Publications by authors named "Susanna Lucini-Paioni"

2 Publications

  • Page 1 of 1

Lithium effects on Hippocampus volumes in patients with bipolar disorder.

J Affect Disord 2021 Nov 18;294:521-526. Epub 2021 Jul 18.

Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. Electronic address:

Background: Lithium is one of the most effective medications for bipolar disorder episode prevention, but its mechanism of action is still largely unknown. The hippocampus is a subcortical cerebral structure involved in the formation of emotional responses, cognition and various primitive functions, altered during affective episodes. Deviations in the anatomy or physiology of the hippocampus would partially explain the symptomatology of bipolar subjects, and restoration may reflect treatment response.

Methods: In this mini review, we summarize the studies which have investigated the effect of lithium intake on the volume of hippocampus, measured using magnetic resonance imaging (MRI). We performed a bibliographic search on PubMed, using the terms terms "hippocampus", "lithium", "bipolar disorder", "volume" and "MRI". Only original studies were considered.

Results: Thirteen studies met the inclusion criteria. Nine studies demonstrated increased total hippocampal volume or hippocampal subfield volumes in BD patients on lithium treatment (Li BD) compared to those not taking lithium (non-Li BD), while four failed to show significant differences between groups. When healthy controls were compared to either the Li subjects or the non-Li ones, the findings were more heterogeneous.

Limitations: Heterogeneity in the methodology and definition of groups limits the comparison of study results.

Conclusions: Lithium may be associated with increased hippocampal volume in BD, potentially due to its putative neurotrophic action, but further research is needed better define the morphological alterations of hippocampus in BD and the longitudinal effects of lithium in the short and long-term.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2021.07.046DOI Listing
November 2021

Daily and intermittent smoking are associated with low prefrontal volume and low concentrations of prefrontal glutamate, creatine, myo-inositol, and N-acetylaspartate.

Addict Biol 2021 07 3;26(4):e12986. Epub 2020 Dec 3.

Department of Psychology, University of Roehampton, London, UK.

Cigarette smoking is still the largest contributor to disease and death worldwide. Successful cessation is hindered by decreases in prefrontal glutamate concentrations and gray matter volume due to daily smoking. Because nondaily, intermittent smoking also contributes greatly to disease and death, understanding whether infrequent tobacco use is associated with reductions in prefrontal glutamate concentrations and gray matter volume may aid public health. Eighty-five young participants (41 nonsmokers, 24 intermittent smokers, 20 daily smokers, mean age ~23 years old), underwent H-magnetic resonance spectroscopy of the medial prefrontal cortex, as well as structural magnetic resonance imaging (MRI) to determine whole-brain gray matter volume. Compared with nonsmokers, both daily and intermittent smokers exhibited lower concentrations of glutamate, creatine, N-acetylaspartate, and myo-inositol in the medial prefrontal cortex, and lower gray matter volume in the right inferior frontal gyrus; these measures of prefrontal metabolites and structure did not differ between daily and intermittent smokers. Finally, medial prefrontal metabolite concentrations and right inferior frontal gray matter volume were positively correlated, but these relationships were not influenced by smoking status. This study provides the first evidence that both daily and intermittent smoking are associated with low concentrations of glutamate, creatine, N-acetylaspartate, and myo-inositol and low gray matter volume in the prefrontal cortex. Future tobacco cessation efforts should not ignore potential deleterious effects of intermittent smoking by considering only daily smokers. Finally, because low glutamate concentrations hinder cessation, treatments that can normalize tonic levels of prefrontal glutamate, such as N-acetylcysteine, may help intermittent and daily smokers to quit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/adb.12986DOI Listing
July 2021
-->