Publications by authors named "Swetha Raman"

6 Publications

  • Page 1 of 1

Recognition of Semaphorin Proteins by P. sordellii Lethal Toxin Reveals Principles of Receptor Specificity in Clostridial Toxins.

Cell 2020 07 25;182(2):345-356.e16. Epub 2020 Jun 25.

Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Molecular Architecture of Life Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada. Electronic address:

Pathogenic clostridial species secrete potent toxins that induce severe host tissue damage. Paeniclostridium sordellii lethal toxin (TcsL) causes an almost invariably lethal toxic shock syndrome associated with gynecological infections. TcsL is 87% similar to C. difficile TcdB, which enters host cells via Frizzled receptors in colon epithelium. However, P. sordellii infections target vascular endothelium, suggesting that TcsL exploits another receptor. Here, using CRISPR/Cas9 screening, we establish semaphorins SEMA6A and SEMA6B as TcsL receptors. We demonstrate that recombinant SEMA6A can protect mice from TcsL-induced edema. A 3.3 Å cryo-EM structure shows that TcsL binds SEMA6A with the same region that in TcdB binds structurally unrelated Frizzled. Remarkably, 15 mutations in this evolutionarily divergent surface are sufficient to switch binding specificity of TcsL to that of TcdB. Our findings establish semaphorins as physiologically relevant receptors for TcsL and reveal the molecular basis for the difference in tissue targeting and disease pathogenesis between highly related toxins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.06.005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316060PMC
July 2020

Structure-guided design fine-tunes pharmacokinetics, tolerability, and antitumor profile of multispecific frizzled antibodies.

Proc Natl Acad Sci U S A 2019 04 20;116(14):6812-6817. Epub 2019 Mar 20.

Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada;

Aberrant activation of Wnt/β-catenin signaling occurs frequently in cancer. However, therapeutic targeting of this pathway is complicated by the role of Wnt in stem cell maintenance and tissue homeostasis. Here, we evaluated antibodies blocking 6 of the 10 human Wnt/Frizzled (FZD) receptors as potential therapeutics. Crystal structures revealed a common binding site for these monoclonal antibodies (mAbs) on FZD, blocking the interaction with the Wnt palmitoleic acid moiety. However, these mAbs displayed gastrointestinal toxicity or poor plasma exposure in vivo. Structure-guided engineering was used to refine the binding of each mAb for FZD receptors, resulting in antibody variants with improved in vivo tolerability and developability. Importantly, the lead variant mAb significantly inhibited tumor growth in the HPAF-II pancreatic tumor xenograft model. Taken together, our data demonstrate that anti-FZD cancer therapeutic antibodies with broad specificity can be fine-tuned to navigate in vivo exposure and tolerability while driving therapeutic efficacy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1817246116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452705PMC
April 2019

Functional defects in TcdB toxin uptake identify CSPG4 receptor-binding determinants.

J Biol Chem 2017 10 23;292(42):17290-17301. Epub 2017 Aug 23.

Molecular Medicine, The Hospital for Sick Children, Ontario M5G 0A4, Canada,

is a major nosocomial pathogen that produces two exotoxins, TcdA and TcdB, with TcdB thought to be the primary determinant in human disease. TcdA and TcdB are large, multidomain proteins, each harboring a cytotoxic glucosyltransferase domain that is delivered into the cytosol from endosomes via a translocation domain after receptor-mediated endocytosis of toxins from the cell surface. Although there are currently no known host cell receptors for TcdA, three cell-surface receptors for TcdB have been identified: CSPG4, NECTIN3, and FZD1/2/7. The sites on TcdB that mediate binding to each receptor are not defined. Furthermore, it is not known whether the combined repetitive oligopeptide (CROP) domain is involved in or required for receptor binding. Here, in a screen designed to identify sites in TcdB that are essential for target cell intoxication, we identified a region at the junction of the translocation and the CROP domains that is implicated in CSPG4 binding. Using a series of C-terminal truncations, we show that the CSPG4-binding site on TcdB extends into the CROP domain, requiring three short repeats for binding and for full toxicity on CSPG4-expressing cells. Consistent with the location of the CSPG4-binding site on TcdB, we show that the anti-TcdB antibody bezlotoxumab, which binds partially within the first three short repeats, prevents CSPG4 binding to TcdB. In addition to establishing the binding region for CSPG4, this work ascribes for the first time a role in TcdB CROPs in receptor binding and further clarifies the relative roles of host receptors in TcdB pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M117.806687DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655507PMC
October 2017

First Structural View of a Peptide Interacting with the Nucleotide Binding Domain of Heat Shock Protein 90.

