Publications by authors named "Taghreed S Alnusaire"

5 Publications

  • Page 1 of 1

Strawberry and Ginger Silver Nanoparticles as Potential Inhibitors for SARS-CoV-2 Assisted by In Silico Modeling and Metabolic Profiling.

Antibiotics (Basel) 2021 Jul 6;10(7). Epub 2021 Jul 6.

Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11865, Egypt.

SARS-CoV-2 (COVID-19), a novel coronavirus causing life-threatening pneumonia, caused a pandemic starting in 2019 and caused unprecedented economic and health crises all over the globe. This requires the rapid discovery of anti-SARS-CoV-2 drug candidates to overcome this life-threatening pandemic. Strawberry ( Duch.) and ginger () methanolic extracts were used for silver nanoparticle (AgNPs) synthesis to explore their SARS-CoV-2 inhibitory potential. Moreover, an in silico study was performed to explore the possible chemical compounds that might be responsible for the anti-SARS-CoV-2 potential. The characterization of the green synthesized AgNPs was carried out with transmission electron microscope (TEM), Fourier-transform infrared, spectroscopy ultraviolet-visible spectroscopy, zeta potential, and a dynamic light-scattering technique. The metabolic profiling of strawberry and ginger methanolic extract was assessed using liquid chromatography coupled with high-resolution mass spectrometry. The antiviral potential against SARS-CoV-2 was evaluated using an MTT assay. Moreover, in silico modeling and the molecular dynamic study were conducted via AutoDock Vina to demonstrate the potential of the dereplicated compounds to bind to some of the SARS-CoV-2 proteins. The TEM analysis of strawberry and ginger AgNPs showed spherical nanoparticles with mean sizes of 5.89 nm and 5.77 nm for strawberry and ginger, respectively. The UV-Visible spectrophotometric analysis showed an absorption peak at λmax of 400 nm for strawberry AgNPs and 405 nm for ginger AgNPs. The Zeta potential values of the AgNPs of the methanolic extract of strawberry was -39.4 mV, while for AgNPs of ginger methanolic extract it was -42.6 mV, which indicates a high stability of the biosynthesized nanoparticles. The strawberry methanolic extract and the green synthesized AgNPs of ginger showed the highest antiviral activity against SARS-CoV-2. Dereplication of the secondary metabolites from the crude methanolic extracts of strawberry and ginger resulted in the annotation of different classes of compounds including phenolic, flavonoids, fatty acids, sesquiterpenes, triterpenes, sterols, and others. The docking study was able to predict the different patterns of interaction between the different compounds of strawberry and ginger with seven SARS-CoV-2 protein targets including five viral proteins (Mpro, ADP ribose phosphatase, NSP14, NSP16, PLpro) and two humans (AAK1, Cathepsin L). The molecular docking and dynamics simulation study showed that neohesperidin demonstrated the potential to bind to both human AAK1 protein and SARS-CoV-2 NSP16 protein, which makes this compound of special interest as a potential dual inhibitor. Overall, the present study provides promise for Anti-SARS-CoV-2 green synthesized AgNPs, which could be developed in the future into a new anti-SARS-CoV-2 drug.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/antibiotics10070824DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300822PMC
July 2021

Olive Oil/Pluronic Oleogels for Skin Delivery of Quercetin: In Vitro Characterization and Ex Vivo Skin Permeability.

Polymers (Basel) 2021 May 31;13(11). Epub 2021 May 31.

Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, Giza 14756, Egypt.

The main objective of this study was to prepare and characterize oleogel as potential carrier for quercetin skin delivery. The formulations were prepared by adding olive oil (5-30%) to Pluronic F127 hydrogel and were evaluated for particle size, zeta potential, viscosity in vitro quercetin release and stability, and were compared with that of Pluronic F127 hydrogel. The selected formulation was characterized for its interaction possibility, ex vivo skin permeation and skin histological changes and safety. The particle sizes ranged from 345.3 ± 5.3 nm to 401.5 ± 2.8 nm, and possessed negative charges. The viscosities of the formulations were found in the range of 6367-4823 cps with inverse proportionality to olive oil percentage while the higher percentages showed higher quercetin release. Percentages of 25% and 30% olive oil showed instability pattern under the conditions of accelerated stability studies. Differential scanning calorimetry verified the existence of quercetin in micellar aggregation and the network in the case of hydrogel and oleogel respectively. Ex vivo skin permeation showed an improved skin permeation of quercetin when 20% olive oil containing oleogel was used. Skin histology after 10 days of application showed stratum corneum disruption and good safety profile. Based on these findings, the proposed oleogel containing 20% olive oil denotes a potential carrier for topical delivery of quercetin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym13111808DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198417PMC
May 2021

Antiulcer Potential of L. cv. Arbequina Leaf Extract Supported by Metabolic Profiling and Molecular Docking.

