Publications by authors named "Sylvia Worbs"

14 Publications

  • Page 1 of 1

Differentiation, Quantification and Identification of Abrin and Agglutinin.

Toxins (Basel) 2021 04 18;13(4). Epub 2021 Apr 18.

Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.

Abrin, the toxic lectin from the rosary pea plant has gained considerable interest in the recent past due to its potential malevolent use. However, reliable and easy-to-use assays for the detection and discrimination of abrin from related plant proteins such as agglutinin or the homologous toxin ricin from are sparse. To address this gap, a panel of highly specific monoclonal antibodies was generated against abrin and the related agglutinin. These antibodies were used to establish two sandwich ELISAs to preferentially detect abrin or agglutinin (limit of detection 22 pg/mL for abrin; 35 pg/mL for agglutinin). Furthermore, an abrin-specific lateral flow assay was developed for rapid on-site detection (limit of detection ~1 ng/mL abrin). Assays were validated for complex food, environmental and clinical matrices illustrating broad applicability in different threat scenarios. Additionally, the antibodies turned out to be suitable for immuno-enrichment strategies in combination with mass spectrometry-based approaches for unambiguous identification. Finally, we were able to demonstrate for the first time how the developed assays can be applied to detect, identify and quantify abrin from a clinical sample derived from an attempted suicide case involving .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins13040284DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073929PMC
April 2021

Ricin Antibodies' Neutralizing Capacity against Different Ricin Isoforms and Cultivars.

Toxins (Basel) 2021 01 29;13(2). Epub 2021 Jan 29.

Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France.

Ricin, a highly toxic protein from , is considered a potential biowarfare agent. Despite the many data available, no specific treatment has yet been approved. Due to their ability to provide immediate protection, antibodies (Abs) are an approach of choice. However, their high specificity might compromise their capacity to protect against the different ricin isoforms (D and E) found in the different cultivars. In previous work, we have shown the neutralizing potential of different Abs (43RCA-G1 (anti ricin A-chain) and RB34 and RB37 (anti ricin B-chain)) against ricin D. In this study, we evaluated their protective capacity against both ricin isoforms. We show that: (i) RB34 and RB37 recognize exclusively ricin D, whereas 43RCA-G1 recognizes both isoforms, (ii) their neutralizing capacity in vitro varies depending on the cultivar, and (iii) there is a synergistic effect when combining RB34 and 43RCA-G1. This effect is also demonstrated in vivo in a mouse model of intranasal intoxication with ricin D/E (1:1), where approximately 60% and 40% of mice treated 0 and 6 h after intoxication, respectively, are protected. Our results highlight the importance of evaluating the effectiveness of the Abs against different ricin isoforms to identify the treatment with the broadest spectrum neutralizing effect.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins13020100DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911099PMC
January 2021

Development and Evaluation of an Immuno-MALDI-TOF Mass Spectrometry Approach for Quantification of the Abrin Toxin in Complex Food Matrices.

Toxins (Basel) 2021 01 13;13(1). Epub 2021 Jan 13.

CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France.

The toxin abrin found in the seeds of has attracted much attention regarding criminal and terroristic misuse over the past decade. Progress in analytical methods for a rapid and unambiguous identification of low abrin concentrations in complex matrices is essential. Here, we report on the development and evaluation of a MALDI-TOF mass spectrometry approach for the fast, sensitive and robust abrin isolectin identification, differentiation and quantification in complex food matrices. The method combines immunoaffinity-enrichment with specific abrin antibodies, accelerated trypsin digestion and the subsequent MALDI-TOF analysis of abrin peptides using labeled peptides for quantification purposes. Following the optimization of the workflow, common and isoform-specific peptides were detected resulting in a ~38% sequence coverage of abrin when testing ng-amounts of the toxin. The lower limit of detection was established at 40 ng/mL in milk and apple juice. Isotope-labeled versions of abundant peptides with high ionization efficiency were added. The quantitative evaluation demonstrated an assay variability at or below 22% with a linear range up to 800 ng/mL. MALDI-TOF mass spectrometry allows for a simple and fast (<5 min) analysis of abrin peptides, without a time-consuming peptide chromatographic separation, thus constituting a relevant alternative to liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins13010052DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828309PMC
January 2021

Rapid Detection of Abrin Toxin and Its Isoforms in Complex Matrices by Immuno-Extraction and Quantitative High Resolution Targeted Mass Spectrometry.

Anal Chem 2017 11 20;89(21):11719-11727. Epub 2017 Oct 20.

Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France.

