Publications by authors named "Taeksun Song"

29 Publications

  • Page 1 of 1

Fourteen-day PET/CT imaging to monitor drug combination activity in treated individuals with tuberculosis.

Sci Transl Med 2021 Feb;13(579)

Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.

Early bactericidal activity studies monitor daily sputum bacterial counts in individuals with tuberculosis (TB) for 14 days during experimental drug treatment. The rate of change in sputum bacterial load over time provides an informative, but imperfect, estimate of drug activity and is considered a critical step in development of new TB drugs. In this clinical study, 160 participants with TB received isoniazid, pyrazinamide, or rifampicin, components of first-line chemotherapy, and moxifloxacin individually and in combination. In addition to standard bacterial enumeration in sputum, participants underwent 2-deoxy-2-[F]fluoro-d-glucose positron emission tomography and computerized tomography ([F]FDG-PET/CT) at the beginning and end of the 14-day drug treatment. Quantitating radiological responses to drug treatment provided comparative single and combination drug activity measures across lung lesion types that correlated more closely with established clinical outcomes when combined with sputum enumeration compared to sputum enumeration alone. Rifampicin and rifampicin-containing drug combinations were most effective in reducing both lung lesion volume measured by CT imaging and lesion-associated inflammation measured by PET imaging. Moxifloxacin was not superior to rifampicin in any measure by PET/CT imaging, consistent with its performance in recent phase 3 clinical trials. PET/CT imaging revealed synergy between isoniazid and pyrazinamide and demonstrated that the activity of pyrazinamide was limited to lung lesion, showing the highest FDG uptake during the first 2 weeks of drug treatment. [F]FDG-PET/CT imaging may be useful for measuring the activity of single drugs and drug combinations during evaluation of potential new TB drug regimens before phase 3 trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.abd7618DOI Listing
February 2021

Linezolid resistance in patients with drug-resistant TB and treatment failure in South Africa.

J Antimicrob Chemother 2019 08;74(8):2377-2384

Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.

Objectives: Limited data exist on clinical associations and genotypic correlates of linezolid resistance in Mycobacterium tuberculosis. We aimed to describe mutations and clinical factors associated with phenotypic linezolid resistance from patients with drug-resistant TB at two public sector facilities in South Africa.

Methods: Adults and adolescents with treatment failure (culture positivity ≥4 months) on a linezolid-containing regimen were retrospectively identified. Phenotypic resistance, as defined by a linezolid MIC >1 mg/L, was assessed for retrieved isolates using broth microdilution. Targeted sequencing of rrl and rplC was performed, irrespective of growth on subculture.

Results: Thirty-nine patients with linezolid-based treatment failure were identified, 13 (33%) of whom had phenotypic or genotypic linezolid resistance after a median duration of 22 months (range = 7-32) of linezolid therapy. Paired MIC testing and genotyping was performed on 55 unique isolates. All isolates with phenotypic resistance (n = 16) were associated with known resistance mutations, most frequently due to the T460C substitution in rplC (n = 10); rrl mutations included G2814T, G2270C/T and A2810C. No mutations were detected in isolates with MICs at or below the critical concentration.

Conclusions: Linezolid resistance occurred in a third of patients with drug-resistant TB and treatment failure. Resistance occurred late and was predicted by a limited number of mutations in rrl and rplC. Screening for genotypic resistance should be considered for patients with a positive culture after 4 months of linezolid therapy in order to optimize treatment and avoid the toxicity of ineffective linezolid therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dkz206DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640298PMC
August 2019

Delamanid, linezolid, levofloxacin, and pyrazinamide for the treatment of patients with fluoroquinolone-sensitive multidrug-resistant tuberculosis (Treatment Shortening of MDR-TB Using Existing and New Drugs, MDR-END): study protocol for a phase II/III, multicenter, randomized, open-label clinical trial.

Trials 2019 Jan 16;20(1):57. Epub 2019 Jan 16.

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.

Background: Treatment success rates of multidrug-resistant tuberculosis (MDR-TB) remain unsatisfactory, and long-term use of second-line anti-TB drugs is accompanied by the frequent occurrence of adverse events, low treatment compliance, and high costs. The development of new efficient regimens with shorter treatment durations for MDR-TB will solve these issues and improve treatment outcomes.

Methods: This study is a phase II/III, multicenter, randomized, open-label clinical trial of non-inferiority design comparing a new regimen to the World Health Organization-endorsed conventional regimen for fluoroquinolone-sensitive MDR-TB. The control arm uses a conventional treatment regimen with second-line drugs including injectables for 20-24 months. The investigational arm uses a new shorter regimen including delamanid, linezolid, levofloxacin, and pyrazinamide for 9 or 12 months depending on time to sputum culture conversion. The primary outcome is the treatment success rate at 24 months after treatment initiation. Secondary outcomes include time to sputum culture conversion on liquid and solid media, proportions of sputum culture conversion on liquid media after 2 and 6 months of treatment, treatment success rate according to pyrazinamide resistance, and occurrence of adverse events grade 3 and above as evaluated by the Common Terminology Criteria for Adverse Events. Based on an α = 0.025 level of significance (one-sided test), a power of 80%, and a < 10% difference in treatment success rate between the control and investigational arms (80% vs. 70%) when the anticipated actual success rate in the treatment group is assumed to be 90%, the number of participants needed per arm to show non-inferiority of the investigational regimen was calculated as 48. Additionally, assuming the proportion of fluoroquinolone-susceptible MDR-TB among participants as 50%, and 5% loss to follow-up, the number of participants is calculated as N/( 0.50 × 0.95), resulting in 102 persons per group (204 in total).