Antioxidants (Basel) 2021 Apr 22;10(5). Epub 2021 Apr 22.

Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia 61111, Egypt.

Gastric ulceration is among the most serious humanpublic health problems. L. cv. Arbequina is one of the numerous olive varieties which have scarcely been studied. The reported antioxidant and anti-inflammatory potential of the olive plant make it a potential prophylactic natural product against gastric ulcers. Consequently, the main goal of this study is to investigate the gastroprotective effect of L. cv. Arbequina leaf extract. LC-HRMS-based metabolic profiling of the alcoholic extract of L. cv. Arbequina led to the dereplication of 18 putative compounds (-). In vivo indomethacin-induced gastric ulcer in a rat model was established and the extract was tested at a dose of 300 mg kg compared to cimetidine (100 mg kg). The assessment of gastric mucosal lesions and histopathology of gastric tissue was done. It has been proved that significantly decreased the ulcer index and protected the mucosa from lesions. The antioxidant potential of the extract was evaluated using three in vitro assays, HO scavenging, xanthine oxidase inhibitory, and superoxide radical scavenging activities and showed promising activities. Moreover, an in silico based study was performed on the putatively dereplicated compounds, which highlighted that 3-hydroxy tyrosol () and oleacein () can target the 5-lipoxygenase enzyme (5-LOX) as a protective mechanism against the pathogenesis of ulceration. Upon experimental validation, both compounds 3-hydroxy tyrosol (HT) and oleacein (OC) ( and , respectively) exhibited a significant in vitro 5-LOX inhibitory activity with IC values of 8.6 and 5.8 µg/mL, respectively. The present study suggested a possible implication of leaves as a potential candidate having gastroprotective, antioxidant, and 5-LOX inhibitory activity for the management of gastric ulcers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox10050644DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146603PMC
April 2021

Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake.

Sci Total Environ 2021 May 17;769:145221. Epub 2021 Jan 17.

Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China; National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China. Electronic address:

Cadmium and salinity are the major threats to environmental resources and agricultural practice worldwide. The present work aims green synthesis, characterization, and application of iron oxide nanoparticles for co-alleviation of Cd and salt stresses in wheat plants. The iron oxide NPs were synthesized from a native bacterial strain, Pantoea ananatis strain RNT4, yielding a spherical FeO-NPs with a size ranging from 19 to 40 nm evidenced by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Results showed that application of 100 mg kg of the bioengineered FeO-NPs in an original saline soil stimulated wheat plant growth, gaining 36.7% of additional length as compared with the control scenarios, via alleviating the detrimental effects of abiotic stresses and thereby reprogramming the morpho-physiological state of wheat plants. In addition, the presence of FeO-NPs in soil significantly increased the nutrient concentrations of N, P and K, while reducing the Na and Cl components in the wheat grain. Interestingly, application of the FeO-NPs in Cd-polluted soils eventually reduced wheat plant uptake of Cd by 72.5%, probably due to the adsorption of Cd onto the large surface of NPs and thereby, constraining Cd bioavailability to the plants. It provides the first evidence that a FeO-NPs-based treatment could be a candidate agricultural strategy for mitigating the Cd and salt stresses in Cd-polluted saline soils for safe agriculture practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145221DOI Listing
May 2021

Jute: A Potential Candidate for Phytoremediation of Metals-A Review.

Plants (Basel) 2020 Feb 17;9(2). Epub 2020 Feb 17.

Biology Department, Aljumum, University College, Umm Al-Qura University, Mecca 21955, Saudi Arabia.

Jute () is a widely cultivated fibrous species with important physiological characteristics including biomass, a deep rooting system, and tolerance to metal stress. Furthermore, species are indigenous leafy vegetables and show phytoremediation potential for different heavy metals. This species has been used for the phytoremediation of different toxic pollutants such as copper (Cu), cadmium (Cd), zinc (Zn), mercury (Hg) and lead (Pb). The current literature highlights the physiological and morphological characteristics of jute that are useful to achieve successful phytoremediation of different pollutants. The accumulation of these toxic heavy metals in agricultural regions initiates concerns regarding food safety and reductions in plant productivity and crop yield. We discuss some innovative approaches to increase jute phytoremediation using different chelating agents. There is a need to remediate soils contaminated with toxic substances, and phytoremediation is a cheap, effective, and in situ alternative, and jute can be used for this purpose.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/plants9020258DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076354PMC
February 2020
-->