Abrin expressed by the tropical plant Abrus precatorius is highly dangerous with an estimated human lethal dose of 0.1-1 μg/kg body weight. Due to the potential misuse as a biothreat agent, abrin is in the focus of surveillance. Fast and reliable methods are therefore of great importance for early identification. Here, we have developed an innovative and rapid multiepitope immuno-mass spectrometry workflow which is capable of unambiguously differentiating abrin and its isoforms in complex matrices. Toxin-containing samples were incubated with magnetic beads coated with multiple abrin-specific antibodies, thereby concentrating and extracting all the isoforms. Using an ultrasonic bath for digestion enhancement, on-bead trypsin digestion was optimized to obtain efficient and reproducible peptide recovery in only 30 min. Improvements made to the workflow reduced total analysis time to less than 3 h. A large panel of common and isoform-specific peptides was monitored by multiplex LC-MS/MS through the parallel reaction monitoring mode on a quadrupole-Orbitrap high resolution mass spectrometer. Additionally, absolute quantification was accomplished by isotope dilution with labeled AQUA peptides. The newly established method was demonstrated as being sensitive and reproducible with quantification limits in the low ng/mL range in various food and clinical matrices for the isoforms of abrin and also the closely related, less toxic Abrus precatorius agglutinin. This method allows for the first time the rapid detection, differentiation, and simultaneous quantification of abrin and its isoforms by mass spectrometry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b03189DOI Listing
November 2017

Generation and Characterization of Six Recombinant Botulinum Neurotoxins as Reference Material to Serve in an International Proficiency Test.

Toxins (Basel) 2015 Nov 26;7(12):5035-54. Epub 2015 Nov 26.

Toxogen GmbH, Feodor-Lynen-Str. 35, 30625 Hannover, Germany.

The detection and identification of botulinum neurotoxins (BoNT) is complex due to the existence of seven serotypes, derived mosaic toxins and more than 40 subtypes. Expert laboratories currently use different technical approaches to detect, identify and quantify BoNT, but due to the lack of (certified) reference materials, analytical results can hardly be compared. In this study, the six BoNT/A1-F1 prototypes were successfully produced by recombinant techniques, facilitating handling, as well as improving purity, yield, reproducibility and biosafety. All six BoNTs were quantitatively nicked into active di-chain toxins linked by a disulfide bridge. The materials were thoroughly characterized with respect to purity, identity, protein concentration, catalytic and biological activities. For BoNT/A₁, B₁ and E₁, serotypes pathogenic to humans, the catalytic activity and the precise protein concentration were determined by Endopep-mass spectrometry and validated amino acid analysis, respectively. In addition, BoNT/A₁, B₁, E₁ and F₁ were successfully detected by immunological assays, unambiguously identified by mass spectrometric-based methods, and their specific activities were assigned by the mouse LD50 bioassay. The potencies of all six BoNT/A1-F1 were quantified by the ex vivo mouse phrenic nerve hemidiaphragm assay, allowing a direct comparison. In conclusion, highly pure recombinant BoNT reference materials were produced, thoroughly characterized and employed as spiking material in a worldwide BoNT proficiency test organized by the EQuATox consortium.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins7124861DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690111PMC
November 2015

Recommended Immunological Strategies to Screen for Botulinum Neurotoxin-Containing Samples.

Toxins (Basel) 2015 Nov 26;7(12):5011-34. Epub 2015 Nov 26.

Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.

Botulinum neurotoxins (BoNTs) cause the life-threatening neurological illness botulism in humans and animals and are divided into seven serotypes (BoNT/A-G), of which serotypes A, B, E, and F cause the disease in humans. BoNTs are classified as "category A" bioterrorism threat agents and are relevant in the context of the Biological Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection, quantification and discrimination capabilities of 23 expert laboratories from the health, food and security areas. Here we describe three immunological strategies that proved to be successful for the detection and quantification of BoNT/A, B, and E considering the restricted sample volume (1 mL) distributed. To analyze the samples qualitatively and quantitatively, the first strategy was based on sensitive immunoenzymatic and immunochromatographic assays for fast qualitative and quantitative analyses. In the second approach, a bead-based suspension array was used for screening followed by conventional ELISA for quantification. In the third approach, an ELISA plate format assay was used for serotype specific immunodetection of BoNT-cleaved substrates, detecting the activity of the light chain, rather than the toxin protein. The results provide guidance for further steps in quality assurance and highlight problems to address in the future.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins7124860DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690110PMC
November 2015

An International Proficiency Test to Detect, Identify and Quantify Ricin in Complex Matrices.

Toxins (Basel) 2015 Nov 26;7(12):4987-5010. Epub 2015 Nov 26.

Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.

