Publications by authors named "Susan L Neuhausen"

275 Publications

Weight Gain and the Risk of Ovarian Cancer in and Mutation Carriers.

Cancer Epidemiol Biomarkers Prev 2021 Aug 23. Epub 2021 Aug 23.

Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.

Background: Weight gain and other anthropometric measures on the risk of ovarian cancer for women with mutations are not known. We conducted a prospective analysis of weight change since age 18, height, body mass index (BMI) at age 18, and current BMI and the risk of developing ovarian cancer among and mutation carriers.

Methods: In this prospective cohort study, height, weight, and weight at age 18 were collected at study enrollment. Weight was updated biennially. Cox proportional hazards models were used to estimate the hazard ratio (HR) and 95% confidence intervals (CI) for ovarian cancer.

Results: This study followed 4,340 women prospectively. There were 121 incident cases of ovarian cancer. Weight gain of more than 20 kg since age 18 was associated with a 2-fold increased risk of ovarian cancer, compared with women who maintained a stable weight (HR, 2.00; 95% CI, 1.13-3.54; = 0.02). Current BMI of 26.5 kg/m or greater was associated with an increased risk of ovarian cancer in mutation carriers, compared with those with a BMI less than 20.8 kg/m (Q4 vs. Q1 HR, 2.13; 95% CI, 1.04-4.36; = 0.04). There were no significant associations between height or BMI at age 18 and risk of ovarian cancer.

Conclusions: Adult weight gain is a risk factor for ovarian cancer in women with a or mutation.

Impact: These findings emphasize the importance of maintaining a healthy body weight throughout adulthood in women at high risk for ovarian cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1055-9965.EPI-21-0296DOI Listing
August 2021

Methylation biomarkers of polybrominated diphenyl ethers (PBDEs) and association with breast cancer risk at the time of menopause.

Environ Int 2021 11 19;156:106772. Epub 2021 Jul 19.

Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA. Electronic address:

Background: Exposure to polybrominated diphenyl ethers (PBDEs) may influence risk of developing post-menopausal breast cancer. Although mechanisms are poorly understood, epigenetic regulation of gene expression may play a role.

Objectives: To identify DNA methylation (DNAm) changes associated with PBDE serum levels and test the association of these biomarkers with breast cancer risk.

Methods: We studied 397 healthy women (controls) and 133 women diagnosed with breast cancer (cases) between ages 40 and 58 years who participated in the California Teachers Study. PBDE levels were measured in blood. Infinium Human Methylation EPIC Bead Chips were used to measure DNAm. Using multivariable linear regression models, differentially methylated CpG sites (DMSs) and regions (DMRs) associated with serum PBDE levels were identified using controls. For top-ranked DMSs and DMRs, targeted next-generation bisulfite sequencing was used to measure DNAm for 133 invasive breast cancer cases and 301 age-matched controls. Conditional logistic regression was used to evaluate associations between DMSs and DMRs and breast cancer risk.

Results: We identified 15 DMSs and 10 DMRs statistically significantly associated with PBDE levels (FDR < 0.05). Methylation changes in a DMS at BMP8B and DMRs at TP53 and A2M-AS1 were statistically significantly (FDR < 0.05) associated with breast cancer risk.

Conclusion: We show for the first time that serum PBDE levels are associated with differential methylation and that PBDE-associated DNAm changes in blood are associated with breast cancer risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2021.106772DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385228PMC
November 2021

Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores.

J Natl Cancer Inst 2021 Jul 28. Epub 2021 Jul 28.

Department of Molecular Medicine, University La Sapienza, Rome, Italy.

Background: Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers.

Methods: 483 BRCA1 and 1,318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were three versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen-receptor (ER) negative (PRSER-) or ER-positive (PRSER+) breast cancer risk.

Results: PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07-1.83) for BRCA1 and 1.33 (95% CI = 1.16-1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for both BRCA1 (OR = 1.73, 95% CI = 1.28-2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34-1.91) carriers. The estimated breast cancer ORs were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions.

Conclusions: Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and to inform clinical management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djab147DOI Listing
July 2021

The predictive ability of the 313 variant-based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant.

Genet Med 2021 Jun 10. Epub 2021 Jun 10.

Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic.

Purpose: To evaluate the association between a previously published 313 variant-based breast cancer (BC) polygenic risk score (PRS) and contralateral breast cancer (CBC) risk, in BRCA1 and BRCA2 pathogenic variant heterozygotes.

Methods: We included women of European ancestry with a prevalent first primary invasive BC (BRCA1 = 6,591 with 1,402 prevalent CBC cases; BRCA2 = 4,208 with 647 prevalent CBC cases) from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), a large international retrospective series. Cox regression analysis was performed to assess the association between overall and ER-specific PRS and CBC risk.

