Publications by authors named "Steven L Brody"

98 Publications

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition).

Authors:
Daniel J Klionsky Amal Kamal Abdel-Aziz Sara Abdelfatah Mahmoud Abdellatif Asghar Abdoli Steffen Abel Hagai Abeliovich Marie H Abildgaard Yakubu Princely Abudu Abraham Acevedo-Arozena Iannis E Adamopoulos Khosrow Adeli Timon E Adolph Annagrazia Adornetto Elma Aflaki Galila Agam Anupam Agarwal Bharat B Aggarwal Maria Agnello Patrizia Agostinis Javed N Agrewala Alexander Agrotis Patricia V Aguilar S Tariq Ahmad Zubair M Ahmed Ulises Ahumada-Castro Sonja Aits Shu Aizawa Yunus Akkoc Tonia Akoumianaki Hafize Aysin Akpinar Ahmed M Al-Abd Lina Al-Akra Abeer Al-Gharaibeh Moulay A Alaoui-Jamali Simon Alberti Elísabet Alcocer-Gómez Cristiano Alessandri Muhammad Ali M Abdul Alim Al-Bari Saeb Aliwaini Javad Alizadeh Eugènia Almacellas Alexandru Almasan Alicia Alonso Guillermo D Alonso Nihal Altan-Bonnet Dario C Altieri Élida M C Álvarez Sara Alves Cristine Alves da Costa Mazen M Alzaharna Marialaura Amadio Consuelo Amantini Cristina Amaral Susanna Ambrosio Amal O Amer Veena Ammanathan Zhenyi An Stig U Andersen Shaida A Andrabi Magaiver Andrade-Silva Allen M Andres Sabrina Angelini David Ann Uche C Anozie Mohammad Y Ansari Pedro Antas Adam Antebi Zuriñe Antón Tahira Anwar Lionel Apetoh Nadezda Apostolova Toshiyuki Araki Yasuhiro Araki Kohei Arasaki Wagner L Araújo Jun Araya Catherine Arden Maria-Angeles Arévalo Sandro Arguelles Esperanza Arias Jyothi Arikkath Hirokazu Arimoto Aileen R Ariosa Darius Armstrong-James Laetitia Arnauné-Pelloquin Angeles Aroca Daniela S Arroyo Ivica Arsov Rubén Artero Dalia Maria Lucia Asaro Michael Aschner Milad Ashrafizadeh Osnat Ashur-Fabian Atanas G Atanasov Alicia K Au Patrick Auberger Holger W Auner Laure Aurelian Riccardo Autelli Laura Avagliano Yenniffer Ávalos Sanja Aveic Célia Alexandra Aveleira Tamar Avin-Wittenberg Yucel Aydin Scott Ayton Srinivas Ayyadevara Maria Azzopardi Misuzu Baba Jonathan M Backer Steven K Backues Dong-Hun Bae Ok-Nam Bae Soo Han Bae Eric H Baehrecke Ahruem Baek Seung-Hoon Baek Sung Hee Baek Giacinto Bagetta Agnieszka Bagniewska-Zadworna Hua Bai Jie Bai Xiyuan Bai Yidong Bai Nandadulal Bairagi Shounak Baksi Teresa Balbi Cosima T Baldari Walter Balduini Andrea Ballabio Maria Ballester Salma Balazadeh Rena Balzan Rina Bandopadhyay Sreeparna Banerjee Sulagna Banerjee Ágnes Bánréti Yan Bao Mauricio S Baptista Alessandra Baracca Cristiana Barbati Ariadna Bargiela Daniela Barilà Peter G Barlow Sami J Barmada Esther Barreiro George E Barreto Jiri Bartek Bonnie Bartel Alberto Bartolome Gaurav R Barve Suresh H Basagoudanavar Diane C Bassham Robert C Bast Alakananda Basu Henri Batoko Isabella Batten Etienne E Baulieu Bradley L Baumgarner Jagadeesh Bayry Rupert Beale Isabelle Beau Florian Beaumatin Luiz R G Bechara George R Beck Michael F Beers Jakob Begun Christian Behrends Georg M N Behrens Roberto Bei Eloy Bejarano Shai Bel Christian Behl Amine Belaid Naïma Belgareh-Touzé Cristina Bellarosa Francesca Belleudi Melissa Belló Pérez Raquel Bello-Morales Jackeline Soares de Oliveira Beltran Sebastián Beltran Doris Mangiaracina Benbrook Mykolas Bendorius Bruno A Benitez Irene Benito-Cuesta Julien Bensalem Martin W Berchtold Sabina Berezowska Daniele Bergamaschi Matteo Bergami Andreas Bergmann Laura Berliocchi Clarisse Berlioz-Torrent Amélie Bernard Lionel Berthoux Cagri G Besirli Sebastien Besteiro Virginie M Betin Rudi Beyaert Jelena S Bezbradica Kiran Bhaskar Ingrid Bhatia-Kissova Resham Bhattacharya Sujoy Bhattacharya Shalmoli Bhattacharyya Md Shenuarin Bhuiyan Sujit Kumar Bhutia Lanrong Bi Xiaolin Bi Trevor J Biden Krikor Bijian Viktor A Billes Nadine Binart Claudia Bincoletto Asa B Birgisdottir Geir Bjorkoy Gonzalo Blanco Ana Blas-Garcia Janusz Blasiak Robert Blomgran Klas Blomgren Janice S Blum Emilio Boada-Romero Mirta Boban Kathleen Boesze-Battaglia Philippe Boeuf Barry Boland Pascale Bomont Paolo Bonaldo Srinivasa Reddy Bonam Laura Bonfili Juan S Bonifacino Brian A Boone Martin D Bootman Matteo Bordi Christoph Borner Beat C Bornhauser Gautam Borthakur Jürgen Bosch Santanu Bose Luis M Botana Juan Botas Chantal M Boulanger Michael E Boulton Mathieu Bourdenx Benjamin Bourgeois Nollaig M Bourke Guilhem Bousquet Patricia Boya Peter V Bozhkov Luiz H M Bozi Tolga O Bozkurt Doug E Brackney Christian H Brandts Ralf J Braun Gerhard H Braus Roberto Bravo-Sagua José M Bravo-San Pedro Patrick Brest Marie-Agnès Bringer Alfredo Briones-Herrera V Courtney Broaddus Peter Brodersen Jeffrey L Brodsky Steven L Brody Paola G Bronson Jeff M Bronstein Carolyn N Brown Rhoderick E Brown Patricia C Brum John H Brumell Nicola Brunetti-Pierri Daniele Bruno Robert J Bryson-Richardson Cecilia Bucci Carmen Buchrieser Marta Bueno Laura Elisa Buitrago-Molina Simone Buraschi Shilpa Buch J Ross Buchan Erin M Buckingham Hikmet Budak Mauricio Budini Geert Bultynck Florin Burada Joseph R Burgoyne M Isabel Burón Victor Bustos Sabrina Büttner Elena Butturini Aaron Byrd Isabel Cabas Sandra Cabrera-Benitez Ken Cadwell Jingjing Cai Lu Cai Qian Cai Montserrat Cairó Jose A Calbet Guy A Caldwell Kim A Caldwell Jarrod A Call Riccardo Calvani Ana C Calvo Miguel Calvo-Rubio Barrera Niels Os Camara Jacques H Camonis Nadine Camougrand Michelangelo Campanella Edward M Campbell François-Xavier Campbell-Valois Silvia Campello Ilaria Campesi Juliane C Campos Olivier Camuzard Jorge Cancino Danilo Candido de Almeida Laura Canesi Isabella Caniggia Barbara Canonico Carles Cantí Bin Cao Michele Caraglia Beatriz Caramés Evie H Carchman Elena Cardenal-Muñoz Cesar Cardenas Luis Cardenas Sandra M Cardoso Jennifer S Carew Georges F Carle Gillian Carleton Silvia Carloni Didac Carmona-Gutierrez Leticia A Carneiro Oliana Carnevali Julian M Carosi Serena Carra Alice Carrier Lucie Carrier