While natural intoxications with seeds of Ricinus communis (R. communis) have long been known, the toxic protein ricin contained in the seeds is of major concern since it attracts attention of those intending criminal, terroristic and military misuse. In order to harmonize detection capabilities in expert laboratories, an international proficiency test was organized that aimed at identifying good analytical practices (qualitative measurements) and determining a consensus concentration on a highly pure ricin reference material (quantitative measurements). Sample materials included highly pure ricin as well as the related R. communis agglutinin (RCA120) spiked into buffer, milk and meat extract; additionally, an organic fertilizer naturally contaminated with R. communis shred was investigated in the proficiency test. The qualitative results showed that either a suitable combination of immunological, mass spectrometry (MS)-based and functional approaches or sophisticated MS-based approaches alone successfully allowed the detection and identification of ricin in all samples. In terms of quantification, it was possible to determine a consensus concentration of the highly pure ricin reference material. The results provide a basis for further steps in quality assurance and improve biopreparedness in expert laboratories worldwide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins7124859DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690109PMC
November 2015

Recommended Immunological Assays to Screen for Ricin-Containing Samples.

Toxins (Basel) 2015 Nov 26;7(12):4967-86. Epub 2015 Nov 26.

Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.

Ricin, a toxin from the plant Ricinus communis, is one of the most toxic biological agents known. Due to its availability, toxicity, ease of production and absence of curative treatments, ricin has been classified by the Centers for Disease Control and Prevention (CDC) as category B biological weapon and it is scheduled as a List 1 compound in the Chemical Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection and quantification capabilities of 17 expert laboratories. In this exercise one goal was to analyse the laboratories' capacity to detect and differentiate ricin and the less toxic, but highly homologuous protein R. communis agglutinin (RCA120). Six analytical strategies are presented in this paper based on immunological assays (four immunoenzymatic assays and two immunochromatographic tests). Using these immunological methods "dangerous" samples containing ricin and/or RCA120 were successfully identified. Based on different antibodies used the detection and quantification of ricin and RCA120 was successful. The ricin PT highlighted the performance of different immunological approaches that are exemplarily recommended for highly sensitive and precise quantification of ricin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins7124858DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690108PMC
November 2015

Qualitative and Quantitative Detection of Botulinum Neurotoxins from Complex Matrices: Results of the First International Proficiency Test.

Toxins (Basel) 2015 Nov 26;7(12):4935-66. Epub 2015 Nov 26.

Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.

In the framework of the EU project EQuATox, a first international proficiency test (PT) on the detection and quantification of botulinum neurotoxins (BoNT) was conducted. Sample materials included BoNT serotypes A, B and E spiked into buffer, milk, meat extract and serum. Different methods were applied by the participants combining different principles of detection, identification and quantification. Based on qualitative assays, 95% of all results reported were correct. Successful strategies for BoNT detection were based on a combination of complementary immunological, MS-based and functional methods or on suitable functional in vivo/in vitro approaches (mouse bioassay, hemidiaphragm assay and Endopep-MS assay). Quantification of BoNT/A, BoNT/B and BoNT/E was performed by 48% of participating laboratories. It turned out that precise quantification of BoNT was difficult, resulting in a substantial scatter of quantitative data. This was especially true for results obtained by the mouse bioassay which is currently considered as "gold standard" for BoNT detection. The results clearly demonstrate the urgent need for certified BoNT reference materials and the development of methods replacing animal testing. In this context, the BoNT PT provided the valuable information that both the Endopep-MS assay and the hemidiaphragm assay delivered quantitative results superior to the mouse bioassay.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins7124857DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690107PMC
November 2015

Characterization of Ricin and R. communis Agglutinin Reference Materials.

Toxins (Basel) 2015 Nov 26;7(12):4906-34. Epub 2015 Nov 26.

Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.

Ricinus communis intoxications have been known for centuries and were attributed to the toxic protein ricin. Due to its toxicity, availability, ease of preparation, and the lack of medical countermeasures, ricin attracted interest as a potential biological warfare agent. While different technologies for ricin analysis have been established, hardly any universally agreed-upon "gold standards" are available. Expert laboratories currently use differently purified in-house materials, making any comparison of accuracy and sensitivity of different methods nearly impossible. Technically challenging is the discrimination of ricin from R. communis agglutinin (RCA120), a less toxic but highly homologous protein also contained in R. communis. Here, we established both highly pure ricin and RCA120 reference materials which were extensively characterized by gel electrophoresis, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI MS/MS), and matrix-assisted laser desorption ionization-time of flight approaches as well as immunological and functional techniques. Purity reached >97% for ricin and >99% for RCA120. Different isoforms of ricin and RCA120 were identified unambiguously and distinguished by LC-ESI MS/MS. In terms of function, a real-time cytotoxicity assay showed that ricin is approximately 300-fold more toxic than RCA120. The highly pure ricin and RCA120 reference materials were used to conduct an international proficiency test.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins7124856DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690106PMC
November 2015

Simultaneous differentiation and quantification of ricin and agglutinin by an antibody-sandwich surface plasmon resonance sensor.