Results: For BRCA1 heterozygotes the estrogen receptor (ER)-negative PRS showed the largest association with CBC risk, hazard ratio (HR) per SD = 1.12, 95% confidence interval (CI) (1.06-1.18), C-index = 0.53; for BRCA2 heterozygotes, this was the ER-positive PRS, HR = 1.15, 95% CI (1.07-1.25), C-index = 0.57. Adjusting for family history, age at diagnosis, treatment, or pathological characteristics for the first BC did not change association effect sizes. For women developing first BC < age 40 years, the cumulative PRS 5th and 95th percentile 10-year CBC risks were 22% and 32% for BRCA1 and 13% and 23% for BRCA2 heterozygotes, respectively.

Conclusion: The PRS can be used to refine individual CBC risks for BRCA1/2 heterozygotes of European ancestry, however the PRS needs to be considered in the context of a multifactorial risk model to evaluate whether it might influence clinical decision-making.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01198-7DOI Listing
June 2021

Risk of Breast Cancer Among Carriers of Pathogenic Variants in Breast Cancer Predisposition Genes Varies by Polygenic Risk Score.

J Clin Oncol 2021 Aug 8;39(23):2564-2573. Epub 2021 Jun 8.

Population Health Sciences Department, Weill Cornell Medicine, New York, NY.

Purpose: This study assessed the joint association of pathogenic variants (PVs) in breast cancer (BC) predisposition genes and polygenic risk scores (PRS) with BC in the general population.

Methods: A total of 26,798 non-Hispanic white BC cases and 26,127 controls from predominately population-based studies in the Cancer Risk Estimates Related to Susceptibility consortium were evaluated for PVs in , , , , , , , , and . PRS based on 105 common variants were created using effect estimates from BC genome-wide association studies; the performance of an overall BC PRS and estrogen receptor-specific PRS were evaluated. The odds of BC based on the PVs and PRS were estimated using penalized logistic regression. The results were combined with age-specific incidence rates to estimate 5-year and lifetime absolute risks of BC across percentiles of PRS by PV status and first-degree family history of BC.

Results: The estimated lifetime risks of BC among general-population noncarriers, based on 10th and 90th percentiles of PRS, were 9.1%-23.9% and 6.7%-18.2% for women with or without first-degree relatives with BC, respectively. Taking PRS into account, more than 95% of , , and carriers had > 20% lifetime risks of BC, whereas, respectively, 52.5% and 69.7% of and carriers without first-degree relatives with BC, and 78.8% and 89.9% of those with a first-degree relative with BC had > 20% risk.

Conclusion: PRS facilitates personalization of BC risk among carriers of PVs in predisposition genes. Incorporating PRS into BC risk estimation may help identify > 30% of and nearly half of carriers below the 20% lifetime risk threshold, suggesting the addition of PRS may prevent overscreening and enable more personalized risk management approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1200/JCO.20.01992DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330969PMC
August 2021

The Association between Polluted Neighborhoods and -Mutated Non-Small Cell Lung Cancer.

Cancer Epidemiol Biomarkers Prev 2021 Aug 4;30(8):1498-1505. Epub 2021 Jun 4.

Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California.

Background: Poor patients often reside in neighborhoods of lower socioeconomic status (SES) with high levels of airborne pollutants. They also have higher mortality from non-small cell lung cancer (NSCLC) than those living in wealthier communities. We investigated whether living in polluted neighborhoods is associated with somatic mutations linked with lower survival rates, i.e., mutations.

Methods: In a retrospective cohort of 478 patients with NSCLC treated at a comprehensive cancer center between 2015 and 2018, we used logistic regression to assess associations between individual demographic and clinical characteristics, including somatic mutation status and environmental risk factors of annual average particulate matter (PM) levels, and neighborhood SES.

Results: 277 patients (58%) had somatic mutations. Of those, 45% lived in neighborhoods with "moderate" Environmental Protection Agency-defined PM exposure, compared with 39% of patients without mutations. We found significant associations between living in neighborhoods with "moderate" versus "good" PM concentrations and minority population percentage [OR, 1.06; 95% confidence interval (CI), 1.04-1.08]. There was a significant association between presence of mutations and PM exposure (moderate versus good: OR, 1.66; 95% CI, 1.02-2.72) after adjusting for patient characteristics, other environmental factors, and neighborhood-level SES.

Conclusions: When controlling for individual- and neighborhood-level confounders, we find that the odds of having a -mutated NSCLC are increased in areas with higher PM exposure.

Impact: The link between pollution and aggressive biology may contribute to the increased burden of adverse NSCLC outcomes in individuals living in lower SES neighborhoods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1055-9965.EPI-20-1555DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8338883PMC
August 2021

Mammary cell gene expression atlas links epithelial cell remodeling events to breast carcinogenesis.

Commun Biol 2021 06 2;4(1):660. Epub 2021 Jun 2.

Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.

