Publications by authors named "Sukriti Manna"

3 Publications

  • Page 1 of 1

High-Entropy 2D Carbide MXenes: TiVNbMoC and TiVCrMoC.

ACS Nano 2021 Jun 15. Epub 2021 Jun 15.

Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.

Two-dimensional (2D) transition metal carbides and nitrides, known as MXenes, are a fast-growing family of 2D materials. MXenes 2D flakes have + 1 ( = 1-4) atomic layers of transition metals interleaved by carbon/nitrogen layers, but to-date remain limited in composition to one or two transition metals. In this study, by implementing four transition metals, we report the synthesis of multi-principal-element high-entropy MCT MXenes. Specifically, we introduce two high-entropy MXenes, TiVNbMoCT and TiVCrMoCT, as well as their precursor TiVNbMoAlC and TiVCrMoAlC high-entropy MAX phases. We used a combination of real and reciprocal space characterization (X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and scanning transmission electron microscopy) to establish the structure, phase purity, and equimolar distribution of the four transition metals in high-entropy MAX and MXene phases. We use first-principles calculations to compute the formation energies and explore synthesizability of these high-entropy MAX phases. We also show that when three transition metals are used instead of four, under similar synthesis conditions to those of the four-transition-metal MAX phase, two different MAX phases can be formed (.., no pure single-phase forms). This finding indicates the importance of configurational entropy in stabilizing the desired single-phase high-entropy MAX over multiphases of MAX, which is essential for the synthesis of phase-pure high-entropy MXenes. The synthesis of high-entropy MXenes significantly expands the compositional variety of the MXene family to further tune their properties, including electronic, magnetic, electrochemical, catalytic, high temperature stability, and mechanical behavior.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c02775DOI Listing
June 2021

Perovskite neural trees.

Nat Commun 2020 05 7;11(1):2245. Epub 2020 May 7.

School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation. We report experimental realization of tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. This demonstration represents physical realization of ultrametric trees, a concept from number theory applied to the study of spin glasses in physics that inspired early neural network theory dating almost forty years ago. We apply the tree-like memory features in spiking neural networks to demonstrate high fidelity object recognition, and in future can open new directions for neuromorphic computing and artificial intelligence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-16105-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206050PMC
May 2020

Characterization of Elastic Modulus Across the (AlSc)N System Using DFT and Substrate-Effect-Corrected Nanoindentation.

IEEE Trans Ultrason Ferroelectr Freq Control 2018 11 16;65(11):2167-2175. Epub 2018 Aug 16.

Knowledge of accurate values of elastic modulus of (AlSc)N is required for design of piezoelectric resonators and related devices. Thin films of (AlSc)N across the entire composition space are deposited and characterized. Accuracy of modulus measurements is improved and quantified by removing the influence of substrate effects and by direct comparison of experimental results with density functional theory calculations. The 5%-30% Sc compositional range is of particular interest for piezoelectric applications and is covered at higher compositional resolution here than in previous work. The reduced elastic modulus is found to decrease by as much as 40% with increasing Sc concentration in the wurtzite phase according to both experimental and computational techniques, whereas Sc-rich rocksalt-structured films exhibit little variation in modulus with composition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2018.2862240DOI Listing
November 2018
-->