Bernadette Carroll A Brent Carter Andreia Neves Carvalho Magali Casanova Caty Casas Josefina Casas Chiara Cassioli Eliseo F Castillo Karen Castillo Sonia Castillo-Lluva Francesca Castoldi Marco Castori Ariel F Castro Margarida Castro-Caldas Javier Castro-Hernandez Susana Castro-Obregon Sergio D Catz Claudia Cavadas Federica Cavaliere Gabriella Cavallini Maria Cavinato Maria L Cayuela Paula Cebollada Rica Valentina Cecarini Francesco Cecconi Marzanna Cechowska-Pasko Simone Cenci Victòria Ceperuelo-Mallafré João J Cerqueira Janete M Cerutti Davide Cervia Vildan Bozok Cetintas Silvia Cetrullo Han-Jung Chae Andrei S Chagin Chee-Yin Chai Gopal Chakrabarti Oishee Chakrabarti Tapas Chakraborty Trinad Chakraborty Mounia Chami Georgios Chamilos David W Chan Edmond Y W Chan Edward D Chan H Y Edwin Chan Helen H Chan Hung Chan Matthew T V Chan Yau Sang Chan Partha K Chandra Chih-Peng Chang Chunmei Chang Hao-Chun Chang Kai Chang Jie Chao Tracey Chapman Nicolas Charlet-Berguerand Samrat Chatterjee Shail K Chaube Anu Chaudhary Santosh Chauhan Edward Chaum Frédéric Checler Michael E Cheetham Chang-Shi Chen Guang-Chao Chen Jian-Fu Chen Liam L Chen Leilei Chen Lin Chen Mingliang Chen Mu-Kuan Chen Ning Chen Quan Chen Ruey-Hwa Chen Shi Chen Wei Chen Weiqiang Chen Xin-Ming Chen Xiong-Wen Chen Xu Chen Yan Chen Ye-Guang Chen Yingyu Chen Yongqiang Chen Yu-Jen Chen Yue-Qin Chen Zhefan Stephen Chen Zhi Chen Zhi-Hua Chen Zhijian J Chen Zhixiang Chen Hanhua Cheng Jun Cheng Shi-Yuan Cheng Wei Cheng Xiaodong Cheng Xiu-Tang Cheng Yiyun Cheng Zhiyong Cheng Zhong Chen Heesun Cheong Jit Kong Cheong Boris V Chernyak Sara Cherry Chi Fai Randy Cheung Chun Hei Antonio Cheung King-Ho Cheung Eric Chevet Richard J Chi Alan Kwok Shing Chiang Ferdinando Chiaradonna Roberto Chiarelli Mario Chiariello Nathalia Chica Susanna Chiocca Mario Chiong Shih-Hwa Chiou Abhilash I Chiramel Valerio Chiurchiù Dong-Hyung Cho Seong-Kyu Choe Augustine M K Choi Mary E Choi Kamalika Roy Choudhury Norman S Chow Charleen T Chu Jason P Chua John Jia En Chua Hyewon Chung Kin Pan Chung Seockhoon Chung So-Hyang Chung Yuen-Li Chung Valentina Cianfanelli Iwona A Ciechomska Mariana Cifuentes Laura Cinque Sebahattin Cirak Mara Cirone Michael J Clague Robert Clarke Emilio Clementi Eliana M Coccia Patrice Codogno Ehud Cohen Mickael M Cohen Tania Colasanti Fiorella Colasuonno Robert A Colbert Anna Colell Miodrag Čolić Nuria S Coll Mark O Collins María I Colombo Daniel A Colón-Ramos Lydie Combaret Sergio Comincini Márcia R Cominetti Antonella Consiglio Andrea Conte Fabrizio Conti Viorica Raluca Contu Mark R Cookson Kevin M Coombs Isabelle Coppens Maria Tiziana Corasaniti Dale P Corkery Nils Cordes Katia Cortese Maria do Carmo Costa Sarah Costantino Paola Costelli Ana Coto-Montes Peter J Crack Jose L Crespo Alfredo Criollo Valeria Crippa Riccardo Cristofani Tamas Csizmadia Antonio Cuadrado Bing Cui Jun Cui Yixian Cui Yong Cui Emmanuel Culetto Andrea C Cumino Andrey V Cybulsky Mark J Czaja Stanislaw J Czuczwar Stefania D'Adamo Marcello D'Amelio Daniela D'Arcangelo Andrew C D'Lugos Gabriella D'Orazi James A da Silva Hormos Salimi Dafsari Ruben K Dagda Yasin Dagdas Maria Daglia Xiaoxia Dai Yun Dai Yuyuan Dai Jessica Dal Col Paul Dalhaimer Luisa Dalla Valle Tobias Dallenga Guillaume Dalmasso Markus Damme Ilaria Dando Nico P Dantuma April L Darling Hiranmoy Das Srinivasan Dasarathy Santosh K Dasari Srikanta Dash Oliver Daumke Adrian N Dauphinee Jeffrey S Davies Valeria A Dávila Roger J Davis Tanja Davis Sharadha Dayalan Naidu Francesca De Amicis Karolien De Bosscher Francesca De Felice Lucia De Franceschi Chiara De Leonibus Mayara G de Mattos Barbosa Guido R Y De Meyer Angelo De Milito Cosimo De Nunzio Clara De Palma Mauro De Santi Claudio De Virgilio Daniela De Zio Jayanta Debnath Brian J DeBosch Jean-Paul Decuypere Mark A Deehan Gianluca Deflorian James DeGregori Benjamin Dehay Gabriel Del Rio Joe R Delaney Lea M D Delbridge Elizabeth Delorme-Axford M Victoria Delpino Francesca Demarchi Vilma Dembitz Nicholas D Demers Hongbin Deng Zhiqiang Deng Joern Dengjel Paul Dent Donna Denton Melvin L DePamphilis Channing J Der Vojo Deretic Albert Descoteaux Laura Devis Sushil Devkota Olivier Devuyst Grant Dewson Mahendiran Dharmasivam Rohan Dhiman Diego di Bernardo Manlio Di Cristina Fabio Di Domenico Pietro Di Fazio Alessio Di Fonzo Giovanni Di Guardo Gianni M Di Guglielmo Luca Di Leo Chiara Di Malta Alessia Di Nardo Martina Di Rienzo Federica Di Sano George Diallinas Jiajie Diao Guillermo Diaz-Araya Inés Díaz-Laviada Jared M Dickinson Marc Diederich Mélanie Dieudé Ivan Dikic Shiping Ding Wen-Xing Ding Luciana Dini Jelena Dinić Miroslav Dinic Albena T Dinkova-Kostova Marc S Dionne Jörg H W Distler Abhinav Diwan Ian M C Dixon Mojgan Djavaheri-Mergny Ina Dobrinski Oxana Dobrovinskaya Radek Dobrowolski Renwick C J Dobson Jelena Đokić Serap Dokmeci Emre Massimo Donadelli Bo Dong Xiaonan Dong Zhiwu Dong Gerald W Dorn Ii Volker Dotsch Huan Dou Juan Dou Moataz Dowaidar Sami Dridi Liat Drucker Ailian Du Caigan Du Guangwei Du Hai-Ning Du Li-Lin Du André du Toit Shao-Bin Duan Xiaoqiong Duan Sónia P Duarte Anna Dubrovska Elaine A Dunlop Nicolas Dupont Raúl V Durán Bilikere S Dwarakanath Sergey A Dyshlovoy Darius Ebrahimi-Fakhari Leopold Eckhart Charles L Edelstein Thomas Efferth Eftekhar Eftekharpour Ludwig Eichinger Nabil Eid Tobias Eisenberg N Tony Eissa Sanaa Eissa Miriam Ejarque Abdeljabar El Andaloussi Nazira El-Hage Shahenda El-Naggar Anna Maria Eleuteri Eman S El-Shafey Mohamed Elgendy Aristides G Eliopoulos María M Elizalde Philip M Elks Hans-Peter Elsasser Eslam S Elsherbiny Brooke M Emerling N C Tolga Emre Christina H Eng Nikolai Engedal Anna-Mart Engelbrecht Agnete S T Engelsen Jorrit M Enserink Ricardo Escalante Audrey Esclatine Mafalda Escobar-Henriques Eeva-Liisa Eskelinen Lucile Espert