Discussion: This trial will reveal the effectiveness and safety of a new shorter regimen comprising four oral drugs, including delamanid, linezolid, levofloxacin, and pyrazinamide, for the treatment of fluoroquinolone-sensitive MDR-TB. Results from this trial will provide evidence for adopting a shorter and more convenient treatment regimen for MDR-TB.

Trial Registration: ClincalTrials.gov, NCT02619994 . Registered on 2 December 2015.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13063-018-3053-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335682PMC
January 2019

Substitution of ethambutol with linezolid during the intensive phase of treatment of pulmonary tuberculosis: a prospective, multicentre, randomised, open-label, phase 2 trial.

Lancet Infect Dis 2019 01 23;19(1):46-55. Epub 2018 Nov 23.

International TB Research Center, Seoul, South Korea.

Background: Linezolid improves the treatment outcomes of multidrug-resistant tuberculosis substantially. We investigated whether use of linezolid instead of ethambutol increases the proportion of sputum culture conversion at 8 weeks of treatment in patients with pulmonary tuberculosis.

Methods: We did a phase 2, multicentre, randomised, open-label trial for patients with pulmonary tuberculosis at the three affiliated hospitals to Seoul National University and National Medical Center (Seoul-Seongnam, South Korea). Patients, aged 20-80 years, with a positive sputum for pulmonary tuberculosis, but without resistance to rifampicin, and current treatment administered for 7 days or fewer, were randomly assigned at a 1:1:1 ratio into three groups. The control group received ethambutol (2 months) with isoniazid, rifampicin, and pyrazinamide. The second group used linezolid (600 mg/day) for 2 weeks and the third group for 4 weeks instead of ethambutol for 2 months. We used a minimisation method to randomise, and stratified according to institution, cavitation on chest radiographs, and diabetes. The primary endpoint was the proportion of patients with negative culture conversion of sputum in liquid media after 8 weeks of treatment. The results of this trial were analysed primarily in the modified intention-to-treat population. The trial is registered with ClinicalTrials.gov, number NCT01994460.

Findings: Between Feb 19, 2014, and Jan 13, 2017, a total of 429 patients were enrolled and 428 were randomly assigned into either the control group (142 patients), the linezolid 2 weeks group (143 patients), or the linezolid 4 weeks group (143 patients). Among them, 401 were eligible for primary efficacy analyses. In the modified intention-to-treat analyses, negative cultures in liquid media at 8 weeks of treatment were observed in 103 (76·9%) of 134 control patients, 111 (82·2%) of 135 in the linezolid 2 weeks group, and 100 (75·8%) of 132 in the linezolid 4 weeks groups. The difference from the control group was 5.4% (95% CI -4·3 to 15·0, p=0·28) for the linezolid 2 weeks group and -1·1% (-11·3 to 9·1, p=0·83) for the linezolid 4 weeks group. Numbers of patients who experienced at least one adverse event were similar across the groups (86 [62·8%] of 137 in control, 79 [57·2%] of 138 in the linezolid 2 weeks group, and 75 [62·0%] of 121 in the linezolid 4 weeks group). Resistance to linezolid was not identified in any patient.

Interpretation: Higher rates of culture conversion at 8 weeks of treatment with short-term use of linezolid were not observed. However, safety analyses and the resistance profile suggested the potential role of linezolid in shortening of treatment for drug-susceptible tuberculosis.

Funding: Ministry of Health and Welfare, South Korea.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1473-3099(18)30480-8DOI Listing
January 2019

Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial.

Gates Open Res 2017 Nov 6;1. Epub 2017 Nov 6.

Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

: By the early 1980s, tuberculosis treatment was shortened from 24 to 6 months, maintaining relapse rates of 1-2%. Subsequent trials attempting shorter durations have failed, with 4-month arms consistently having relapse rates of 15-20%. One trial shortened treatment only among those without baseline cavity on chest x-ray and whose month 2 sputum culture converted to negative. The 4-month arm relapse rate decreased to 7% but was still significantly worse than the 6-month arm (1.6%, P<0.01).  We hypothesize that PET/CT characteristics at baseline, PET/CT changes at one month, and markers of residual bacterial load will identify patients with tuberculosis who can be cured with 4 months (16 weeks) of standard treatment. : This is a prospective, multicenter, randomized, phase 2b, noninferiority clinical trial of pulmonary tuberculosis participants. Those eligible start standard of care treatment. PET/CT scans are done at weeks 0, 4, and 16 or 24. Participants who do not meet early treatment completion criteria (baseline radiologic severity, radiologic response at one month, and GeneXpert-detectable bacilli at four months) are placed in Arm A (24 weeks of standard therapy). Those who meet the early treatment completion criteria are randomized at week 16 to continue treatment to week 24 (Arm B) or complete treatment at week 16 (Arm C). The primary endpoint compares the treatment success rate at 18 months between Arms B and C. : Multiple biomarkers have been assessed to predict TB treatment outcomes. This study uses PET/CT scans and GeneXpert (Xpert) cycle threshold to risk stratify participants. PET/CT scans are not applicable to global public health but could be used in clinical trials to stratify participants and possibly become a surrogate endpoint. If the Predict TB trial is successful, other immunological biomarkers or transcriptional signatures that correlate with treatment outcome may be identified.