The female mammary epithelium undergoes reorganization during development, pregnancy, and menopause, linking higher risk with breast cancer development. To characterize these periods of complex remodeling, here we report integrated 50 K mouse and 24 K human mammary epithelial cell atlases obtained by single-cell RNA sequencing, which covers most lifetime stages. Our results indicate a putative trajectory that originates from embryonic mammary stem cells which differentiates into three epithelial lineages (basal, luminal hormone-sensing, and luminal alveolar), presumably arising from unipotent progenitors in postnatal glands. The lineage-specific genes infer cells of origin of breast cancer using The Cancer Genome Atlas data and single-cell RNA sequencing of human breast cancer, as well as the association of gland reorganization to different breast cancer subtypes. This comprehensive mammary cell gene expression atlas ( https://mouse-mammary-epithelium-integrated.cells.ucsc.edu ) presents insights into the impact of the internal and external stimuli on the mammary epithelium at an advanced resolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-021-02201-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172904PMC
June 2021

Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects.

NPJ Breast Cancer 2021 May 12;7(1):52. Epub 2021 May 12.

School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.

Bi-allelic loss-of-function (LoF) variants in the base excision repair (BER) gene NTHL1 cause a high-risk hereditary multi-tumor syndrome that includes breast cancer, but the contribution of heterozygous variants to hereditary breast cancer is unknown. An analysis of 4985 women with breast cancer, enriched for familial features, and 4786 cancer-free women revealed significant enrichment for NTHL1 LoF variants. Immunohistochemistry confirmed reduced NTHL1 expression in tumors from heterozygous carriers but the NTHL1 bi-allelic loss characteristic mutational signature (SBS 30) was not present. The analysis was extended to 27,421 breast cancer cases and 19,759 controls from 10 international studies revealing 138 cases and 93 controls with a heterozygous LoF variant (OR 1.06, 95% CI: 0.82-1.39) and 316 cases and 179 controls with a missense variant (OR 1.31, 95% CI: 1.09-1.57). Missense variants selected for deleterious features by a number of in silico bioinformatic prediction tools or located within the endonuclease III functional domain showed a stronger association with breast cancer. Somatic sequencing of breast cancers from carriers indicated that the risk associated with NTHL1 appears to operate through haploinsufficiency, consistent with other described low-penetrance breast cancer genes. Data from this very large international multicenter study suggests that heterozygous pathogenic germline coding variants in NTHL1 may be associated with low- to moderate- increased risk of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-021-00255-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115524PMC
May 2021

Prostate cancer in young men represents a distinct clinical phenotype: gene expression signature to predict early metastases.

J Transl Genet Genom 2021 9;5:50-61. Epub 2021 Mar 9.

Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, CA 91010, USA.

Aim: Several genomic signatures are available to predict Prostate Cancer (CaP) outcomes based on gene expression in prostate tissue. However, no signature was tailored to predict aggressive CaP in younger men. We attempted to develop a gene signature to predict the development of metastatic CaP in young men.

Methods: We measured genome-wide gene expression for 119 tumor and matched benign tissues from prostatectomies of men diagnosed at ≤ 50 years and > 70 years and identified age-related differentially expressed genes (DEGs) for tissue type and Gleason score. Age-related DEGs were selected using the improved Prediction Analysis of Microarray method (iPAM) to construct and validate a classifier to predict metastasis using gene expression data from 1,232 prostatectomies. Accuracy in predicting early metastasis was quantified by the area under the curve (AUC) of receiver operating characteristic (ROC), and abundance of immune cells in the tissue microenvironment was estimated using gene expression data.

Results: Thirty-six age-related DEGs were selected for the iPAM classifier. The AUC of five-year survival ROC for the iPAM classifier was 0.87 (95%CI: 0.78-0.94) in young (≤ 55 years), 0.82 (95%CI: 0.76-0.88) in middle-aged (56-70 years), and 0.69 (95%CI: 0.55-0.69) in old (> 70 years) patients. Metastasis-associated immune responses in the tumor microenvironment were more pronounced in young and middle-aged patients than in old ones, potentially explaining the difference in accuracy of prediction among the groups.

Conclusion: We developed a genomic classifier with high precision to predict early metastasis for younger CaP patients and identified age-related differences in immune response to metastasis development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.20517/jtgg.2021.01DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081383PMC
March 2021

Variable number tandem repeats mediate the expression of proximal genes.

Nat Commun 2021 04 6;12(1):2075. Epub 2021 Apr 6.

Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA.

Variable number tandem repeats (VNTRs) account for significant genetic variation in many organisms. In humans, VNTRs have been implicated in both Mendelian and complex disorders, but are largely ignored by genomic pipelines due to the complexity of genotyping and the computational expense. We describe adVNTR-NN, a method that uses shallow neural networks to genotype a VNTR in 18 seconds on 55X whole genome data, while maintaining high accuracy. We use adVNTR-NN to genotype 10,264 VNTRs in 652 GTEx individuals. Associating VNTR length with gene expression in 46 tissues, we identify 163 "eVNTRs". Of the 22 eVNTRs in blood where independent data is available, 21 (95%) are replicated in terms of significance and direction of association. 49% of the eVNTR loci show a strong and likely causal impact on the expression of genes and 80% have maximum effect size at least 0.3. The impacted genes are involved in diseases including Alzheimer's, obesity and familial cancers, highlighting the importance of VNTRs for understanding the genetic basis of complex diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22206-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024321PMC
April 2021

Polygenic hazard score is associated with prostate cancer in multi-ethnic populations.

