Publications by authors named "Takafumi Seki"

3 Publications

  • Page 1 of 1

Investigation on the Epoxidation of Piperitenone, and Structure-activity Relationships of Piperitenone Oxide for Differentiation-inducing Activity.

J Oleo Sci 2020 Aug 9;69(8):951-958. Epub 2020 Jul 9.

Department of Applied Biological Science, Tokyo University of Science.

Piperitenone oxide, a major chemical constituent of the essential oil of spearmint, Mentha spicata, induces differentiation in human colon cancer RCM-1 cells. In this study, piperitenone oxide and trans-piperitenone dioxide were prepared as racemic forms by epoxidation of piperitenone. The relative configuration between two epoxides in piperitenone dioxide was determined to be trans by H NMR analysis and nuclear Overhauser effect spectroscopy (NOESY) in conjunction with density functional theory (DFT) calculations. Optical resolution of (±)-piperitenone oxide by high-performance liquid chromatography (HPLC) using a chiral stationary phase (CSP) afforded both enantiomers with over 98% enantiomeric excess (ee). Evaluation of the differentiation-inducing activity of the synthetic compounds revealed that the epoxide at C-1 and C-6 in piperitenone oxide is important for the activity, and (+)-piperitenone oxide has stronger activity than (-)-piperitenone oxide. The results obtained in this study provide new information on the application of piperitenone oxide and spearmint for differentiation-inducing therapy. Furthermore, natural piperitenone oxide was isolated from M. spicata. The enantiomeric excess of the isolated natural piperitenone oxide was 66% ee. Epoxidation of piperitenone with hydrogen peroxide proceeded in a phosphate buffer under weak basic conditions to give (±)-piperitenone oxide. These results suggest that the nonenzymatic epoxidation of piperitenone, which causes a decrease in the enantiomeric excess of natural piperitenone oxide, is accompanied by an enzymatic epoxidation in the biosynthesis of piperitenone oxide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5650/jos.ess19278DOI Listing
August 2020

Microfluidic Separation of Redox Reactions for Coulometry Based on Metallization at the Mixed Potential.

Anal Chem 2016 10 15;88(19):9427-9434. Epub 2016 Sep 15.

Graduate School of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.

Coulometric detection of an analyte in a solution at nanoliter scale was conducted by having redox reactions proceed simultaneously on a platinum electrode. The analyte was oxidized on a part of the electrode in one flow channel and silver was deposited on an array of circular microelectrodes formed in another flow channel at a mixed potential. Coulometric determination of the deposited silver showed a steep change in the generated charge as a result of the complete oxidation of silver. The short measurement time after the start of the coulometry suppressed the increase in background charge, resulting in significant lowering of the detection limit. The lower detection limit for HO was 30 nM (3σ). To improve selectivity and minimize the influence of coexisting interferents, the shifting of the mixed potential, application of a permselective membrane, and electrochemical elimination of the interferents were effective modifications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.6b01234DOI Listing
October 2016

Nitrate reductase-formate dehydrogenase couple involved in the fungal denitrification by Fusarium oxysporum.

J Biochem 2002 Apr;131(4):579-86

Institute of Applied Biochemistry, University of Tsukuba, Ibaraki 305-8572, Japan.

Dissimilatory nitrate reductase (Nar) was solubilized and partially purified from the large particle (mitochondrial) fraction of the denitrifying fungus Fusarium oxysporum and characterized. Many lines of evidence showed that the membrane-bound Nar is distinct from the soluble, assimilatory nitrate reductase. Further, the spectral and other properties of the fungal Nar were similar to those of dissimilatory Nars of Escherichia coli and denitrifying bacteria, which are comprised of a molybdoprotein, a cytochrome b, and an iron-sulfur protein. Formate-nitrate oxidoreductase activity was also detected in the mitochondrial fraction, which was shown to arise from the coupling of formate dehydrogenase (Fdh), Nar, and a ubiquinone/ubiquinol pool. This is the first report of the occurrence in a eukaryote of Fdh that is associated with the respiratory chain. The coupling with Fdh showed that the fungal Nar system is more similar to that involved in the nitrate respiration by Escherichia coli than that in the bacterial denitrifying system. Analyses of the mutant species of F. oxysporum that were defective in Nar and/or assimilatory nitrate reductase conclusively showed that Nar is essential for the fungal denitrification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003137DOI Listing
April 2002
-->