Trial Registration: NCT02821832.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12688/gatesopenres.12750.1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841574PMC
November 2017

Evaluation of a Rapid Molecular Drug-Susceptibility Test for Tuberculosis.

N Engl J Med 2017 09;377(11):1043-1054

From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.).

Background: Fluoroquinolones and second-line injectable drugs are the backbone of treatment regimens for multidrug-resistant tuberculosis, and resistance to these drugs defines extensively drug-resistant tuberculosis. We assessed the accuracy of an automated, cartridge-based molecular assay for the detection, directly from sputum specimens, of Mycobacterium tuberculosis with resistance to fluoroquinolones, aminoglycosides, and isoniazid.

Methods: We conducted a prospective diagnostic accuracy study to compare the investigational assay against phenotypic drug-susceptibility testing and DNA sequencing among adults in China and South Korea who had symptoms of tuberculosis. The Xpert MTB/RIF assay and sputum culture were performed. M. tuberculosis isolates underwent phenotypic drug-susceptibility testing and DNA sequencing of the genes katG, gyrA, gyrB, and rrs and of the eis and inhA promoter regions.

Results: Among the 308 participants who were culture-positive for M. tuberculosis, when phenotypic drug-susceptibility testing was used as the reference standard, the sensitivities of the investigational assay for detecting resistance were 83.3% for isoniazid (95% confidence interval [CI], 77.1 to 88.5), 88.4% for ofloxacin (95% CI, 80.2 to 94.1), 87.6% for moxifloxacin at a critical concentration of 0.5 μg per milliliter (95% CI, 79.0 to 93.7), 96.2% for moxifloxacin at a critical concentration of 2.0 μg per milliliter (95% CI, 87.0 to 99.5), 71.4% for kanamycin (95% CI, 56.7 to 83.4), and 70.7% for amikacin (95% CI, 54.5 to 83.9). The specificity of the assay for the detection of phenotypic resistance was 94.3% or greater for all drugs except moxifloxacin at a critical concentration of 2.0 μg per milliliter (specificity, 84.0% [95% CI, 78.9 to 88.3]). When DNA sequencing was used as the reference standard, the sensitivities of the investigational assay for detecting mutations associated with resistance were 98.1% for isoniazid (95% CI, 94.4 to 99.6), 95.8% for fluoroquinolones (95% CI, 89.6 to 98.8), 92.7% for kanamycin (95% CI, 80.1 to 98.5), and 96.8% for amikacin (95% CI, 83.3 to 99.9), and the specificity for all drugs was 99.6% (95% CI, 97.9 to 100) or greater.

Conclusions: This investigational assay accurately detected M. tuberculosis mutations associated with resistance to isoniazid, fluoroquinolones, and aminoglycosides and holds promise as a rapid point-of-care test to guide therapeutic decisions for patients with tuberculosis. (Funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and the Ministry of Science and Technology of China; ClinicalTrials.gov number, NCT02251327 .).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa1614915DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727572PMC
September 2017

Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure.

Nat Med 2016 10 5;22(10):1094-1100. Epub 2016 Sep 5.

National Medical Center, Seoul, South Korea.

The absence of a gold standard to determine when antibiotics induce a sterilizing cure has confounded the development of new approaches to treat pulmonary tuberculosis (PTB). We detected positron emission tomography and computerized tomography (PET-CT) imaging response patterns consistent with active disease, along with the presence of Mycobacterium tuberculosis (MTB) mRNA in sputum and bronchoalveolar lavage samples, in a substantial proportion of adult, HIV-negative patients with PTB after a standard 6-month treatment plus 1 year follow-up, including patients with a durable cure and others who later developed recurrent disease. The presence of MTB mRNA in the context of nonresolving and intensifying lesions on PET-CT images might indicate ongoing transcription, suggesting that even apparently curative treatment for PTB may not eradicate all of the MTB bacteria in most patients. This suggests an important complementary role for the immune response in maintaining a disease-free state. Sterilizing drugs or host-directed therapies, and better treatment response markers, are probably needed for the successful development of improved and shortened PTB-treatment strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053881PMC
http://dx.doi.org/10.1038/nm.4177DOI Listing
October 2016

Linezolid Trough Concentrations Correlate with Mitochondrial Toxicity-Related Adverse Events in the Treatment of Chronic Extensively Drug-Resistant Tuberculosis.

EBioMedicine 2015 Nov 9;2(11):1627-33. Epub 2015 Oct 9.

Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Long-term linezolid use is limited by mitochondrial toxicity-associated adverse events (AEs). Within a prospective, randomized controlled trial of linezolid to treat chronic extensively drug-resistant tuberculosis, we serially monitored the translational competence of mitochondria isolated from peripheral blood of participants by determining the cytochrome c oxidase/citrate synthase activity ratio. We compared this ratio with AEs associated with mitochondrial dysfunction. Linezolid trough concentrations were determined for 38 participants at both 600 mg and 300 mg doses. Those on 600 mg had a significantly higher risk of AE than those on 300 mg (HR 3·10, 95% CI 1·23-7 · 86). Mean mitochondrial function levels were significantly higher in patients before starting linezolid compared to their concentrations on 300 mg (P = 0·004) or 600 mg (P < 0·0001). Increasing mean linezolid trough concentrations were associated with lower mitochondrial function levels (Spearman's ρ = - 0.48; P = 0.005). Mitochondrial toxicity risk increased with increasing linezolid trough concentrations, with all patients with mean linezolid trough > 2 μg/ml developing an AE related to mitochondrial toxicity, whether on 300 mg or 600 mg. Therapeutic drug monitoring may be useful to prevent the development of mitochondrial toxicity associated with long-term linezolid use.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2015.09.051DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740314PMC
November 2015

Complete genome sequence of Mycobacterium tuberculosis K from a Korean high school outbreak, belonging to the Beijing family.