Makandjou-Ola Eusebio Gemma Fabrias Cinzia Fabrizi Antonio Facchiano Francesco Facchiano Bengt Fadeel Claudio Fader Alex C Faesen W Douglas Fairlie Alberto Falcó Bjorn H Falkenburger Daping Fan Jie Fan Yanbo Fan Evandro F Fang Yanshan Fang Yognqi Fang Manolis Fanto Tamar Farfel-Becker Mathias Faure Gholamreza Fazeli Anthony O Fedele Arthur M Feldman Du Feng Jiachun Feng Lifeng Feng Yibin Feng Yuchen Feng Wei Feng Thais Fenz Araujo Thomas A Ferguson Álvaro F Fernández Jose C Fernandez-Checa Sonia Fernández-Veledo Alisdair R Fernie Anthony W Ferrante Alessandra Ferraresi Merari F Ferrari Julio C B Ferreira Susan Ferro-Novick Antonio Figueras Riccardo Filadi Nicoletta Filigheddu Eduardo Filippi-Chiela Giuseppe Filomeni Gian Maria Fimia Vittorio Fineschi Francesca Finetti Steven Finkbeiner Edward A Fisher Paul B Fisher Flavio Flamigni Steven J Fliesler Trude H Flo Ida Florance Oliver Florey Tullio Florio Erika Fodor Carlo Follo Edward A Fon Antonella Forlino Francesco Fornai Paola Fortini Anna Fracassi Alessandro Fraldi Brunella Franco Rodrigo Franco Flavia Franconi Lisa B Frankel Scott L Friedman Leopold F Fröhlich Gema Frühbeck Jose M Fuentes Yukio Fujiki Naonobu Fujita Yuuki Fujiwara Mitsunori Fukuda Simone Fulda Luc Furic Norihiko Furuya Carmela Fusco Michaela U Gack Lidia Gaffke Sehamuddin Galadari Alessia Galasso Maria F Galindo Sachith Gallolu Kankanamalage Lorenzo Galluzzi Vincent Galy Noor Gammoh Boyi Gan Ian G Ganley Feng Gao Hui Gao Minghui Gao Ping Gao Shou-Jiang Gao Wentao Gao Xiaobo Gao Ana Garcera Maria Noé Garcia Verónica E Garcia Francisco García-Del Portillo Vega Garcia-Escudero Aracely Garcia-Garcia Marina Garcia-Macia Diana García-Moreno Carmen Garcia-Ruiz Patricia García-Sanz Abhishek D Garg Ricardo Gargini Tina Garofalo Robert F Garry Nils C Gassen Damian Gatica Liang Ge Wanzhong Ge Ruth Geiss-Friedlander Cecilia Gelfi Pascal Genschik Ian E Gentle Valeria Gerbino Christoph Gerhardt Kyla Germain Marc Germain David A Gewirtz Elham Ghasemipour Afshar Saeid Ghavami Alessandra Ghigo Manosij Ghosh Georgios Giamas Claudia Giampietri Alexandra Giatromanolaki Gary E Gibson Spencer B Gibson Vanessa Ginet Edward Giniger Carlotta Giorgi Henrique Girao Stephen E Girardin Mridhula Giridharan Sandy Giuliano Cecilia Giulivi Sylvie Giuriato Julien Giustiniani Alexander Gluschko Veit Goder Alexander Goginashvili Jakub Golab David C Goldstone Anna Golebiewska Luciana R Gomes Rodrigo Gomez Rubén Gómez-Sánchez Maria Catalina Gomez-Puerto Raquel Gomez-Sintes Qingqiu Gong Felix M Goni Javier González-Gallego Tomas Gonzalez-Hernandez Rosa A Gonzalez-Polo Jose A Gonzalez-Reyes Patricia González-Rodríguez Ing Swie Goping Marina S Gorbatyuk Nikolai V Gorbunov Kıvanç Görgülü Roxana M Gorojod Sharon M Gorski Sandro Goruppi Cecilia Gotor Roberta A Gottlieb Illana Gozes Devrim Gozuacik Martin Graef Markus H Gräler Veronica Granatiero Daniel Grasso Joshua P Gray Douglas R Green Alexander Greenhough Stephen L Gregory Edward F Griffin Mark W Grinstaff Frederic Gros Charles Grose Angelina S Gross Florian Gruber Paolo Grumati Tilman Grune Xueyan Gu Jun-Lin Guan Carlos M Guardia Kishore Guda Flora Guerra Consuelo Guerri Prasun Guha Carlos Guillén Shashi Gujar Anna Gukovskaya Ilya Gukovsky Jan Gunst Andreas Günther Anyonya R Guntur Chuanyong Guo Chun Guo Hongqing Guo Lian-Wang Guo Ming Guo Pawan Gupta Shashi Kumar Gupta Swapnil Gupta Veer Bala Gupta Vivek Gupta Asa B Gustafsson David D Gutterman Ranjitha H B Annakaisa Haapasalo James E Haber Aleksandra Hać Shinji Hadano Anders J Hafrén Mansour Haidar Belinda S Hall Gunnel Halldén Anne Hamacher-Brady Andrea Hamann Maho Hamasaki Weidong Han Malene Hansen Phyllis I Hanson Zijian Hao Masaru Harada Ljubica Harhaji-Trajkovic Nirmala Hariharan Nigil Haroon James Harris Takafumi Hasegawa Noor Hasima Nagoor Jeffrey A Haspel Volker Haucke Wayne D Hawkins Bruce A Hay Cole M Haynes Soren B Hayrabedyan Thomas S Hays Congcong He Qin He Rong-Rong He You-Wen He Yu-Ying He Yasser Heakal Alexander M Heberle J Fielding Hejtmancik Gudmundur Vignir Helgason Vanessa Henkel Marc Herb Alexander Hergovich Anna Herman-Antosiewicz Agustín Hernández Carlos Hernandez Sergio Hernandez-Diaz Virginia Hernandez-Gea Amaury Herpin Judit Herreros Javier H Hervás Daniel Hesselson Claudio Hetz Volker T Heussler Yujiro Higuchi Sabine Hilfiker Joseph A Hill William S Hlavacek Emmanuel A Ho Idy H T Ho Philip Wing-Lok Ho Shu-Leong Ho Wan Yun Ho G Aaron Hobbs Mark Hochstrasser Peter H M Hoet Daniel Hofius Paul Hofman Annika Höhn Carina I Holmberg Jose R Hombrebueno Chang-Won Hong Yi-Ren Hong Lora V Hooper Thorsten Hoppe Rastislav Horos Yujin Hoshida I-Lun Hsin Hsin-Yun Hsu Bing Hu Dong Hu Li-Fang Hu Ming Chang Hu Ronggui Hu Wei Hu Yu-Chen Hu Zhuo-Wei Hu Fang Hua Jinlian Hua Yingqi Hua Chongmin Huan Canhua Huang Chuanshu Huang Chuanxin Huang Chunling Huang Haishan Huang Kun Huang Michael L H Huang Rui Huang Shan Huang Tianzhi Huang Xing Huang Yuxiang Jack Huang Tobias B Huber Virginie Hubert Christian A Hubner Stephanie M Hughes William E Hughes Magali Humbert Gerhard Hummer James H Hurley Sabah Hussain Salik Hussain Patrick J Hussey Martina Hutabarat Hui-Yun Hwang Seungmin Hwang Antonio Ieni Fumiyo Ikeda Yusuke Imagawa Yuzuru Imai Carol Imbriano Masaya Imoto Denise M Inman Ken Inoki Juan Iovanna Renato V Iozzo Giuseppe Ippolito Javier E Irazoqui Pablo Iribarren Mohd Ishaq Makoto Ishikawa Nestor Ishimwe Ciro Isidoro Nahed Ismail Shohreh Issazadeh-Navikas Eisuke Itakura Daisuke Ito Davor Ivankovic Saška Ivanova Anand Krishnan V Iyer José M Izquierdo Masanori Izumi Marja Jäättelä Majid Sakhi Jabir William T Jackson Nadia Jacobo-Herrera Anne-Claire Jacomin Elise Jacquin Pooja Jadiya Hartmut Jaeschke Chinnaswamy Jagannath Arjen J Jakobi Johan Jakobsson Bassam Janji Pidder Jansen-Dürr Patric J Jansson Jonathan