Publications by authors named "Sumbul Saeed"

3 Publications

  • Page 1 of 1

Coronavirus and its terrifying inning around the globe: The pharmaceutical cares at the main frontline.

Chemosphere 2021 Feb 16;275:129968. Epub 2021 Feb 16.

Department of Agronomy, University of Haripur, Khyber Pakhtunkhwa, Pakistan. Electronic address:

A novel coronavirus (2019-nCoV) is an acute life-threatening disease, emerged in China, which imposed a potentially immense toll in terms of public health emergency due to high infection rate and has a devastating economic impact that attracts the world's attention. After that, on January 30, 2020, it was officially declared as a global pandemic by World Health Organization (WHO). The International Committee on Taxonomy of Viruses (ICTV) recognized it as a Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and the disease named Coronavirus Disease-19 (COVID-19). Several studies have been ameliorated the active role of COVID-19 transmission, etiology, pathogenicity, and mortality rate as serious impact on human life. The symptoms of this disease may include fever, fatigue, cough and some peoples are severely prone to gastrointestinal infection. The elderly and seriously affected peoples are likely concerned with serious outcomes. In this review, we mainly aimed to provide a benchmark summary of the silent characteristics and findings of some candidates for antiviral drugs and immunotherapies such as plasma therapy, cytokine therapy, antibodies, intravenous immunoglobulin, and pharmaceutical health concerns that are related to this disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.129968DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884917PMC
February 2021

A Revolution toward Gene-Editing Technology and Its Application to Crop Improvement.

Int J Mol Sci 2020 Aug 7;21(16). Epub 2020 Aug 7.

Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea.

Genome editing is a relevant, versatile, and preferred tool for crop improvement, as well as for functional genomics. In this review, we summarize the advances in gene-editing techniques, such as zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 and Cpf1 proteins. These tools support great opportunities for the future development of plant science and rapid remodeling of crops. Furthermore, we discuss the brief history of each tool and provide their comparison and different applications. Among the various genome-editing tools, CRISPR has become the most popular; hence, it is discussed in the greatest detail. CRISPR has helped clarify the genomic structure and its role in plants: For example, the transcriptional control of Cas9 and Cpf1, genetic locus monitoring, the mechanism and control of promoter activity, and the alteration and detection of epigenetic behavior between single-nucleotide polymorphisms (SNPs) investigated based on genetic traits and related genome-wide studies. The present review describes how CRISPR/Cas9 systems can play a valuable role in the characterization of the genomic rearrangement and plant gene functions, as well as the improvement of the important traits of field crops with the greatest precision. In addition, the speed editing strategy of gene-family members was introduced to accelerate the applications of gene-editing systems to crop improvement. For this, the CRISPR technology has a valuable advantage that particularly holds the scientist's mind, as it allows genome editing in multiple biological systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21165665DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461041PMC
August 2020

Eu , Sm Deep-Red Phosphors as Novel Materials for White Light-Emitting Diodes and Simultaneous Performance Enhancement of Organic-Inorganic Perovskite Solar Cells.

Small 2020 Jun 27;16(25):e2001551. Epub 2020 May 27.

Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.

The luminous efficiency of inorganic white light-emitting diodes, to be used by the next generation as light initiators, is continuously progressing and is an emerging interest for researchers. However, low color-rendering index (Ra), high correlated color temperature (CCT), and poor stability limit its wider application. Herein, it is reported that Sm - and Eu -doped calcium scandate (CaSc O (CSO)) are an emerging deep-red-emitting material with promising light absorption, enhanced emission properties, and excellent thermal stability that make it a promising candidate with potential applications in emission display, solid-state white lighting, and the device performance of perovskite solar cells (PSCs). The average crystal structures of Sm -doped CSO are studied by synchrotron X-ray data that correspond to an extremely rigid host structure. Samarium ion is incorporated as a sensitizer that enhances the emission intensity up to 30%, with a high color purity of 88.9% with a 6% increment. The impacts of hosting the sensitizer are studied by quantifying the lifetime curves. The CaSc O :0.15Eu ,0.03Sm phosphor offers significant resistance to thermal quenching. The incorporation of lanthanide ion-doped phosphors CSOE into PSCs is investigated along with their potential applications. The CSOE-coated PSCs devices exhibit a high current density and a high power conversion efficiency (15.96%) when compared to the uncoated control devices.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202001551DOI Listing
June 2020