Stand Genomic Sci 2015 14;10:78. Epub 2015 Oct 14.

Department of Microbiology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.

Mycobacterium tuberculosis K, a member of the Beijing family, was first identified in 1999 as the most prevalent genotype in South Korea among clinical isolates of M. tuberculosis from high school outbreaks. M. tuberculosis K is an aerobic, non-motile, Gram-positive, and non-spore-forming rod-shaped bacillus. A transmission electron microscopy analysis displayed an abundance of lipid bodies in the cytosol. The genome of the M. tuberculosis K strain was sequenced using two independent sequencing methods (Sanger and Illumina). Here, we present the genomic features of the 4,385,518-bp-long complete genome sequence of M. tuberculosis K (one chromosome, no plasmid, and 65.59 % G + C content) and its annotation, which consists of 4194 genes (3447 genes with predicted functions), 48 RNA genes (3 rRNA and 45 tRNA) and 261 genes with peptide signals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40793-015-0071-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606834PMC
October 2015

The association between sterilizing activity and drug distribution into tuberculosis lesions.

Nat Med 2015 Oct 7;21(10):1223-7. Epub 2015 Sep 7.

Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA.

Finding new treatment-shortening antibiotics to improve cure rates and curb the alarming emergence of drug resistance is the major objective of tuberculosis (TB) drug development. Using a matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging suite in a biosafety containment facility, we show that the key sterilizing drugs rifampicin and pyrazinamide efficiently penetrate the sites of TB infection in lung lesions. Rifampicin even accumulates in necrotic caseum, a critical lesion site where persisting tubercle bacilli reside. In contrast, moxifloxacin, which is active in vitro against a subpopulation of Mycobacterium tuberculosis that persists in specific niches under drug pressure and has achieved treatment shortening in mice, does not diffuse well in caseum, concordant with its failure to shorten therapy in recent clinical trials. We suggest that such differential spatial distribution and kinetics of accumulation in lesions may create temporal and spatial windows of monotherapy in specific niches, allowing the gradual development of multidrug-resistant TB. We propose an alternative working model to prioritize new antibiotic regimens based on quantitative and spatial distribution of TB drugs in the major lesion types found in human lungs. The finding that lesion penetration may contribute to treatment outcome has wide implications for TB.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nm.3937DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598290PMC
October 2015

Linezolid for XDR-TB--Final Study Outcomes.

N Engl J Med 2015 Jul;373(3):290-1

International Tuberculosis Research Center, Changwon, South Korea.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMc1500286DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402791PMC
July 2015

Characterization of a novel antigen of Mycobacterium tuberculosis K strain and its use in immunodiagnosis of tuberculosis.

J Microbiol 2014 Oct 27;52(10):871-8. Epub 2014 Aug 27.

Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 Plus Project for the Medical Sciences, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea.

Mycobacterium tuberculosis-specific antigens would be of great value in developing immunodiagnostic tests for tuberculosis (TB), but regional differences in molecular types of the organism may result in antigenic variation, which in turn affects the outcome of the tests. For example, the Beijing strains of M. tuberculosis are prevalent in East Asia, and in particular, the K strain and related strains of the Beijing family, are most frequently isolated during school outbreaks of TB in South Korea. From comparison of genome sequences between M. tuberculosis K strain and the H37Rv strain, a non-Beijing type, we identified a K strain-specific gene, InsB, which has substantial homology with the ESAT-6-like proteins. This study was, therefore, initiated to characterize the InsB protein for its immunogenicity in mice and to confirm its expression in TB patients by detecting antibodies to the protein. The InsB gene was cloned from M. tuberculosis K strain and expressed in Escherichia coli. The recombinant InsB protein was used for immunization of mice. All mice showed strong antibody responses to the InsB protein, and splenocytes stimulated with InsB showed strong IFN-γ and IL-17 responses and a weak IL-2 response, all of which have been implicated in disease expression and used for the immunodiagnosis of TB. Serum samples from TB patients also showed significant antibody responses to the InsB protein as compared to healthy control samples. These results indicate that the InsB protein is an M. tuberculosis K-strain-specific antigen that could further improve the current immunodiagnostic methods, especially for the South Korean population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12275-014-4235-5DOI Listing
October 2014

Predictors of pulmonary tuberculosis treatment outcomes in South Korea: a prospective cohort study, 2005-2012.

BMC Infect Dis 2014 Jul 2;14:360. Epub 2014 Jul 2.

International Tuberculosis Research Center, Changwon, Republic of Korea.

Background: Tuberculosis remains an important health concern in many countries. The aim of this study was to identify predictors of unfavorable outcomes at the end of treatment (EOT) and at the end of study (EOS; 40 months after EOT) in South Korea.

Methods: New or previously treated tuberculosis patients were recruited into a prospective observational cohort study at two hospitals in South Korea. To identify predictors of unfavorable outcomes at EOT and EOS, logistic regression analysis was performed.