Jantsch Sławomir Januszewski Alagie Jassey Steve Jean Hélène Jeltsch-David Pavla Jendelova Andreas Jenny Thomas E Jensen Niels Jessen Jenna L Jewell Jing Ji Lijun Jia Rui Jia Liwen Jiang Qing Jiang Richeng Jiang Teng Jiang Xuejun Jiang Yu Jiang Maria Jimenez-Sanchez Eun-Jung Jin Fengyan Jin Hongchuan Jin Li Jin Luqi Jin Meiyan Jin Si Jin Eun-Kyeong Jo Carine Joffre Terje Johansen Gail V W Johnson Simon A Johnston Eija Jokitalo Mohit Kumar Jolly Leo A B Joosten Joaquin Jordan Bertrand Joseph Dianwen Ju Jeong-Sun Ju Jingfang Ju Esmeralda Juárez Delphine Judith Gábor Juhász Youngsoo Jun Chang Hwa Jung Sung-Chul Jung Yong Keun Jung Heinz Jungbluth Johannes Jungverdorben Steffen Just Kai Kaarniranta Allen Kaasik Tomohiro Kabuta Daniel Kaganovich Alon Kahana Renate Kain Shinjo Kajimura Maria Kalamvoki Manjula Kalia Danuta S Kalinowski Nina Kaludercic Ioanna Kalvari Joanna Kaminska Vitaliy O Kaminskyy Hiromitsu Kanamori Keizo Kanasaki Chanhee Kang Rui Kang Sang Sun Kang Senthilvelrajan Kaniyappan Tomotake Kanki Thirumala-Devi Kanneganti Anumantha G Kanthasamy Arthi Kanthasamy Marc Kantorow Orsolya Kapuy Michalis V Karamouzis Md Razaul Karim Parimal Karmakar Rajesh G Katare Masaru Kato Stefan H E Kaufmann Anu Kauppinen Gur P Kaushal Susmita Kaushik Kiyoshi Kawasaki Kemal Kazan Po-Yuan Ke Damien J Keating Ursula Keber John H Kehrl Kate E Keller Christian W Keller Jongsook Kim Kemper Candia M Kenific Oliver Kepp Stephanie Kermorgant Andreas Kern Robin Ketteler Tom G Keulers Boris Khalfin Hany Khalil Bilon Khambu Shahid Y Khan Vinoth Kumar Megraj Khandelwal Rekha Khandia Widuri Kho Noopur V Khobrekar Sataree Khuansuwan Mukhran Khundadze Samuel A Killackey Dasol Kim Deok Ryong Kim Do-Hyung Kim Dong-Eun Kim Eun Young Kim Eun-Kyoung Kim Hak-Rim Kim Hee-Sik Kim Hyung-Ryong Kim Jeong Hun Kim Jin Kyung Kim Jin-Hoi Kim Joungmok Kim Ju Hwan Kim Keun Il Kim Peter K Kim Seong-Jun Kim Scot R Kimball Adi Kimchi Alec C Kimmelman Tomonori Kimura Matthew A King Kerri J Kinghorn Conan G Kinsey Vladimir Kirkin Lorrie A Kirshenbaum Sergey L Kiselev Shuji Kishi Katsuhiko Kitamoto Yasushi Kitaoka Kaio Kitazato Richard N Kitsis Josef T Kittler Ole Kjaerulff Peter S Klein Thomas Klopstock Jochen Klucken Helene Knævelsrud Roland L Knorr Ben C B Ko Fred Ko Jiunn-Liang Ko Hotaka Kobayashi Satoru Kobayashi Ina Koch Jan C Koch Ulrich Koenig Donat Kögel Young Ho Koh Masato Koike Sepp D Kohlwein Nur M Kocaturk Masaaki Komatsu Jeannette König Toru Kono Benjamin T Kopp Tamas Korcsmaros Gözde Korkmaz Viktor I Korolchuk Mónica Suárez Korsnes Ali Koskela Janaiah Kota Yaichiro Kotake Monica L Kotler Yanjun Kou Michael I Koukourakis Evangelos Koustas Attila L Kovacs Tibor Kovács Daisuke Koya Tomohiro Kozako Claudine Kraft Dimitri Krainc Helmut Krämer Anna D Krasnodembskaya Carole Kretz-Remy Guido Kroemer Nicholas T Ktistakis Kazuyuki Kuchitsu Sabine Kuenen Lars Kuerschner Thomas Kukar Ajay Kumar Ashok Kumar Deepak Kumar Dhiraj Kumar Sharad Kumar Shinji Kume Caroline Kumsta Chanakya N Kundu Mondira Kundu Ajaikumar B Kunnumakkara Lukasz Kurgan Tatiana G Kutateladze Ozlem Kutlu SeongAe Kwak Ho Jeong Kwon Taeg Kyu Kwon Yong Tae Kwon Irene Kyrmizi Albert La Spada Patrick Labonté Sylvain Ladoire Ilaria Laface Frank Lafont Diane C Lagace Vikramjit Lahiri Zhibing Lai Angela S Laird Aparna Lakkaraju Trond Lamark Sheng-Hui Lan Ane Landajuela Darius J R Lane Jon D Lane Charles H Lang Carsten Lange Ülo Langel Rupert Langer Pierre Lapaquette Jocelyn Laporte Nicholas F LaRusso Isabel Lastres-Becker Wilson Chun Yu Lau Gordon W Laurie Sergio Lavandero Betty Yuen Kwan Law Helen Ka-Wai Law Rob Layfield Weidong Le Herve Le Stunff Alexandre Y Leary Jean-Jacques Lebrun Lionel Y W Leck Jean-Philippe Leduc-Gaudet Changwook Lee Chung-Pei Lee Da-Hye Lee Edward B Lee Erinna F Lee Gyun Min Lee He-Jin Lee Heung Kyu Lee Jae Man Lee Jason S Lee Jin-A Lee Joo-Yong Lee Jun Hee Lee Michael Lee Min Goo Lee Min Jae Lee Myung-Shik Lee Sang Yoon Lee Seung-Jae Lee Stella Y Lee Sung Bae Lee Won Hee Lee Ying-Ray Lee Yong-Ho Lee Youngil Lee Christophe Lefebvre Renaud Legouis Yu L Lei Yuchen Lei Sergey Leikin Gerd Leitinger Leticia Lemus Shuilong Leng Olivia Lenoir Guido Lenz Heinz Josef Lenz Paola Lenzi Yolanda León Andréia M Leopoldino Christoph Leschczyk Stina Leskelä Elisabeth Letellier Chi-Ting Leung Po Sing Leung Jeremy S Leventhal Beth Levine Patrick A Lewis Klaus Ley Bin Li Da-Qiang Li Jianming Li Jing Li Jiong Li Ke Li Liwu Li Mei Li Min Li Min Li Ming Li Mingchuan Li Pin-Lan Li Ming-Qing Li Qing Li Sheng Li Tiangang Li Wei Li Wenming Li Xue Li Yi-Ping Li Yuan Li Zhiqiang Li Zhiyong Li Zhiyuan Li Jiqin Lian Chengyu Liang Qiangrong Liang Weicheng Liang Yongheng Liang YongTian Liang Guanghong Liao Lujian Liao Mingzhi Liao Yung-Feng Liao Mariangela Librizzi Pearl P Y Lie Mary A Lilly Hyunjung J Lim Thania R R Lima Federica Limana Chao Lin Chih-Wen Lin Dar-Shong Lin Fu-Cheng Lin Jiandie D Lin Kurt M Lin Kwang-Huei Lin Liang-Tzung Lin Pei-Hui Lin Qiong Lin Shaofeng Lin Su-Ju Lin Wenyu Lin Xueying Lin Yao-Xin Lin Yee-Shin Lin Rafael Linden Paula Lindner Shuo-Chien Ling Paul Lingor Amelia K Linnemann Yih-Cherng Liou Marta M Lipinski Saška Lipovšek Vitor A Lira Natalia Lisiak Paloma B Liton Chao Liu Ching-Hsuan Liu Chun-Feng Liu Cui Hua Liu Fang Liu Hao Liu Hsiao-Sheng Liu Hua-Feng Liu Huifang Liu Jia Liu Jing Liu Julia Liu Leyuan Liu Longhua Liu Meilian Liu Qin Liu Wei Liu Wende Liu Xiao-Hong Liu Xiaodong Liu Xingguo Liu Xu Liu Xuedong Liu Yanfen Liu Yang Liu Yang Liu Yueyang Liu Yule Liu J Andrew Livingston Gerard Lizard Jose M Lizcano Senka Ljubojevic-Holzer Matilde E LLeonart David Llobet-Navàs Alicia Llorente Chih Hung Lo Damián Lobato-Márquez Qi Long Yun Chau Long Ben Loos Julia A Loos Manuela G López Guillermo López-Doménech José Antonio López-Guerrero Ana T López-Jiménez Óscar