Biosens Bioelectron 2016 Apr 11;78:111-117. Epub 2015 Nov 11.

Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany. Electronic address:

Ricin is one of the most toxic plant toxins known. Its accessibility and relative ease of preparation makes it a potential agent for criminal or bio-terrorist attacks. Detection of ricin from unknown samples requires differentiation of ricin from the highly homologous Ricinus communis agglutinin which is currently not feasible using immunological methods. Here we have developed a simple and sensitive surface plasmon resonance (SPR) sensing system for rapid differentiation between ricin and agglutinin done in real time. Both lectins were quantified in a sandwich immunoassay-like setting by capturing with a cross-reactive antibody (R109) binding to both proteins while differentiating by injection of a ricin-specific antibody (R18) in a subsequent enhancement step. The SPR-assay was reproducible and sensitive for different R. communis cultivars, showing no false positive results when other lectins were tested. Quantification and differentiation of both molecules was also demonstrated from a crude castor bean extract and complex matrices. For the first time, we have demonstrated how the closely related lectins can be discerned and quantified in a single assay based on immunological methods. This novel approach delivers crucial information regarding the composition, purity, concentration, and toxicity of suspicious samples containing ricin in less than 30 minutes. Furthermore, we show how enhancement injections during SPR-measurements can be used to determine the ratio of two related proteins independently of the actual protein concentration by comparing normalized enhancement response levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2015.11.020DOI Listing
April 2016

Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices.

PLoS One 2012 19;7(4):e35360. Epub 2012 Apr 19.

Center for Biological Security - Microbial Toxins, Robert Koch-Institut, Berlin, Germany.

Background: In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits.

Methodology/findings: This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement. Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index-time profile. For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed). Using functionally blocking antibodies, the specificity for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in environmental sample materials, as shown for organic fertilizer containing R. communis material.

Conclusions/significance: The cell-electrode impedance measurement provides a sensitive online detection method for biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay provides a fast and easy tool to detect active ricin in complex sample matrices.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035360PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330811PMC
August 2012

Ricinus communis intoxications in human and veterinary medicine-a summary of real cases.

Toxins (Basel) 2011 10 24;3(10):1332-72. Epub 2011 Oct 24.

Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany.

Accidental and intended Ricinus communis intoxications in humans and animals have been known for centuries but the causative agent remained elusive until 1888 when Stillmark attributed the toxicity to the lectin ricin. Ricinus communis is grown worldwide on an industrial scale for the production of castor oil. As by-product in castor oil production ricin is mass produced above 1 million tons per year. On the basis of its availability, toxicity, ease of preparation and the current lack of medical countermeasures, ricin has gained attention as potential biological warfare agent. The seeds also contain the less toxic, but highly homologous Ricinus communis agglutinin and the alkaloid ricinine, and especially the latter can be used to track intoxications. After oil extraction and detoxification, the defatted press cake is used as organic fertilizer and as low-value feed. In this context there have been sporadic reports from different countries describing animal intoxications after uptake of obviously insufficiently detoxified fertilizer. Observations in Germany over several years, however, have led us to speculate that the detoxification process is not always performed thoroughly and controlled, calling for international regulations which clearly state a ricin threshold in fertilizer. In this review we summarize knowledge on intended and unintended poisoning with ricin or castor seeds both in humans and animals, with a particular emphasis on intoxications due to improperly detoxified castor bean meal and forensic analysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxins3101332DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210461PMC
October 2011

Generation of novel anti-BTLA monoclonal antibodies for in vivo use and their functional testing at near-physiological conditions.

Hybridoma (Larchmt) 2009 Dec;28(6):405-14

Molecular Immunology, Robert Koch Institute, Berlin, Germany.

We have generated and characterized a panel of monoclonal antibodies recognizing B and T lymphocyte attenuator (BTLA), a transmembrane protein expressed on essentially all lymphoid cells. One of the monoclonal antibodies (MAbs) detects for the first time all BTLA protein variants described for various mouse strains with high sensitivity, both in flow cytometry and immunohistology. Further tests have determined that this MAb recognizes a BTLA epitope independent of the HVEM binding site. Moreover, we identified a number of antibodies capable of efficiently blocking the interaction of BTLA with its ligand herpes virus entry mediator (HVEM). A series of experiments was performed with these MAbs at near-physiological conditions to assess their blocking potential in vivo. These tests, performed with whole MAbs and also their F(ab)(2) formats, revealed that measurements of binding at 37 degrees C to primary cells expressing the target protein on the cell surface offer superior information on their blocking capacity. The generated BTLA-specific MAb will be used for in vivo studies to further elucidate the biological role of BTLA-HVEM interaction and function in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/hyb.2009.0047DOI Listing
December 2009