Results: The proportion of multidrug-resistant tuberculosis (MDR-TB) was 8.2% in new cases and 57.9% in previously treated cases. Of new cases, 68.6% were cured, as were 40.7% of previously treated cases. At EOT, diabetes, ≥3 previous TB episodes, ≥1 significant regimen change, and MDR-TB were significantly associated with treatment failure or death. At EOS, age ≥35, body-mass index (BMI) <18.5, diabetes, and MDR-TB were significantly associated with treatment failure, death, or relapse. Among cases that were cured at EOT, age ≥50 and a BMI <18.5 were associated with subsequent death or relapse during follow-up to EOS. Treatment interruption was associated with service sector employees or laborers, bilateral lesions on chest X-ray, and previous treatment failure or treatment interruption history.

Conclusions: Risk factors for poor treatment outcomes at EOT and EOS include both patient factors (diabetes status, age, BMI) and disease factors (history of multiple previous treatment episodes, MDR-TB). In this longitudinal, observational cohort study, diabetes mellitus and MDR-TB were risk factors for poor treatment outcomes and relapse. Measures to help ensure that the first tuberculosis treatment episode is also the last one may improve treatment outcomes.

Trial Registration: ClinicalTrials.gov ID: NCT00341601.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2334-14-360DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094632PMC
July 2014

Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β' subunit of RNA polymerase.

Mol Microbiol 2014 Mar 26;91(6):1106-19. Epub 2014 Feb 26.

International Tuberculosis Research Center, Changwon, South Korea.

Rifampicin resistance, a defining attribute of multidrug-resistant tuberculosis, is conferred by mutations in the β subunit of RNA polymerase. Sequencing of rifampicin-resistant (RIF-R) clinical isolates of Mycobacterium tuberculosis revealed, in addition to RIF-R mutations, enrichment of potential compensatory mutations around the double-psi β-barrel domain of the β' subunit comprising the catalytic site and the exit tunnel for newly synthesized RNA. Sequential introduction of the resistance allele followed by the compensatory allele in isogenic Mycobacterium smegmatis showed that these mutations respectively caused and compensated a starvation enhanced growth defect by altering RNA polymerase activity. While specific combinations of resistance and compensatory alleles converged in divergent lineages, other combinations recurred among related isolates suggesting transmission of compensated RIF-R strains. These findings suggest nutrient poor growth conditions impose larger selective pressure on RIF-R organisms that results in the selection of compensatory mutations in a domain involved in catalysis and starvation control of RNA polymerase transcription.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.12520DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951610PMC
March 2014

Extent of Mycobacterium bovis infection in dairy cattle herds subject to partial culling as determined by an interferon-gamma assay.

J Vet Sci 2014 27;15(2):259-65. Epub 2013 Dec 27.

Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 Plus Project for the Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea.

The interferon-gamma (IFN-γ) assay is employed as a complementary diagnostic test for bovine tuberculosis (BTB) in many countries. To simplify this assay, we established a 96-well plate format using the ESAT-6 and CFP-10 antigens and then employed it to determine the extent of Mycobacterium (M.) bovis infection in dairy herds with a history of BTB outbreaks in a country where only selective culling is practiced. The sensitivity and specificity of this IFN-γ assay were 85.9% and 100%, respectively, based on comparison with the conventional single intradermal tuberculin test (SIDT). The IFN-γ assay was also positive in 30.4% and 36.8% of SIDT-negative animals from herds with recent and remote BTB outbreaks, respectively. Of 14 SIDT-negative, IFN-γ positive cattle, five (35.7%) were culture positive and an additional six were positive based on a polymerase chain reaction-based test for M. bovis. Therefore, the IFN-γ assay has the potential to serve as a specific and sensitive test for M. bovis infection in dairy cattle. Further, the results indicated that a substantial portion of SIDT-negative animals in herds with previous BTB outbreaks were actually infected with M. bovis. Accordingly, the present selective-culling strategy may require modifications to include this more sensitive assay.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087228PMC
http://dx.doi.org/10.4142/jvs.2014.15.2.259DOI Listing
February 2015

Exploring alternative biomaterials for diagnosis of pulmonary tuberculosis in HIV-negative patients by use of the GeneXpert MTB/RIF assay.

J Clin Microbiol 2013 Dec 9;51(12):4161-6. Epub 2013 Oct 9.

Center for Infectious Diseases, New Jersey Medical School, Rutgers Biomedical & Health Sciences (formerly UMDNJ), Newark, New Jersey, USA.

The utility of the GeneXpert MTB/RIF (Xpert) assay for detection of Mycobacterium tuberculosis in sputum samples has been extensively studied. However, the performance of the Xpert assay as applied to other readily accessible body fluids such as exhaled breath condensate (EBC), saliva, urine, and blood has not been established. We used the Xpert assay to test EBC, saliva, urine, and blood samples from HIV-negative, smear- and culture-positive pulmonary tuberculosis (TB) patients for the presence of M. tuberculosis. To compare the ability of the assay to perform bacterial load measurements on sputum samples with versus without sample processing, the assay was also performed on paired direct and processed sputum samples from each patient. The Xpert assay detected M. tuberculosis in none of the 26 EBC samples (sensitivity, 0.0%; 95% confidence interval [95% CI], 0.0%, 12.9%), 10 of the 26 saliva samples (sensitivity, 38.5%; 95% CI, 22.4%, 57.5%), 1 of 26 urine samples (sensitivity, 3.8%; 95% CI, 0.7%, 18.9%), and 2 of 24 blood samples (sensitivity, 8.3%; 95% CI, 2.3%, 25.8%). For bacterial load measurements in the different types of sputum samples, the cycle thresholds of the two M. tuberculosis-positive sputum types were well correlated (Spearman correlation of 0.834). This study demonstrates that the Xpert assay should not be routinely used to detect M. tuberculosis in EBC, saliva, urine, or blood samples from HIV-negative patients suspected of having pulmonary tuberculosis. As a test of bacterial load, the assay produced similar results when used to test direct versus processed sputum samples. Sputum remains the optimal sample type for diagnosing pulmonary tuberculosis in HIV-negative patients with the Xpert assay.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JCM.01743-13DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838083PMC
December 2013

Linezolid for treatment of chronic extensively drug-resistant tuberculosis.