López-Pérez Israel López-Valero Magdalena J Lorenowicz Mar Lorente Peter Lorincz Laura Lossi Sophie Lotersztajn Penny E Lovat Jonathan F Lovell Alenka Lovy Péter Lőw Guang Lu Haocheng Lu Jia-Hong Lu Jin-Jian Lu Mengji Lu Shuyan Lu Alessandro Luciani John M Lucocq Paula Ludovico Micah A Luftig Morten Luhr Diego Luis-Ravelo Julian J Lum Liany Luna-Dulcey Anders H Lund Viktor K Lund Jan D Lünemann Patrick Lüningschrör Honglin Luo Rongcan Luo Shouqing Luo Zhi Luo Claudio Luparello Bernhard Lüscher Luan Luu Alex Lyakhovich Konstantin G Lyamzaev Alf Håkon Lystad Lyubomyr Lytvynchuk Alvin C Ma Changle Ma Mengxiao Ma Ning-Fang Ma Quan-Hong Ma Xinliang Ma Yueyun Ma Zhenyi Ma Ormond A MacDougald Fernando Macian Gustavo C MacIntosh Jeffrey P MacKeigan Kay F Macleod Sandra Maday Frank Madeo Muniswamy Madesh Tobias Madl Julio Madrigal-Matute Akiko Maeda Yasuhiro Maejima Marta Magarinos Poornima Mahavadi Emiliano Maiani Kenneth Maiese Panchanan Maiti Maria Chiara Maiuri Barbara Majello Michael B Major Elena Makareeva Fayaz Malik Karthik Mallilankaraman Walter Malorni Alina Maloyan Najiba Mammadova Gene Chi Wai Man Federico Manai Joseph D Mancias Eva-Maria Mandelkow Michael A Mandell Angelo A Manfredi Masoud H Manjili Ravi Manjithaya Patricio Manque Bella B Manshian Raquel Manzano Claudia Manzoni Kai Mao Cinzia Marchese Sandrine Marchetti Anna Maria Marconi Fabrizio Marcucci Stefania Mardente Olga A Mareninova Marta Margeta Muriel Mari Sara Marinelli Oliviero Marinelli Guillermo Mariño Sofia Mariotto Richard S Marshall Mark R Marten Sascha Martens Alexandre P J Martin Katie R Martin Sara Martin Shaun Martin Adrián Martín-Segura Miguel A Martín-Acebes Inmaculada Martin-Burriel Marcos Martin-Rincon Paloma Martin-Sanz José A Martina Wim Martinet Aitor Martinez Ana Martinez Jennifer Martinez Moises Martinez Velazquez Nuria Martinez-Lopez Marta Martinez-Vicente Daniel O Martins Joilson O Martins Waleska K Martins Tania Martins-Marques Emanuele Marzetti Shashank Masaldan Celine Masclaux-Daubresse Douglas G Mashek Valentina Massa Lourdes Massieu Glenn R Masson Laura Masuelli Anatoliy I Masyuk Tetyana V Masyuk Paola Matarrese Ander Matheu Satoaki Matoba Sachiko Matsuzaki Pamela Mattar Alessandro Matte Domenico Mattoscio José L Mauriz Mario Mauthe Caroline Mauvezin Emanual Maverakis Paola Maycotte Johanna Mayer Gianluigi Mazzoccoli Cristina Mazzoni Joseph R Mazzulli Nami McCarty Christine McDonald Mitchell R McGill Sharon L McKenna BethAnn McLaughlin Fionn McLoughlin Mark A McNiven Thomas G McWilliams Fatima Mechta-Grigoriou Tania Catarina Medeiros Diego L Medina Lynn A Megeney Klara Megyeri Maryam Mehrpour Jawahar L Mehta Alfred J Meijer Annemarie H Meijer Jakob Mejlvang Alicia Meléndez Annette Melk Gonen Memisoglu Alexandrina F Mendes Delong Meng Fei Meng Tian Meng Rubem Menna-Barreto Manoj B Menon Carol Mercer Anne E Mercier Jean-Louis Mergny Adalberto Merighi Seth D Merkley Giuseppe Merla Volker Meske Ana Cecilia Mestre Shree Padma Metur Christian Meyer Hemmo Meyer Wenyi Mi Jeanne Mialet-Perez Junying Miao Lucia Micale Yasuo Miki Enrico Milan Małgorzata Milczarek Dana L Miller Samuel I Miller Silke Miller Steven W Millward Ira Milosevic Elena A Minina Hamed Mirzaei Hamid Reza Mirzaei Mehdi Mirzaei Amit Mishra Nandita Mishra Paras Kumar Mishra Maja Misirkic Marjanovic Roberta Misasi Amit Misra Gabriella Misso Claire Mitchell Geraldine Mitou Tetsuji Miura Shigeki Miyamoto Makoto Miyazaki Mitsunori Miyazaki Taiga Miyazaki Keisuke Miyazawa Noboru Mizushima Trine H Mogensen Baharia Mograbi Reza Mohammadinejad Yasir Mohamud Abhishek Mohanty Sipra Mohapatra Torsten Möhlmann Asif Mohmmed Anna Moles Kelle H Moley Maurizio Molinari Vincenzo Mollace Andreas Buch Møller Bertrand Mollereau Faustino Mollinedo Costanza Montagna Mervyn J Monteiro Andrea Montella L Ruth Montes Barbara Montico Vinod K Mony Giacomo Monzio Compagnoni Michael N Moore Mohammad A Moosavi Ana L Mora Marina Mora David Morales-Alamo Rosario Moratalla Paula I Moreira Elena Morelli Sandra Moreno Daniel Moreno-Blas Viviana Moresi Benjamin Morga Alwena H Morgan Fabrice Morin Hideaki Morishita Orson L Moritz Mariko Moriyama Yuji Moriyasu Manuela Morleo Eugenia Morselli Jose F Moruno-Manchon Jorge Moscat Serge Mostowy Elisa Motori Andrea Felinto Moura Naima Moustaid-Moussa Maria Mrakovcic Gabriel Muciño-Hernández Anupam Mukherjee Subhadip Mukhopadhyay Jean M Mulcahy Levy Victoriano Mulero Sylviane Muller Christian Münch Ashok Munjal Pura Munoz-Canoves Teresa Muñoz-Galdeano Christian Münz Tomokazu Murakawa Claudia Muratori Brona M Murphy J Patrick Murphy Aditya Murthy Timo T Myöhänen Indira U Mysorekar Jennifer Mytych Seyed Mohammad Nabavi Massimo Nabissi Péter Nagy Jihoon Nah Aimable Nahimana Ichiro Nakagawa Ken Nakamura Hitoshi Nakatogawa Shyam S Nandi Meera Nanjundan Monica Nanni Gennaro Napolitano Roberta Nardacci Masashi Narita Melissa Nassif Ilana Nathan Manabu Natsumeda Ryno J Naude Christin Naumann Olaia Naveiras Fatemeh Navid Steffan T Nawrocki Taras Y Nazarko Francesca Nazio Florentina Negoita Thomas Neill Amanda L Neisch Luca M Neri Mihai G Netea Patrick Neubert Thomas P Neufeld Dietbert Neumann Albert Neutzner Phillip T Newton Paul A Ney Ioannis P Nezis Charlene C W Ng Tzi Bun Ng Hang T T Nguyen Long T Nguyen Hong-Min Ni Clíona Ní Cheallaigh Zhenhong Ni M Celeste Nicolao Francesco Nicoli Manuel Nieto-Diaz Per Nilsson Shunbin Ning Rituraj Niranjan Hiroshi Nishimune Mireia Niso-Santano Ralph A Nixon Annalisa Nobili Clevio Nobrega Takeshi Noda Uxía Nogueira-Recalde Trevor M Nolan Ivan Nombela Ivana Novak Beatriz Novoa Takashi Nozawa Nobuyuki Nukina Carmen Nussbaum-Krammer Jesper Nylandsted Tracey R O'Donovan Seónadh M O'Leary Eyleen J O'Rourke Mary P O'Sullivan Timothy E O'Sullivan Salvatore Oddo Ina Oehme Michinaga Ogawa Eric Ogier-Denis Margret H Ogmundsdottir