Nat Commun 2021 02 23;12(1):1236. Epub 2021 Feb 23.

Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Radiotherapy Related Research, The Christie Hospital NHS Foundation Trust, Manchester, UK.

Genetic models for cancer have been evaluated using almost exclusively European data, which could exacerbate health disparities. A polygenic hazard score (PHS) is associated with age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we evaluate performance of PHS (PHS, adapted for OncoArray) in a multi-ethnic dataset of 80,491 men (49,916 cases, 30,575 controls). PHS is associated with age at diagnosis of any and aggressive (Gleason score ≥ 7, stage T3-T4, PSA ≥ 10 ng/mL, or nodal/distant metastasis) cancer and prostate-cancer-specific death. Associations with cancer are significant within European (n = 71,856), Asian (n = 2,382), and African (n = 6,253) genetic ancestries (p < 10). Comparing the 80/20 PHS percentiles, hazard ratios for prostate cancer, aggressive cancer, and prostate-cancer-specific death are 5.32, 5.88, and 5.68, respectively. Within European, Asian, and African ancestries, hazard ratios for prostate cancer are: 5.54, 4.49, and 2.54, respectively. PHS risk-stratifies men for any, aggressive, and fatal prostate cancer in a multi-ethnic dataset.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-21287-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902617PMC
February 2021

A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers.

Nat Commun 2021 02 17;12(1):1078. Epub 2021 Feb 17.

Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark.

Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20496-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890067PMC
February 2021

CYP3A7*1C allele: linking premenopausal oestrone and progesterone levels with risk of hormone receptor-positive breast cancers.

Br J Cancer 2021 02 26;124(4):842-854. Epub 2021 Jan 26.

Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Background: Epidemiological studies provide strong evidence for a role of endogenous sex hormones in the aetiology of breast cancer. The aim of this analysis was to identify genetic variants that are associated with urinary sex-hormone levels and breast cancer risk.

Methods: We carried out a genome-wide association study of urinary oestrone-3-glucuronide and pregnanediol-3-glucuronide levels in 560 premenopausal women, with additional analysis of progesterone levels in 298 premenopausal women. To test for the association with breast cancer risk, we carried out follow-up genotyping in 90,916 cases and 89,893 controls from the Breast Cancer Association Consortium. All women were of European ancestry.

Results: For pregnanediol-3-glucuronide, there were no genome-wide significant associations; for oestrone-3-glucuronide, we identified a single peak mapping to the CYP3A locus, annotated by rs45446698. The minor rs45446698-C allele was associated with lower oestrone-3-glucuronide (-49.2%, 95% CI -56.1% to -41.1%, P = 3.1 × 10); in follow-up analyses, rs45446698-C was also associated with lower progesterone (-26.7%, 95% CI -39.4% to -11.6%, P = 0.001) and reduced risk of oestrogen and progesterone receptor-positive breast cancer (OR = 0.86, 95% CI 0.82-0.91, P = 6.9 × 10).

Conclusions: The CYP3A7*1C allele is associated with reduced risk of hormone receptor-positive breast cancer possibly mediated via an effect on the metabolism of endogenous sex hormones in premenopausal women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41416-020-01185-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884683PMC
February 2021

Breast cancer risk after age 60 among BRCA1 and BRCA2 mutation carriers.

Breast Cancer Res Treat 2021 Jun 10;187(2):515-523. Epub 2021 Jan 10.

Women's College Research Institute, Women's College Hospital, 76 Grenville Street, 6th Floor, Toronto, ON, M5S 1B2, Canada.

Purpose: It is not known whether the risk of breast cancer among BRCA1 and BRCA2 mutation carriers after age 60 is high enough to justify intensive screening or prophylactic surgery. Thus, we conducted a prospective analysis of breast cancer risk in BRCA1 and BRCA2 mutation carriers from age 60 until age 80.

Methods: Subjects had no history of cancer and both breasts intact at age 60 (n = 699). Women were followed until a breast cancer diagnosis, prophylactic bilateral mastectomy or death. We calculated the annual cancer rate and cumulative incidence of breast cancer (invasive and in situ) from age 60 to age 80. We assessed the associations between hormone replacement therapy, family history of breast cancer and bilateral oophorectomy and breast cancer risk.