N Engl J Med 2012 Oct;367(16):1508-18

International Tuberculosis Research Center, Changwon, South Korea.

Background: Linezolid has antimycobacterial activity in vitro and is increasingly used for patients with highly drug-resistant tuberculosis.

Methods: We enrolled 41 patients who had sputum-culture-positive extensively drug-resistant (XDR) tuberculosis and who had not had a response to any available chemotherapeutic option during the previous 6 months. Patients were randomly assigned to linezolid therapy that started immediately or after 2 months, at a dose of 600 mg per day, without a change in their background regimen. The primary end point was the time to sputum-culture conversion on solid medium, with data censored 4 months after study entry. After confirmed sputum-smear conversion or 4 months (whichever came first), patients underwent a second randomization to continued linezolid therapy at a dose of 600 mg per day or 300 mg per day for at least an additional 18 months, with careful toxicity monitoring.

Results: By 4 months, 15 of the 19 patients (79%) in the immediate-start group and 7 of the 20 (35%) in the delayed-start group had culture conversion (P=0.001). Most patients (34 of 39 [87%]) had a negative sputum culture within 6 months after linezolid had been added to their drug regimen. Of the 38 patients with exposure to linezolid, 31 (82%) had clinically significant adverse events that were possibly or probably related to linezolid, including 3 patients who discontinued therapy. Patients who received 300 mg per day after the second randomization had fewer adverse events than those who continued taking 600 mg per day. Thirteen patients completed therapy and have not had a relapse. Four cases of acquired resistance to linezolid have been observed.

Conclusions: Linezolid is effective at achieving culture conversion among patients with treatment-refractory XDR pulmonary tuberculosis, but patients must be monitored carefully for adverse events. (Funded by the National Institute of Allergy and Infectious Diseases and the Ministry of Health and Welfare, South Korea; ClinicalTrials.gov number, NCT00727844.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa1201964DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814175PMC
October 2012

Rhabdomyolysis in a patient treated with linezolid for extensively drug-resistant tuberculosis.

Clin Infect Dis 2012 Jun 15;54(11):1624-7. Epub 2012 Mar 15.

Tuberculosis Research Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cid/cis293DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404720PMC
June 2012

Improved rapid molecular diagnosis of multidrug-resistant tuberculosis using a new reverse hybridization assay, REBA MTB-MDR.

J Med Microbiol 2011 Oct 19;60(Pt 10):1447-1454. Epub 2011 May 19.

Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 220-710, Republic of Korea.

Rapid diagnosis of multidrug-resistant tuberculosis (MDR-TB) is essential for the prompt initiation of effective second-line therapy to improve treatment outcome and limit transmission of this obstinate disease. A variety of molecular methods that enable the rapid detection of mutations implicated in MDR-TB have been developed. The sensitivity of the methods is dependent, in principle, on the repertoire of mutations being detected, which is typically limited to mutations in the genes rpoB, katG and the promoter region of inhA. In this study, a new reverse hybridization assay, REBA MTB-MDR (M&D), that probes mutations in the oxyR-ahpC intergenic region, in addition to those in rpoB, katG and the inhA promoter region, was evaluated. A set of 240 Mycobacterium tuberculosis clinical isolates from patients receiving retreatment regimens was subjected to conventional phenotypic drug-susceptibility testing (DST) and the REBA MTB-MDR assay. The nucleotide sequences of the loci known to be involved in drug resistance were determined for comparison. In brief, the results showed that the REBA MTB-MDR assay efficiently recognized nucleotide changes in the oxyR-ahpC intergenic region as well as those in rpoB, katG and the inhA promoter region with higher sensitivity, resulting in an 81.0 % detection rate for isoniazid resistance. Inclusion of the oxyR-ahpC intergenic region in the REBA MTB-MDR assay improved the overall sensitivity of molecular DST for MDR-TB from 73.1 to 79.9 %.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.032292-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347866PMC
October 2011

Identification of trans- and cis-control elements involved in regulation of the carbon monoxide dehydrogenase genes in Mycobacterium sp. strain JC1 DSM 3803.

J Bacteriol 2010 Aug 28;192(15):3925-33. Epub 2010 May 28.

Department of Biology, Yonsei University, Seoul 120-749, Republic of Korea.

The cutR gene was identified 314 bp upstream of the divergently oriented cutB1C1A1 operon encoding carbon monoxide (CO) dehydrogenase in Mycobacterium sp. strain JC1. Its deduced product was composed of 320 amino acid residues with a calculated molecular mass of 34.1 kDa and exhibits a basal sequence similarity to the regulatory proteins belonging to the LysR family. Using a cutR deletion mutant, it was demonstrated that CutR is required for the efficient utilization of CO by Mycobacterium sp. strain JC1 growing with CO as the sole source of carbon and energy. CutR served as a transcriptional activator for expression of the duplicated cutBCA operons (cutB1C1A1 and cutB2C2A2) and was involved in the induction of the cutBCA operons by CO. The cutBCA operons were also subjected to catabolite repression. An inverted repeat sequence (TGTGA-N(6)-TCACA) with a perfect match with the binding motif of cyclic AMP receptor protein was identified immediately upstream of and overlapping with the translational start codons of cutB1 and cutB2. This palindrome sequence was shown to be involved in catabolite repression of the cutBCA operons. The transcription start point of cutR was determined to be the nucleotide G located 36 bp upstream of the start codon of cutR. Expression of cutR was higher in Mycobacterium sp. strain JC1 grown with glucose than that grown with CO.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JB.00286-10DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2916371PMC
August 2010

Cloning and expression analysis of the duplicated genes for carbon monoxide dehydrogenase of Mycobacterium sp. strain JC1 DSM 3803.