Besim Ogretmen Goo Taeg Oh Seon-Hee Oh Young J Oh Takashi Ohama Yohei Ohashi Masaki Ohmuraya Vasileios Oikonomou Rani Ojha Koji Okamoto Hitoshi Okazawa Masahide Oku Sara Oliván Jorge M A Oliveira Michael Ollmann James A Olzmann Shakib Omari M Bishr Omary Gizem Önal Martin Ondrej Sang-Bing Ong Sang-Ging Ong Anna Onnis Juan A Orellana Sara Orellana-Muñoz Maria Del Mar Ortega-Villaizan Xilma R Ortiz-Gonzalez Elena Ortona Heinz D Osiewacz Abdel-Hamid K Osman Rosario Osta Marisa S Otegui Kinya Otsu Christiane Ott Luisa Ottobrini Jing-Hsiung James Ou Tiago F Outeiro Inger Oynebraten Melek Ozturk Gilles Pagès Susanta Pahari Marta Pajares Utpal B Pajvani Rituraj Pal Simona Paladino Nicolas Pallet Michela Palmieri Giuseppe Palmisano Camilla Palumbo Francesco Pampaloni Lifeng Pan Qingjun Pan Wenliang Pan Xin Pan Ganna Panasyuk Rahul Pandey Udai B Pandey Vrajesh Pandya Francesco Paneni Shirley Y Pang Elisa Panzarini Daniela L Papademetrio Elena Papaleo Daniel Papinski Diana Papp Eun Chan Park Hwan Tae Park Ji-Man Park Jong-In Park Joon Tae Park Junsoo Park Sang Chul Park Sang-Youel Park Abraham H Parola Jan B Parys Adrien Pasquier Benoit Pasquier João F Passos Nunzia Pastore Hemal H Patel Daniel Patschan Sophie Pattingre Gustavo Pedraza-Alva Jose Pedraza-Chaverri Zully Pedrozo Gang Pei Jianming Pei Hadas Peled-Zehavi Joaquín M Pellegrini Joffrey Pelletier Miguel A Peñalva Di Peng Ying Peng Fabio Penna Maria Pennuto Francesca Pentimalli Cláudia Mf Pereira Gustavo J S Pereira Lilian C Pereira Luis Pereira de Almeida Nirma D Perera Ángel Pérez-Lara Ana B Perez-Oliva María Esther Pérez-Pérez Palsamy Periyasamy Andras Perl Cristiana Perrotta Ida Perrotta Richard G Pestell Morten Petersen Irina Petrache Goran Petrovski Thorsten Pfirrmann Astrid S Pfister Jennifer A Philips Huifeng Pi Anna Picca Alicia M Pickrell Sandy Picot Giovanna M Pierantoni Marina Pierdominici Philippe Pierre Valérie Pierrefite-Carle Karolina Pierzynowska Federico Pietrocola Miroslawa Pietruczuk Claudio Pignata Felipe X Pimentel-Muiños Mario Pinar Roberta O Pinheiro Ronit Pinkas-Kramarski Paolo Pinton Karolina Pircs Sujan Piya Paola Pizzo Theo S Plantinga Harald W Platta Ainhoa Plaza-Zabala Markus Plomann Egor Y Plotnikov Helene Plun-Favreau Ryszard Pluta Roger Pocock Stefanie Pöggeler Christian Pohl Marc Poirot Angelo Poletti Marisa Ponpuak Hana Popelka Blagovesta Popova Helena Porta Soledad Porte Alcon Eliana Portilla-Fernandez Martin Post Malia B Potts Joanna Poulton Ted Powers Veena Prahlad Tomasz K Prajsnar Domenico Praticò Rosaria Prencipe Muriel Priault Tassula Proikas-Cezanne Vasilis J Promponas Christopher G Proud Rosa Puertollano Luigi Puglielli Thomas Pulinilkunnil Deepika Puri Rajat Puri Julien Puyal Xiaopeng Qi Yongmei Qi Wenbin Qian Lei Qiang Yu Qiu Joe Quadrilatero Jorge Quarleri Nina Raben Hannah Rabinowich Debora Ragona Michael J Ragusa Nader Rahimi Marveh Rahmati Valeria Raia Nuno Raimundo Namakkal-Soorappan Rajasekaran Sriganesh Ramachandra Rao Abdelhaq Rami Ignacio Ramírez-Pardo David B Ramsden Felix Randow Pundi N Rangarajan Danilo Ranieri Hai Rao Lang Rao Rekha Rao Sumit Rathore J Arjuna Ratnayaka Edward A Ratovitski Palaniyandi Ravanan Gloria Ravegnini Swapan K Ray Babak Razani Vito Rebecca Fulvio Reggiori Anne Régnier-Vigouroux Andreas S Reichert David Reigada Jan H Reiling Theo Rein Siegfried Reipert Rokeya Sultana Rekha Hongmei Ren Jun Ren Weichao Ren Tristan Renault Giorgia Renga Karen Reue Kim Rewitz Bruna Ribeiro de Andrade Ramos S Amer Riazuddin Teresa M Ribeiro-Rodrigues Jean-Ehrland Ricci Romeo Ricci Victoria Riccio Des R Richardson Yasuko Rikihisa Makarand V Risbud Ruth M Risueño Konstantinos Ritis Salvatore Rizza Rosario Rizzuto Helen C Roberts Luke D Roberts Katherine J Robinson Maria Carmela Roccheri Stephane Rocchi George G Rodney Tiago Rodrigues Vagner Ramon Rodrigues Silva Amaia Rodriguez Ruth Rodriguez-Barrueco Nieves Rodriguez-Henche Humberto Rodriguez-Rocha Jeroen Roelofs Robert S Rogers Vladimir V Rogov Ana I Rojo Krzysztof Rolka Vanina Romanello Luigina Romani Alessandra Romano Patricia S Romano David Romeo-Guitart Luis C Romero Montserrat Romero Joseph C Roney Christopher Rongo Sante Roperto Mathias T Rosenfeldt Philip Rosenstiel Anne G Rosenwald Kevin A Roth Lynn Roth Steven Roth Kasper M A Rouschop Benoit D Roussel Sophie Roux Patrizia Rovere-Querini Ajit Roy Aurore Rozieres Diego Ruano David C Rubinsztein Maria P Rubtsova Klaus Ruckdeschel Christoph Ruckenstuhl Emil Rudolf Rüdiger Rudolf Alessandra Ruggieri Avnika Ashok Ruparelia Paola Rusmini Ryan R Russell Gian Luigi Russo Maria Russo Rossella Russo Oxana O Ryabaya Kevin M Ryan Kwon-Yul Ryu Maria Sabater-Arcis Ulka Sachdev Michael Sacher Carsten Sachse Abhishek Sadhu Junichi Sadoshima Nathaniel Safren Paul Saftig Antonia P Sagona Gaurav Sahay Amirhossein Sahebkar Mustafa Sahin Ozgur Sahin Sumit Sahni Nayuta Saito Shigeru Saito Tsunenori Saito Ryohei Sakai Yasuyoshi Sakai Jun-Ichi Sakamaki Kalle Saksela Gloria Salazar Anna Salazar-Degracia Ghasem H Salekdeh Ashok K Saluja Belém Sampaio-Marques Maria Cecilia Sanchez Jose A Sanchez-Alcazar Victoria Sanchez-Vera Vanessa Sancho-Shimizu J Thomas Sanderson Marco Sandri Stefano Santaguida Laura Santambrogio Magda M Santana Giorgio Santoni Alberto Sanz Pascual Sanz Shweta Saran Marco Sardiello Timothy J Sargeant Apurva Sarin Chinmoy Sarkar Sovan Sarkar Maria-Rosa Sarrias Surajit Sarkar Dipanka Tanu Sarmah Jaakko Sarparanta Aishwarya Sathyanarayan Ranganayaki Sathyanarayanan K Matthew Scaglione Francesca Scatozza Liliana Schaefer Zachary T Schafer Ulrich E Schaible Anthony H V Schapira Michael Scharl Hermann M Schatzl Catherine H Schein Wiep Scheper David Scheuring Maria Vittoria Schiaffino Monica Schiappacassi Rainer Schindl Uwe Schlattner Oliver Schmidt Roland Schmitt Stephen D Schmidt Ingo Schmitz