5.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.

Direct-acting antivirals (DAAs) for hepatitis C virus (HCV) have potent anti-HCV effects but may provoke resistance-associated variants (RAVs). In this study, we assessed the characteristics of these RAVs and explored efficacious anti-HCV reagents using recombinant HCV with NS5A from a genotype 1b strain. We replaced the NS5A of JFH1 with that of Con1 (JFH1/5ACon1) and introduced known NS5A inhibitor resistance mutations (L31M, L31V, L31I and Y93H) individually or in combination. Susceptibilities against anti-HCV reagents were also investigated. RAVs with Y93H exhibited high extracellular core antigen levels and infectivity titers. Variants with any single mutation showed mild to moderate resistance against NS5A inhibitors, whereas variants with double mutations at both L31 and Y93 showed severe resistance. The variants with mutations exhibited similar levels of susceptibility to interferon (IFN)-α, IFN-λ1, IFN-λ3 and Ribavirin. Variants with the Y93H mutation were more sensitive to protease inhibitors compared with JFH1/5ACon1. In conclusion, the in vitro analysis indicated that the Y93H mutation enhanced infectious virus production, suggesting advantages in the propagation of RAVs with this mutation. However, these RAVs were susceptible to protease inhibitors. Thus, a therapeutic regimen that includes these reagents is a promising means to eradicate these RAVs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050404PMC
http://dx.doi.org/10.1038/srep34652DOI Listing
October 2016

Fungus-Derived Neoechinulin B as a Novel Antagonist of Liver X Receptor, Identified by Chemical Genetics Using a Hepatitis C Virus Cell Culture System.

J Virol 2016 10 29;90(20):9058-74. Epub 2016 Sep 29.

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.

Unlabelled: Cell culture systems reproducing virus replication can serve as unique models for the discovery of novel bioactive molecules. Here, using a hepatitis C virus (HCV) cell culture system, we identified neoechinulin B (NeoB), a fungus-derived compound, as an inhibitor of the liver X receptor (LXR). NeoB was initially identified by chemical screening as a compound that impeded the production of infectious HCV. Genome-wide transcriptome analysis and reporter assays revealed that NeoB specifically inhibits LXR-mediated transcription. NeoB was also shown to interact directly with LXRs. Analysis of structural analogs suggested that the molecular interaction of NeoB with LXR correlated with the capacity to inactivate LXR-mediated transcription and to modulate lipid metabolism in hepatocytes. Our data strongly suggested that NeoB is a novel LXR antagonist. Analysis using NeoB as a bioprobe revealed that LXRs support HCV replication: LXR inactivation resulted in dispersion of double-membrane vesicles, putative viral replication sites. Indeed, cells treated with NeoB showed decreased replicative permissiveness for poliovirus, which also replicates in double-membrane vesicles, but not for dengue virus, which replicates via a distinct membrane compartment. Together, our data suggest that LXR-mediated transcription regulates the formation of virus-associated membrane compartments. Significantly, inhibition of LXRs by NeoB enhanced the activity of all known classes of anti-HCV agents, and NeoB showed especially strong synergy when combined with interferon or an HCV NS5A inhibitor. Thus, our chemical genetics analysis demonstrates the utility of the HCV cell culture system for identifying novel bioactive molecules and characterizing the virus-host interaction machinery.

Importance: Hepatitis C virus (HCV) is highly dependent on host factors for efficient replication. In the present study, we used an HCV cell culture system to screen an uncharacterized chemical library. Our results identified neoechinulin B (NeoB) as a novel inhibitor of the liver X receptor (LXR). NeoB inhibited the induction of LXR-regulated genes and altered lipid metabolism. Intriguingly, our results indicated that LXRs are critical to the process of HCV replication: LXR inactivation by NeoB disrupted double-membrane vesicles, putative sites of viral replication. Moreover, NeoB augmented the antiviral activity of all known classes of currently approved anti-HCV agents without increasing cytotoxicity. Thus, our strategy directly links the identification of novel bioactive compounds to basic virology and the development of new antiviral agents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00856-16DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5044839PMC
October 2016
-->