Microbiology (Reading) 2010 Apr 24;156(Pt 4):999-1008. Epub 2009 Dec 24.

Department of Biology, Yonsei University, Seoul 120-749, Republic of Korea.

Carbon monoxide dehydrogenase (CO-DH) is an enzyme catalysing the oxidation of CO to carbon dioxide in Mycobacterium sp. strain JC1 DSM 3803. Cloning of the genes encoding CO-DH from the bacterium and sequencing of overlapping clones revealed the presence of duplicated sets of genes for three subunits of the enzyme, cutB1C1A1 and cutB2C2A2, in operons, and a cluster of genes encoding proteins that may be involved in CO metabolism, including a possible transcriptional regulator. Phylogenetic analysis based on the amino acid sequences of large subunits of CO-DH suggested that the CO-DHs of Mycobacterium sp. JC1 and other mycobacteria are distinct from those of other types of bacteria. The growth phenotype of mutant strains lacking cutA genes and of a corresponding complemented strain showed that both of the duplicated sets of CO-DH genes were functional in this bacterium. Transcriptional fusions of the cutB genes with lacZ revealed that the cutBCA operons were expressed regardless of the presence of CO and were further inducible by CO. Primer extension analysis indicated two promoters, one expressed in the absence of CO and the other induced in the presence of CO. This is believed to be the first report to show the presence of multiple copies of CO-DH genes with identical sequences and in close proximity in carboxydobacteria, and to present the genetic evidence for the function of the genes in mycobacteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.034769-0DOI Listing
April 2010

Critical role of a single position in the -35 element for promoter recognition by Mycobacterium tuberculosis SigE and SigH.

J Bacteriol 2008 Mar 11;190(6):2227-30. Epub 2008 Jan 11.

The Genome Research Center for Respiratory Pathogens, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.

Mycobacterial SigE and SigH both initiate transcription from the sigB promoter, suggesting that they recognize similar sequences. Through mutational and primer extension analyses, we determined that SigE and SigH recognize nearly identical promoters, with differences at the 3' end of the -35 element distinguishing between SigE- and SigH-dependent promoters.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JB.01642-07DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258898PMC
March 2008

Carbon monoxide dehydrogenase in mycobacteria possesses a nitric oxide dehydrogenase activity.

Biochem Biophys Res Commun 2007 Oct 10;362(2):449-53. Epub 2007 Aug 10.

Department of Biology, Yonsei University, Seoul 120-749, Republic of Korea.

CO dehydrogenase (CO-DH) catalyzes the oxidation of CO to CO(2) in carboxydobacteria. Cell-free extracts prepared from several mycobacteria, including Mycobacterium tuberculosis H37Ra, showed NO dehydrogenase (NO-DH) activity in a reaction mixture containing sodium nitroprusside (SNP) as the source of NO. The association of the NO-DH activity with CO-DH was revealed by activity staining and confirmed by enzyme assay with purified CO-DH from Mycobacterium sp. strain JC1, a carboxydotrophic mycobacterium. SNP stimulated the production of CO-DH with a coincidental increase in NO-DH activity in the bacterium, further supporting this association and implying the existence of a possible SNP-induced CO-DH gene expression. The addition of purified CO-DH to cultures of Escherichia coli revealed that the enzyme protected E. coli from SNP-induced killing in a dose-dependant way. The present results indicate that mycobacterial CO-DH also acts as a NO-DH, which may function in the protection of mycobacterial pathogens from nitrosative stress during infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.08.011DOI Listing
October 2007

RshA mimetic peptides inhibiting the transcription driven by a Mycobacterium tuberculosis sigma factor SigH.

Biochem Biophys Res Commun 2006 Jan 14;339(1):392-8. Epub 2005 Nov 14.

Department of Biochemistry and RINS, College of Medicine and Gyeongsang Institute of Health Sciences, Gyeongsang National University, JinJu, Republic of Korea.

SigH, an alternative sigma factor in Mycobacterium tuberculosis, is a central regulator in responses to the oxidative and heat stress. This SigH activity is specifically controlled by an anti-sigma factor RshA during expression of stress-related genes. Thus, the specific interaction (k(on)=1.15x10(5) (M(-1) s(-1)), k(off)=1.7x10(-3) (s(-1)), KD=15 nM, determined in this study) between SigH and RshA is crucial for the survival and pathogenesis of M. tuberculosis. Using phage-display peptide library, we defined three specific regions on RshA responsible for SigH binding. Three RshA mimetic peptides (DAHADHD, AEVWTLL, and CTPETRE) specifically inhibited the transcription initiated by SigH in vitro. One of them (DAHADHD) diminished the extent of binding of RshA to SigH in a dose-dependent manner. The binding affinity (KD) of this peptide to SigH was about 1.2 microM. These findings might provide some insights into the development of new peptide-based drugs for TB.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2005.11.032DOI Listing
January 2006

RshA, an anti-sigma factor that regulates the activity of the mycobacterial stress response sigma factor SigH.