Results: Over a mean follow-up of 7.9 years, 61 invasive and 20 in situ breast cancers were diagnosed in the cohort. The mean annual rate of invasive breast cancer was 1.8% for BRCA1 mutation carriers and 1.7% for BRCA2 mutation carriers. The cumulative risk of invasive breast cancer from age 60 to 80 was 20.1% for women with a BRCA1 mutation and was 17.3% for women with a BRCA2 mutation. Hormone replacement therapy, family history and oophorectomy were not associated with breast cancer risk.

Conclusions: Findings from this large prospective study indicate that the risk of developing breast cancer remains high after age 60 in both BRCA1 and BRCA2 mutation carriers. These findings warrant further evaluation of the role of breast cancer screening in older mutation carriers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-020-06072-9DOI Listing
June 2021

Additional SNPs improve risk stratification of a polygenic hazard score for prostate cancer.

Prostate Cancer Prostatic Dis 2021 06 8;24(2):532-541. Epub 2021 Jan 8.

Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.

Background: Polygenic hazard scores (PHS) can identify individuals with increased risk of prostate cancer. We estimated the benefit of additional SNPs on performance of a previously validated PHS (PHS46).

Materials And Method: 180 SNPs, shown to be previously associated with prostate cancer, were used to develop a PHS model in men with European ancestry. A machine-learning approach, LASSO-regularized Cox regression, was used to select SNPs and to estimate their coefficients in the training set (75,596 men). Performance of the resulting model was evaluated in the testing/validation set (6,411 men) with two metrics: (1) hazard ratios (HRs) and (2) positive predictive value (PPV) of prostate-specific antigen (PSA) testing. HRs were estimated between individuals with PHS in the top 5% to those in the middle 40% (HR95/50), top 20% to bottom 20% (HR80/20), and bottom 20% to middle 40% (HR20/50). PPV was calculated for the top 20% (PPV80) and top 5% (PPV95) of PHS as the fraction of individuals with elevated PSA that were diagnosed with clinically significant prostate cancer on biopsy.

Results: 166 SNPs had non-zero coefficients in the Cox model (PHS166). All HR metrics showed significant improvements for PHS166 compared to PHS46: HR95/50 increased from 3.72 to 5.09, HR80/20 increased from 6.12 to 9.45, and HR20/50 decreased from 0.41 to 0.34. By contrast, no significant differences were observed in PPV of PSA testing for clinically significant prostate cancer.

Conclusions: Incorporating 120 additional SNPs (PHS166 vs PHS46) significantly improved HRs for prostate cancer, while PPV of PSA testing remained the same.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41391-020-00311-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157993PMC
June 2021

Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

Nat Genet 2021 01 4;53(1):65-75. Epub 2021 Jan 4.

Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.

Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00748-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148035PMC
January 2021

The Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor.

Cancers (Basel) 2020 Nov 4;12(11). Epub 2020 Nov 4.

Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.

The identification of recurrent founder variants in cancer predisposing genes may have important implications for implementing cost-effective targeted genetic screening strategies. In this study, we evaluated the prevalence and relative risk of the recurrent variant c.349A>G in a series of 462 Portuguese patients with early-onset and/or familial/hereditary prostate cancer (PrCa), as well as in the large multicentre PRACTICAL case-control study comprising 55,162 prostate cancer cases and 36,147 controls. Additionally, we investigated the potential shared ancestry of the carriers by performing identity-by-descent, haplotype and age estimation analyses using high-density SNP data from 70 variant carriers belonging to 11 different populations included in the PRACTICAL consortium. The missense variant c.349A>G was found significantly associated with an increased risk for PrCa (OR 1.9; 95% CI: 1.1-3.2). A shared haplotype flanking the variant in all carriers was identified, strongly suggesting a common founder of European origin. Additionally, using two independent statistical algorithms, implemented by DMLE+2.3 and ESTIAGE, we were able to estimate the age of the variant between 2300 and 3125 years. By extending the haplotype analysis to 14 additional carrier families, a shared core haplotype was revealed among all carriers matching the conserved region previously identified in the high-density SNP analysis. These findings are consistent with c.349A>G being a founder variant associated with increased PrCa risk, suggesting its potential usefulness for cost-effective targeted genetic screening in PrCa families.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers12113254DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694218PMC
November 2020

Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk.

Am J Hum Genet 2020 11 5;107(5):837-848. Epub 2020 Oct 5.

Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong; Hong Kong Sanatorium and Hospital, Department of Pathology, Happy Valley, Hong Kong.