Sci Rep 2015 Nov 24;5:17015. Epub 2015 Nov 24.

Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.

The involvement of Hsp90 in progression of diseases like cancer, neurological disorders and several pathogen related conditions is well established. Hsp90, therefore, has emerged as an attractive drug target for many of these diseases. Several small molecule inhibitors of Hsp90, such as geldanamycin derivatives, that display antitumor activity, have been developed and are under clinical trials. However, none of these tested inhibitors or drugs are peptide-based compounds. Here we report the first crystal structure of a peptide bound at the ATP binding site of the N-terminal domain of Hsp90. The peptide makes several specific interactions with the binding site residues, which are comparable to those made by the nucleotide and geldanamycin. A modified peptide was designed based on these interactions. Inhibition of ATPase activity of Hsp90 was observed in the presence of the modified peptide. This study provides an alternative approach and a lead peptide molecule for the rational design of effective inhibitors of Hsp90 function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep17015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657054PMC
November 2015

Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain.

Acta Crystallogr F Struct Biol Commun 2015 Jun 20;71(Pt 6):688-96. Epub 2015 May 20.

Molecular Biophysics Unit, Indian institute of Science, Bangalore, India 560 012, India.

Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that is essential for the normal functioning of eukaryotic cells. It plays crucial roles in cell signalling, cell-cycle control and in maintaining proteome integrity and protein homeostasis. In plants, Hsp90s are required for normal plant growth and development. Hsp90s are observed to be upregulated in response to various abiotic and biotic stresses and are also involved in immune responses in plants. Although there are several studies elucidating the physiological role of Hsp90s in plants, their molecular mechanism of action is still unclear. In this study, biochemical characterization of an Hsp90 protein from rice (Oryza sativa; OsHsp90) has been performed and the crystal structure of its N-terminal domain (OsHsp90-NTD) was determined. The binding of OsHsp90 to its substrate ATP and the inhibitor 17-AAG was studied by fluorescence spectroscopy. The protein also exhibited a weak ATPase activity. The crystal structure of OsHsp90-NTD was solved in complex with the nonhydrolyzable ATP analogue AMPPCP at 3.1 Å resolution. The domain was crystallized by cross-seeding with crystals of the N-terminal domain of Hsp90 from Dictyostelium discoideum, which shares 70% sequence identity with OsHsp90-NTD. This is the second reported structure of a domain of Hsp90 from a plant source.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053230X15006639DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461332PMC
June 2015

Heat shock protein 90 regulates development in Dictyostelium discoideum.

J Mol Biol 2008 Oct 7;383(1):24-35. Epub 2008 Aug 7.

Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560 012, India.

Cytosolic heat shock protein 90 (Hsp90) has been implicated in diverse biological processes such as protein folding, cell cycle control, signal transduction, development, and morphological evolution. Model systems available for studying Hsp90 function either allow ease of manipulation for biochemical studies or facilitate a phenomenological study of its role in influencing phenotype. In this work, we have explored the use of the cellular slime mold Dictyostelium discoideum to examine cellular functions of Hsp90 in relation to its multicellular development. In addition to cloning, purification, biochemical characterization, and examination of its crystal structure, our studies, using a pharmacological inhibitor of Hsp90, demonstrate a role for the cytoplasmic isoform (HspD) in D. discoideum development. Inhibition of HspD function using geldanamycin (GA) resulted in delayed aggregation and arrest of D. discoideum development at the 'mound' stage. Crystal structure of the amino-terminal domain of HspD showed a binding pocket similar to that described for yeast Hsp90. Fluorescence spectroscopy, as well as GA-coupled beads affinity pulldown, confirmed a specific interaction between HspD and GA. The results presented here provide an important insight into the function of HspD in D. discoideum development and emphasize the potential of the cellular slime mold to serve as an effective model for studying the many roles of Hsp90 at cellular and organismal levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2008.08.006DOI Listing
October 2008
-->