Mol Microbiol 2003 Nov;50(3):949-59

Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Enders 609, 300 Longwood Ave., Boston, MA 02115, USA.

SigH, an alternative sigma factor of Mycobacterium tuberculosis, is a central regulator of the response to oxidative and heat stress. Exposure to these stresses results in increased expression of sigH itself, and of genes encoding additional regulators and effectors of the bacterial response to these stresses. In this work we show that RshA, a protein encoded by a gene in the sigH operon, is an anti-sigma factor of SigH. We demonstrate that RshA binds to SigH in vitro and in vivo. This protein-protein interaction, as well as the ability of RshA to inhibit SigH-dependent transcription, is redox-dependent, with RshA functioning as a negative regulator of SigH activity only under reducing conditions. The interaction of SigH and RshA is also disrupted in vitro by elevated temperature. RshA, a protein of 101 amino acids, contains five conserved cysteine residues of which two appear to be essential for RshA to inhibit SigH activity, suggesting that these cysteines may be important for the redox state dependence of RshA function. Our results indicate that RshA is a sensor that responds to oxidative stress, and also to heat stress, resulting in activation of SigH and expression of the SigH-dependent genes that allow M. tuberculosis to adapt to these stresses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.2003.03739.xDOI Listing
November 2003

Growth of mycobacteria on carbon monoxide and methanol.

J Bacteriol 2003 Jan;185(1):142-7

Department of Biology, Yonsei University, Seoul 120-749, Korea.

Several mycobacterial strains, such as Mycobacterium flavescens, Mycobacterium gastri, Mycobacterium neoaurum, Mycobacterium parafortuitum, Mycobacterium peregrinum, Mycobacterium phlei, Mycobacterium smegmatis, Mycobacterium tuberculosis, and Mycobacterium vaccae, were found to grow on carbon monoxide (CO) as the sole source of carbon and energy. These bacteria, except for M. tuberculosis, also utilized methanol as the sole carbon and energy source. A CO dehydrogenase (CO-DH) assay, staining by activity of CO-DH, and Western blot analysis using an antibody raised against CO-DH of Mycobacterium sp. strain JC1 (formerly Acinetobacter sp. strain JC1 [J. W. Cho, H. S. Yim, and Y. M. Kim, Kor. J. Microbiol. 23:1-8, 1985]) revealed that CO-DH is present in extracts of the bacteria prepared from cells grown on CO. Ribulose bisphosphate carboxylase/oxygenase (RubisCO) activity was also detected in extracts prepared from all cells, except M. tuberculosis, grown on CO. The mycobacteria grown on methanol, except for M. gastri, which showed hexulose phosphate synthase activity, did not exhibit activities of classic methanol dehydrogenase, hydroxypyruvate reductase, or hexulose phosphate synthase but exhibited N,N-dimethyl-4-nitrosoaniline-dependent methanol dehydrogenase and RuBisCO activities. Cells grown on methanol were also found to have dihydroxyacetone synthase. Double immunodiffusion revealed that the antigenic sites of CO-DHs, RuBisCOs, and dihydroxyacetone synthases in all mycobacteria tested are identical with those of the Mycobacterium sp. strain JC1 enzymes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC141938PMC
http://dx.doi.org/10.1128/JB.185.1.142-147.2003DOI Listing
January 2003

Purification and some properties of a blue copper protein from Methylobacillus sp. strain SK1 DSM 8269.

Mol Cells 2002 Oct;14(2):214-23

Department of Environmental Science, Chosun University, Kwangju, Korea.

A blue protein was purified from the Methylobacillus sp. strain SK1 that is grown on methanol in the presence of copper ion. This protein was found to be a monomer with a molecular weight of 13,500. The Isoelectric point of the protein was estimated to be 8.8. The spectrum of the protein that was treated with ferricyanide showed a broad peak around 620 nm, but that of the dithionite-treated protein revealed no peaks. It contained 0.83 mol of EDTA-stable copper per mol protein. Under air, the protein accelerated the inactivation of methanol dehydrogenase (MDH). The protein was reducible by phenazine methosulfate or by active MDH that was prepared from cells that were grown in the absence of added copper, but not by methanol, dichlorophenol indophenol, or inactive MDH that was prepared from cells that were grown in the presence of added copper. It was also reducible by active MDH in the presence of methanol. The absorption peak at 340 nm of the active MDH disappeared after the enzyme was treated with ferricyanide, hydrogen peroxide, or the purified blue protein. The inactive MDH also showed no peak at 340 nm. The 340-nm peak was not recovered after incubation of the inactive MDH and blue protein-treated active MDH with dithionite or methanol. The inactive MDH and blue protein-treated active MDH co-migrated with the active MDH preparation on nondenaturing polyacrylamide gel, and contained two non-identical subunits with molecular weights that were identical to those of the active MDH. The N-terminal amino acid sequence of the protein was Ala-Gly-Cys-Ser-Val-Asp-Val-Glu-Ala-Asn-Asp-Ala-Met-Gln-Phe. An analysis of the amino acid composition revealed that the protein contained no tryptophan. It contained three cysteines per mol protein. The blue protein in Methylobacillus sp. strain SK1 was produced only in the cells that were grown in the copper-supplemented medium.
View Article and Find Full Text PDF

Download full-text PDF

Source
October 2002