Eran Schmukler Anja Schneider Bianca E Schneider Romana Schober Alejandra C Schoijet Micah B Schott Michael Schramm Bernd Schröder Kai Schuh Christoph Schüller Ryan J Schulze Lea Schürmanns Jens C Schwamborn Melanie Schwarten Filippo Scialo Sebastiano Sciarretta Melanie J Scott Kathleen W Scotto A Ivana Scovassi Andrea Scrima Aurora Scrivo David Sebastian Salwa Sebti Simon Sedej Laura Segatori Nava Segev Per O Seglen Iban Seiliez Ekihiro Seki Scott B Selleck Frank W Sellke Joshua T Selsby Michael Sendtner Serif Senturk Elena Seranova Consolato Sergi Ruth Serra-Moreno Hiromi Sesaki Carmine Settembre Subba Rao Gangi Setty Gianluca Sgarbi Ou Sha John J Shacka Javeed A Shah Dantong Shang Changshun Shao Feng Shao Soroush Sharbati Lisa M Sharkey Dipali Sharma Gaurav Sharma Kulbhushan Sharma Pawan Sharma Surendra Sharma Han-Ming Shen Hongtao Shen Jiangang Shen Ming Shen Weili Shen Zheni Shen Rui Sheng Zhi Sheng Zu-Hang Sheng Jianjian Shi Xiaobing Shi Ying-Hong Shi Kahori Shiba-Fukushima Jeng-Jer Shieh Yohta Shimada Shigeomi Shimizu Makoto Shimozawa Takahiro Shintani Christopher J Shoemaker Shahla Shojaei Ikuo Shoji Bhupendra V Shravage Viji Shridhar Chih-Wen Shu Hong-Bing Shu Ke Shui Arvind K Shukla Timothy E Shutt Valentina Sica Aleem Siddiqui Amanda Sierra Virginia Sierra-Torre Santiago Signorelli Payel Sil Bruno J de Andrade Silva Johnatas D Silva Eduardo Silva-Pavez Sandrine Silvente-Poirot Rachel E Simmonds Anna Katharina Simon Hans-Uwe Simon Matias Simons Anurag Singh Lalit P Singh Rajat Singh Shivendra V Singh Shrawan K Singh Sudha B Singh Sunaina Singh Surinder Pal Singh Debasish Sinha Rohit Anthony Sinha Sangita Sinha Agnieszka Sirko Kapil Sirohi Efthimios L Sivridis Panagiotis Skendros Aleksandra Skirycz Iva Slaninová Soraya S Smaili Andrei Smertenko Matthew D Smith Stefaan J Soenen Eun Jung Sohn Sophia P M Sok Giancarlo Solaini Thierry Soldati Scott A Soleimanpour Rosa M Soler Alexei Solovchenko Jason A Somarelli Avinash Sonawane Fuyong Song Hyun Kyu Song Ju-Xian Song Kunhua Song Zhiyin Song Leandro R Soria Maurizio Sorice Alexander A Soukas Sandra-Fausia Soukup Diana Sousa Nadia Sousa Paul A Spagnuolo Stephen A Spector M M Srinivas Bharath Daret St Clair Venturina Stagni Leopoldo Staiano Clint A Stalnecker Metodi V Stankov Peter B Stathopulos Katja Stefan Sven Marcel Stefan Leonidas Stefanis Joan S Steffan Alexander Steinkasserer Harald Stenmark Jared Sterneckert Craig Stevens Veronika Stoka Stephan Storch Björn Stork Flavie Strappazzon Anne Marie Strohecker Dwayne G Stupack Huanxing Su Ling-Yan Su Longxiang Su Ana M Suarez-Fontes Carlos S Subauste Selvakumar Subbian Paula V Subirada Ganapasam Sudhandiran Carolyn M Sue Xinbing Sui Corey Summers Guangchao Sun Jun Sun Kang Sun Meng-Xiang Sun Qiming Sun Yi Sun Zhongjie Sun Karen K S Sunahara Eva Sundberg Katalin Susztak Peter Sutovsky Hidekazu Suzuki Gary Sweeney J David Symons Stephen Cho Wing Sze Nathaniel J Szewczyk Anna Tabęcka-Łonczynska Claudio Tabolacci Frank Tacke Heinrich Taegtmeyer Marco Tafani Mitsuo Tagaya Haoran Tai Stephen W G Tait Yoshinori Takahashi Szabolcs Takats Priti Talwar Chit Tam Shing Yau Tam Davide Tampellini Atsushi Tamura Chong Teik Tan Eng-King Tan Ya-Qin Tan Masaki Tanaka Motomasa Tanaka Daolin Tang Jingfeng Tang Tie-Shan Tang Isei Tanida Zhipeng Tao Mohammed Taouis Lars Tatenhorst Nektarios Tavernarakis Allen Taylor Gregory A Taylor Joan M Taylor Elena Tchetina Andrew R Tee Irmgard Tegeder David Teis Natercia Teixeira Fatima Teixeira-Clerc Kumsal A Tekirdag Tewin Tencomnao Sandra Tenreiro Alexei V Tepikin Pilar S Testillano Gianluca Tettamanti Pierre-Louis Tharaux Kathrin Thedieck Arvind A Thekkinghat Stefano Thellung Josephine W Thinwa V P Thirumalaikumar Sufi Mary Thomas Paul G Thomes Andrew Thorburn Lipi Thukral Thomas Thum Michael Thumm Ling Tian Ales Tichy Andreas Till Vincent Timmerman Vladimir I Titorenko Sokol V Todi Krassimira Todorova Janne M Toivonen Luana Tomaipitinca Dhanendra Tomar Cristina Tomas-Zapico Sergej Tomić Benjamin Chun-Kit Tong Chao Tong Xin Tong Sharon A Tooze Maria L Torgersen Satoru Torii Liliana Torres-López Alicia Torriglia Christina G Towers Roberto Towns Shinya Toyokuni Vladimir Trajkovic Donatella Tramontano Quynh-Giao Tran Leonardo H Travassos Charles B Trelford Shirley Tremel Ioannis P Trougakos Betty P Tsao Mario P Tschan Hung-Fat Tse Tak Fu Tse Hitoshi Tsugawa Andrey S Tsvetkov David A Tumbarello Yasin Tumtas María J Tuñón Sandra Turcotte Boris Turk Vito Turk Bradley J Turner Richard I Tuxworth Jessica K Tyler Elena V Tyutereva Yasuo Uchiyama Aslihan Ugun-Klusek Holm H Uhlig Marzena Ułamek-Kozioł Ilya V Ulasov Midori Umekawa Christian Ungermann Rei Unno Sylvie Urbe Elisabet Uribe-Carretero Suayib Üstün Vladimir N Uversky Thomas Vaccari Maria I Vaccaro Björn F Vahsen Helin Vakifahmetoglu-Norberg Rut Valdor Maria J Valente Ayelén Valko Richard B Vallee Angela M Valverde Greet Van den Berghe Stijn van der Veen Luc Van Kaer Jorg van Loosdregt Sjoerd J L van Wijk Wim Vandenberghe Ilse Vanhorebeek Marcos A Vannier-Santos Nicola Vannini M Cristina Vanrell Chiara Vantaggiato Gabriele Varano Isabel Varela-Nieto Máté Varga M Helena Vasconcelos Somya Vats Demetrios G Vavvas Ignacio Vega-Naredo Silvia Vega-Rubin-de-Celis Guillermo Velasco Ariadna P Velázquez Tibor Vellai Edo Vellenga Francesca Velotti Mireille Verdier Panayotis Verginis Isabelle Vergne Paul Verkade Manish Verma Patrik Verstreken Tim Vervliet Jörg Vervoorts Alexandre T Vessoni Victor M Victor Michel Vidal Chiara Vidoni Otilia V Vieira Richard D Vierstra Sonia Viganó Helena Vihinen Vinoy Vijayan Miquel Vila Marçal Vilar José M Villalba Antonio Villalobo Beatriz Villarejo-Zori Francesc Villarroya Joan Villarroya Olivier Vincent Cecile Vindis Christophe Viret Maria Teresa Viscomi Dora Visnjic Ilio Vitale David J Vocadlo Olga V