Previous research has shown that polygenic risk scores (PRSs) can be used to stratify women according to their risk of developing primary invasive breast cancer. This study aimed to evaluate the association between a recently validated PRS of 313 germline variants (PRS) and contralateral breast cancer (CBC) risk. We included 56,068 women of European ancestry diagnosed with first invasive breast cancer from 1990 onward with follow-up from the Breast Cancer Association Consortium. Metachronous CBC risk (N = 1,027) according to the distribution of PRS was quantified using Cox regression analyses. We assessed PRS interaction with age at first diagnosis, family history, morphology, ER status, PR status, and HER2 status, and (neo)adjuvant therapy. In studies of Asian women, with limited follow-up, CBC risk associated with PRS was assessed using logistic regression for 340 women with CBC compared with 12,133 women with unilateral breast cancer. Higher PRS was associated with increased CBC risk: hazard ratio per standard deviation (SD) = 1.25 (95%CI = 1.18-1.33) for Europeans, and an OR per SD = 1.15 (95%CI = 1.02-1.29) for Asians. The absolute lifetime risks of CBC, accounting for death as competing risk, were 12.4% for European women at the 10 percentile and 20.5% at the 90 percentile of PRS. We found no evidence of confounding by or interaction with individual characteristics, characteristics of the primary tumor, or treatment. The C-index for the PRS alone was 0.563 (95%CI = 0.547-0.586). In conclusion, PRS is an independent factor associated with CBC risk and can be incorporated into CBC risk prediction models to help improve stratification and optimize surveillance and treatment strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.09.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675034PMC
November 2020

Variants of the human gene confer defects in ionizing radiation resistance and homologous recombination repair in budding yeast.

Microb Cell 2020 Jul 20;7(10):270-285. Epub 2020 Jul 20.

Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.

RAD52 is a structurally and functionally conserved component of the DNA double-strand break (DSB) repair apparatus from budding yeast to humans. We recently showed that expressing the human gene, in mutant budding yeast cells can suppress both their ionizing radiation (IR) sensitivity and homologous recombination repair (HRR) defects. Intriguingly, we observed that supports DSB repair by a mechanism of HRR that conserves genome structure and is independent of the canonical HR machinery. In this study we report that naturally occurring variants of , one of which suppresses the pathogenicity of mutations, were unable to suppress the IR sensitivity and HRR defects of mutant yeast cells, but fully suppressed a defect in DSB repair by single-strand annealing (SSA). This failure to suppress both IR sensitivity and the HRR defect correlated with an inability of HsRAD52 protein to associate with and drive an interaction between genomic sequences during DSB repair by HRR. These results suggest that HsRAD52 supports multiple, distinct DSB repair apparatuses in budding yeast cells and help further define its mechanism of action in HRR. They also imply that disruption of HsRAD52-dependent HRR in BRCA2-defective human cells may contribute to protection against tumorigenesis and provide a target for killing BRCA2-defective cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15698/mic2020.10.732DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517009PMC
July 2020

Breastfeeding and the risk of epithelial ovarian cancer among women with a BRCA1 or BRCA2 mutation.

Gynecol Oncol 2020 12 30;159(3):820-826. Epub 2020 Sep 30.

Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada. Electronic address:

Objective: BRCA mutation carriers face a high lifetime risk of developing ovarian cancer. The strong inverse association between breastfeeding and the risk of ovarian cancer is established in the general population but is less well studied among women with a germline BRCA1 or BRCA2 mutation.

Method: Thus, we conducted a matched case-control analysis to evaluate the association between breastfeeding history and the risk of developing ovarian cancer. After matching for year of birth, country of residence, BRCA gene and personal history of breast cancer, a total of 1650 cases and 2702 controls were included in the analysis. Conditional logistic regression was used to estimate the odds ratio (OR) and 95% confidence intervals (CI) associated with various breastfeeding exposures.

Results: A history of ever-breastfeeding was associated with a 23% reduction in risk (OR = 0.77; 95%CI 0.66-0.90; P = 0.001). The protective effect increased with breastfeeding from one month to seven months after which the association was relatively stable. Compared to women who never breastfed, breastfeeding for seven or more months was associated with a 32% reduction in risk (OR = 0.68; 95%CI 0.57-0.81; P < 0.0001) and did not vary by BRCA gene or age at diagnosis. The combination of breastfeeding and oral contraceptive use was strongly protective (0.47; 95%CI 0.37-0.58; P < 0.0001).

Conclusions: These findings support a protective effect of breastfeeding for at least seven months among women with a BRCA1 or BRCA2 mutation, that is independent of oral contraceptive use.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygyno.2020.09.037DOI Listing
December 2020

Mutation Rates in Cancer Susceptibility Genes in Patients With Breast Cancer With Multiple Primary Cancers.

JCO Precis Oncol 2020 19;4. Epub 2020 Aug 19.

Basser Center for BRCA and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.

Purpose: Women with breast cancer have a 4%-16% lifetime risk of a second primary cancer. Whether mutations in genes other than are enriched in patients with breast and another primary cancer over those with a single breast cancer (S-BC) is unknown.

Patients And Methods: We identified pathogenic germline mutations in 17 cancer susceptibility genes in patients with -negative breast cancer in 2 different cohorts: cohort 1, high-risk breast cancer program (multiple primary breast cancer [MP-BC], n = 551; S-BC, n = 449) and cohort 2, familial breast cancer research study (MP-BC, n = 340; S-BC, n = 1,464). Mutation rates in these 2 cohorts were compared with a control data set (Exome Aggregation Consortium [ExAC]).

