Publications by authors named "Sudipta Ramola"

3 Publications

  • Page 1 of 1

Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances.

Biotechnol Adv 2020 11 18;43:107600. Epub 2020 Jul 18.

Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou 310058, People's Republic of China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China. Electronic address:

Anthocyanins, the color compounds of plants, are known for their wide applications in food, nutraceuticals and cosmetic industry. The biosynthetic pathway of anthocyanins is well established with the identification of potential key regulatory genes, which makes it possible to modulate its production by biotechnological means. Various biotechnological systems, including use of in vitro plant cell or tissue cultures as well as microorganisms have been used for the production of anthocyanins under controlled conditions, however, a wide range of factors affects their production. In addition, metabolic engineering technologies have also used the heterologous production of anthocyanins in recombinant plants and microorganisms. However, these approaches have mostly been tested at the lab- and pilot-scales, while very few up-scaling studies have been undertaken. Various challenges and ways of investigation are proposed here to improve anthocyanin production by using the in vitro plant cell or tissue culture and metabolic engineering of plants and microbial culture systems. All these methods are capable of modulating the production of anthocyanins , which can be further utilized for pharmaceutical, cosmetics and food applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2020.107600DOI Listing
November 2020

Improved lead removal from aqueous solution using novel porous bentonite - and calcite-biochar composite.

Sci Total Environ 2020 Mar 18;709:136171. Epub 2019 Dec 18.

Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang 242804, An Hui, China. Electronic address:

Biochar-mineral (bentonite/calcite) composite (BC-CM) prepared at different temperatures were tested under varied conditions for effective removal of lead (Pb) from aqueous solution. With increasing pyrolysis temperature, increased surface area, pore volume, bentonite decomposition and less or no decomposition of calcite occurred. Bentonite-biochar (BCS) and calcite-biochar (CCS) prepared at 700 °C were found most suitable for efficient removal of Pb (99.9%). Bentonite and calcite acted as catalyst and contributed to changes in yield, pH, texture, functional groups, minerals and carbonization that facilitated efficient Pb removal by BCS 700 and CCS 700. Pb concentration, pH, dose of BCS and CCS, and contact time were further optimized using response surface methodology (RSM) for maximizing removal percentage (R%) of Pb and adsorption capacity (qt). Both BCS 700 and CCS 700 showed similar effects (positive/negative) of factors on R% and qt. Under optimized conditions, 0.21 g of BCS 700 effectively removed 99.2% of 431 mg/L in 3.6 h at solution pH of 4.2, while 0.07 g CCS 700 removed 97.06% of 232 mg/L in 3.5 h at 5.5 pH. Removal of Pb onto both BCS and CCS was by monolayer adsorption with maximum adsorption capacity of 500 mg/g. Rapid Pb removal was observed within 2 h of contact time (CCS 700 > BCS 700) and equilibrium was achieved within 10 h. BCS 700 followed first order and CCS 700 followed second order kinetic model. Electrostatic attraction between Pb ions and mineral groups present in BCS 700 and CCS 700 also played important role in Pb removal. This study clearly demonstrated that composite of biochar with bentonite or calcite under optimized conditions significantly improved Pb removal and adsorption capacity that can be further utilized for larger scale applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.136171DOI Listing
March 2020

Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin disorders.

Arch Dermatol Res 2019 Oct 21;311(8):577-588. Epub 2019 May 21.

Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.

The grape seed extract (GSE) and its main active polyphenol, resveratrol (RES), have shown considerable antioxidant activities, besides possessed protective and therapeutic effects against various skin complications. This paper discusses the favorable effects of RES, GSE and their nanoformulations for dermatological approaches, with specific emphasis on clinical interventions. In this manner, electronic databases including PubMed, Science Direct and Google Scholar were searched. Data were collected from 1980 up to February 2019. The search terms included "Vitis vinifera", "grape", "resveratrol", "skin", "dermatology", and "nanoformulation". To increase the skin permeability of GSE and RES, several innovative nanoformulation such as liposomes, niosomes, solid-lipid nanoparticles, nanostructured lipid carriers, and lipid-core nanocapsule has been evaluated. According to our extensive searches, both RES and GSE have beneficial impacts on skin disorders such as chloasma, acne vulgaris, skin aging, as well as wound and facial redness. More clinical studies with nanoformulation approaches are recommended to achieve conclusive outcomes regarding the efficacy of RES and GSE in the management of skin diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00403-019-01930-zDOI Listing
October 2019