Results: Overall, pathogenic mutation rates for autosomal, dominantly inherited genes were higher in patients with MP-BC versus S-BC in both cohorts (8.5% 4.9% [ = .02] and 7.1% 4.2% [ = .03]). There were differences in individual gene mutation rates between cohorts. In both cohorts, younger age at first breast cancer was associated with higher mutation rates; the age of non-breast cancers was unrelated to mutation rate. and mutations were significantly enriched in patients with MP-BC but not S-BC, whereas and mutations were significantly enriched in both groups compared with ExAC.

Conclusion: Mutation rates are at least 7% in all patients with mutation-negative MP-BC, regardless of age at diagnosis of breast cancer, with mutation rates up to 25% in patients with a first breast cancer diagnosed at age < 30 years. Our results suggest that all patients with breast cancer with a second primary cancer, regardless of age of onset, should undergo multigene panel testing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1200/PO.19.00301DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496037PMC
August 2020

Cancer health disparities in racial/ethnic minorities in the United States.

Br J Cancer 2021 01 9;124(2):315-332. Epub 2020 Sep 9.

Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.

There are well-established disparities in cancer incidence and outcomes by race/ethnicity that result from the interplay between structural, socioeconomic, socio-environmental, behavioural and biological factors. However, large research studies designed to investigate factors contributing to cancer aetiology and progression have mainly focused on populations of European origin. The limitations in clinicopathological and genetic data, as well as the reduced availability of biospecimens from diverse populations, contribute to the knowledge gap and have the potential to widen cancer health disparities. In this review, we summarise reported disparities and associated factors in the United States of America (USA) for the most common cancers (breast, prostate, lung and colon), and for a subset of other cancers that highlight the complexity of disparities (gastric, liver, pancreas and leukaemia). We focus on populations commonly identified and referred to as racial/ethnic minorities in the USA-African Americans/Blacks, American Indians and Alaska Natives, Asians, Native Hawaiians/other Pacific Islanders and Hispanics/Latinos. We conclude that even though substantial progress has been made in understanding the factors underlying cancer health disparities, marked inequities persist. Additional efforts are needed to include participants from diverse populations in the research of cancer aetiology, biology and treatment. Furthermore, to eliminate cancer health disparities, it will be necessary to facilitate access to, and utilisation of, health services to all individuals, and to address structural inequities, including racism, that disproportionally affect racial/ethnic minorities in the USA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41416-020-01038-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852513PMC
January 2021

Common Susceptibility Loci for Male Breast Cancer.

J Natl Cancer Inst 2021 04;113(4):453-461

Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden.

Background: The etiology of male breast cancer (MBC) is poorly understood. In particular, the extent to which the genetic basis of MBC differs from female breast cancer (FBC) is unknown. A previous genome-wide association study of MBC identified 2 predisposition loci for the disease, both of which were also associated with risk of FBC.

Methods: We performed genome-wide single nucleotide polymorphism genotyping of European ancestry MBC case subjects and controls in 3 stages. Associations between directly genotyped and imputed single nucleotide polymorphisms with MBC were assessed using fixed-effects meta-analysis of 1380 cases and 3620 controls. Replication genotyping of 810 cases and 1026 controls was used to validate variants with P values less than 1 × 10-06. Genetic correlation with FBC was evaluated using linkage disequilibrium score regression, by comprehensively examining the associations of published FBC risk loci with risk of MBC and by assessing associations between a FBC polygenic risk score and MBC. All statistical tests were 2-sided.

Results: The genome-wide association study identified 3 novel MBC susceptibility loci that attained genome-wide statistical significance (P < 5 × 10-08). Genetic correlation analysis revealed a strong shared genetic basis with estrogen receptor-positive FBC. Men in the top quintile of genetic risk had a fourfold increased risk of breast cancer relative to those in the bottom quintile (odds ratio = 3.86, 95% confidence interval = 3.07 to 4.87, P = 2.08 × 10-30).

Conclusions: These findings advance our understanding of the genetic basis of MBC, providing support for an overlapping genetic etiology with FBC and identifying a fourfold high-risk group of susceptible men.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djaa101DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023850PMC
April 2021

Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants.

Genet Med 2020 10 15;22(10):1653-1666. Epub 2020 Jul 15.

Royal Devon & Exeter Hospital, Department of Clinical Genetics, Exeter, UK.

Purpose: We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks for BRCA1 and BRCA2 pathogenic variant carriers.

Methods: Retrospective cohort data on 18,935 BRCA1 and 12,339 BRCA2 female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort.

Results: The ER-negative PRS showed the strongest association with BC risk for BRCA1 carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33], P = 3×10). For BRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36], P = 7×10). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk for BRCA1 (HR = 1.32 [95% CI 1.25-1.40], P = 3×10) and BRCA2 (HR = 1.44 [95% CI 1.30-1.60], P = 4×10) carriers. The associations in the prospective cohort were similar.

Conclusion: Population-based PRS are strongly associated with BC and EOC risks for BRCA1/2 carriers and predict substantial absolute risk differences for women at PRS distribution extremes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-0862-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521995PMC
October 2020

Characterization of the Cancer Spectrum in Men With Germline BRCA1 and BRCA2 Pathogenic Variants: Results From the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).

JAMA Oncol 2020 08;6(8):1218-1230

Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Importance: The limited data on cancer phenotypes in men with germline BRCA1 and BRCA2 pathogenic variants (PVs) have hampered the development of evidence-based recommendations for early cancer detection and risk reduction in this population.

Objective: To compare the cancer spectrum and frequencies between male BRCA1 and BRCA2 PV carriers.

Design, Setting, And Participants: Retrospective cohort study of 6902 men, including 3651 BRCA1 and 3251 BRCA2 PV carriers, older than 18 years recruited from cancer genetics clinics from 1966 to 2017 by 53 study groups in 33 countries worldwide collaborating through the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Clinical data and pathologic characteristics were collected.

Main Outcomes And Measures: BRCA1/2 status was the outcome in a logistic regression, and cancer diagnoses were the independent predictors. All odds ratios (ORs) were adjusted for age, country of origin, and calendar year of the first interview.

Results: Among the 6902 men in the study (median [range] age, 51.6 [18-100] years), 1634 cancers were diagnosed in 1376 men (19.9%), the majority (922 of 1,376 [67%]) being BRCA2 PV carriers. Being affected by any cancer was associated with a higher probability of being a BRCA2, rather than a BRCA1, PV carrier (OR, 3.23; 95% CI, 2.81-3.70; P < .001), as well as developing 2 (OR, 7.97; 95% CI, 5.47-11.60; P < .001) and 3 (OR, 19.60; 95% CI, 4.64-82.89; P < .001) primary tumors. A higher frequency of breast (OR, 5.47; 95% CI, 4.06-7.37; P < .001) and prostate (OR, 1.39; 95% CI, 1.09-1.78; P = .008) cancers was associated with a higher probability of being a BRCA2 PV carrier. Among cancers other than breast and prostate, pancreatic cancer was associated with a higher probability (OR, 3.00; 95% CI, 1.55-5.81; P = .001) and colorectal cancer with a lower probability (OR, 0.47; 95% CI, 0.29-0.78; P = .003) of being a BRCA2 PV carrier.

Conclusions And Relevance: Significant differences in the cancer spectrum were observed in male BRCA2, compared with BRCA1, PV carriers. These data may inform future recommendations for surveillance of BRCA1/2-associated cancers and guide future prospective studies for estimating cancer risks in men with BRCA1/2 PVs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamaoncol.2020.2134DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333177PMC
August 2020

Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk.

Sci Rep 2020 06 16;10(1):9688. Epub 2020 Jun 16.

Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany.

In breast cancer, high levels of homeobox protein Hox-B13 (HOXB13) have been associated with disease progression of ER-positive breast cancer patients and resistance to tamoxifen treatment. Since HOXB13 p.G84E is a prostate cancer risk allele, we evaluated the association between HOXB13 germline mutations and breast cancer risk in a previous study consisting of 3,270 familial non-BRCA1/2 breast cancer cases and 2,327 controls from the Netherlands. Although both recurrent HOXB13 mutations p.G84E and p.R217C were not associated with breast cancer risk, the risk estimation for p.R217C was not very precise. To provide more conclusive evidence regarding the role of HOXB13 in breast cancer susceptibility, we here evaluated the association between HOXB13 mutations and increased breast cancer risk within 81 studies of the international Breast Cancer Association Consortium containing 68,521 invasive breast cancer patients and 54,865 controls. Both HOXB13 p.G84E and p.R217C did not associate with the development of breast cancer in European women, neither in the overall analysis (OR = 1.035, 95% CI = 0.859-1.246, P = 0.718 and OR = 0.798, 95% CI = 0.482-1.322, P = 0.381 respectively), nor in specific high-risk subgroups or breast cancer subtypes. Thus, although involved in breast cancer progression, HOXB13 is not a material breast cancer susceptibility gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-65665-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297796PMC
June 2020

Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses.

Nat Genet 2020 06 18;52(6):572-581. Epub 2020 May 18.

Molecular Medicine Unit, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain.

Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P < 5.0 × 10), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate < 0.05). Five loci showed associations (P < 0.05) in opposite directions between luminal and non-luminal subtypes. In silico analyses showed that these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 54.2% for luminal A-like disease and 37.6% for triple-negative disease. The odds ratios of polygenic risk scores, which included 330 variants, for the highest 1% of quantiles compared with middle quantiles were 5.63 and 3.02 for luminal A-like and triple-negative disease, respectively. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-0609-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808397PMC
June 2020
-->