Voitsekhovskaja Cinzia Volonté Mattia Volta Marta Vomero Clarissa Von Haefen Marc A Vooijs Wolfgang Voos Ljubica Vucicevic Richard Wade-Martins Satoshi Waguri Kenrick A Waite Shuji Wakatsuki David W Walker Mark J Walker Simon A Walker Jochen Walter Francisco G Wandosell Bo Wang Chao-Yung Wang Chen Wang Chenran Wang Chenwei Wang Cun-Yu Wang Dong Wang Fangyang Wang Feng Wang Fengming Wang Guansong Wang Han Wang Hao Wang Hexiang Wang Hong-Gang Wang Jianrong Wang Jigang Wang Jiou Wang Jundong Wang Kui Wang Lianrong Wang Liming Wang Maggie Haitian Wang Meiqing Wang Nanbu Wang Pengwei Wang Peipei Wang Ping Wang Ping Wang Qing Jun Wang Qing Wang Qing Kenneth Wang Qiong A Wang Wen-Tao Wang Wuyang Wang Xinnan Wang Xuejun Wang Yan Wang Yanchang Wang Yanzhuang Wang Yen-Yun Wang Yihua Wang Yipeng Wang Yu Wang Yuqi Wang Zhe Wang Zhenyu Wang Zhouguang Wang Gary Warnes Verena Warnsmann Hirotaka Watada Eizo Watanabe Maxinne Watchon Anna Wawrzyńska Timothy E Weaver Grzegorz Wegrzyn Ann M Wehman Huafeng Wei Lei Wei Taotao Wei Yongjie Wei Oliver H Weiergräber Conrad C Weihl Günther Weindl Ralf Weiskirchen Alan Wells Runxia H Wen Xin Wen Antonia Werner Beatrice Weykopf Sally P Wheatley J Lindsay Whitton Alexander J Whitworth Katarzyna Wiktorska Manon E Wildenberg Tom Wileman Simon Wilkinson Dieter Willbold Brett Williams Robin S B Williams Roger L Williams Peter R Williamson Richard A Wilson Beate Winner Nathaniel J Winsor Steven S Witkin Harald Wodrich Ute Woehlbier Thomas Wollert Esther Wong Jack Ho Wong Richard W Wong Vincent Kam Wai Wong W Wei-Lynn Wong An-Guo Wu Chengbiao Wu Jian Wu Junfang Wu Kenneth K Wu Min Wu Shan-Ying Wu Shengzhou Wu Shu-Yan Wu Shufang Wu William K K Wu Xiaohong Wu Xiaoqing Wu Yao-Wen Wu Yihua Wu Ramnik J Xavier Hongguang Xia Lixin Xia Zhengyuan Xia Ge Xiang Jin Xiang Mingliang Xiang Wei Xiang Bin Xiao Guozhi Xiao Hengyi Xiao Hong-Tao Xiao Jian Xiao Lan Xiao Shi Xiao Yin Xiao Baoming Xie Chuan-Ming Xie Min Xie Yuxiang Xie Zhiping Xie Zhonglin Xie Maria Xilouri Congfeng Xu En Xu Haoxing Xu Jing Xu JinRong Xu Liang Xu Wen Wen Xu Xiulong Xu Yu Xue Sokhna M S Yakhine-Diop Masamitsu Yamaguchi Osamu Yamaguchi Ai Yamamoto Shunhei Yamashina Shengmin Yan Shian-Jang Yan Zhen Yan Yasuo Yanagi Chuanbin Yang Dun-Sheng Yang Huan Yang Huang-Tian Yang Hui Yang Jin-Ming Yang Jing Yang Jingyu Yang Ling Yang Liu Yang Ming Yang Pei-Ming Yang Qian Yang Seungwon Yang Shu Yang Shun-Fa Yang Wannian Yang Wei Yuan Yang Xiaoyong Yang Xuesong Yang Yi Yang Ying Yang Honghong Yao Shenggen Yao Xiaoqiang Yao Yong-Gang Yao Yong-Ming Yao Takahiro Yasui Meysam Yazdankhah Paul M Yen Cong Yi Xiao-Ming Yin Yanhai Yin Zhangyuan Yin Ziyi Yin Meidan Ying Zheng Ying Calvin K Yip Stephanie Pei Tung Yiu Young H Yoo Kiyotsugu Yoshida Saori R Yoshii Tamotsu Yoshimori Bahman Yousefi Boxuan Yu Haiyang Yu Jun Yu Jun Yu Li Yu Ming-Lung Yu Seong-Woon Yu Victor C Yu W Haung Yu Zhengping Yu Zhou Yu Junying Yuan Ling-Qing Yuan Shilin Yuan Shyng-Shiou F Yuan Yanggang Yuan Zengqiang Yuan Jianbo Yue Zhenyu Yue Jeanho Yun Raymond L Yung David N Zacks Gabriele Zaffagnini Vanessa O Zambelli Isabella Zanella Qun S Zang Sara Zanivan Silvia Zappavigna Pilar Zaragoza Konstantinos S Zarbalis Amir Zarebkohan Amira Zarrouk Scott O Zeitlin Jialiu Zeng Ju-Deng Zeng Eva Žerovnik Lixuan Zhan Bin Zhang Donna D Zhang Hanlin Zhang Hong Zhang Hong Zhang Honghe Zhang Huafeng Zhang Huaye Zhang Hui Zhang Hui-Ling Zhang Jianbin Zhang Jianhua Zhang Jing-Pu Zhang Kalin Y B Zhang Leshuai W Zhang Lin Zhang Lisheng Zhang Lu Zhang Luoying Zhang Menghuan Zhang Peng Zhang Sheng Zhang Wei Zhang Xiangnan Zhang Xiao-Wei Zhang Xiaolei Zhang Xiaoyan Zhang Xin Zhang Xinxin Zhang Xu Dong Zhang Yang Zhang Yanjin Zhang Yi Zhang Ying-Dong Zhang Yingmei Zhang Yuan-Yuan Zhang Yuchen Zhang Zhe Zhang Zhengguang Zhang Zhibing Zhang Zhihai Zhang Zhiyong Zhang Zili Zhang Haobin Zhao Lei Zhao Shuang Zhao Tongbiao Zhao Xiao-Fan Zhao Ying Zhao Yongchao Zhao Yongliang Zhao Yuting Zhao Guoping Zheng Kai Zheng Ling Zheng Shizhong Zheng Xi-Long Zheng Yi Zheng Zu-Guo Zheng Boris Zhivotovsky Qing Zhong Ao Zhou Ben Zhou Cefan Zhou Gang Zhou Hao Zhou Hong Zhou Hongbo Zhou Jie Zhou Jing Zhou Jing Zhou Jiyong Zhou Kailiang Zhou Rongjia Zhou Xu-Jie Zhou Yanshuang Zhou Yinghong Zhou Yubin Zhou Zheng-Yu Zhou Zhou Zhou Binglin Zhu Changlian Zhu Guo-Qing Zhu Haining Zhu Hongxin Zhu Hua Zhu Wei-Guo Zhu Yanping Zhu Yushan Zhu Haixia Zhuang Xiaohong Zhuang Katarzyna Zientara-Rytter Christine M Zimmermann Elena Ziviani Teresa Zoladek Wei-Xing Zong Dmitry B Zorov Antonio Zorzano Weiping Zou Zhen Zou Zhengzhi Zou Steven Zuryn Werner Zwerschke Beate Brand-Saberi X Charlie Dong Chandra Shekar Kenchappa Zuguo Li Yong Lin Shigeru Oshima Yueguang Rong Judith C Sluimer Christina L Stallings Chun-Kit Tong

Autophagy 2021 Feb 8:1-382. Epub 2021 Feb 8.

Hong Kong Baptist University, School of Chinese Medicine, Hong Kong, China.

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2020.1797280DOI Listing
February 2021

Epithelial IL-33 appropriates exosome trafficking for secretion in chronic airway disease.

JCI Insight 2021 Feb 22;6(4). Epub 2021 Feb 22.

Department of Medicine, Division of Pulmonary and Critical Care Medicine, and.

IL-33 is a key mediator of chronic airway disease driven by type 2 immune pathways, yet the nonclassical secretory mechanism for this cytokine remains undefined. We performed a comprehensive analysis in human airway epithelial cells, which revealed that tonic IL-33 secretion is dependent on the ceramide biosynthetic enzyme neutral sphingomyelinase 2 (nSMase2). IL-33 is cosecreted with exosomes by the nSMase2-regulated multivesicular endosome (MVE) pathway as surface-bound cargo. In support of these findings, human chronic obstructive pulmonary disease (COPD) specimens exhibited increased epithelial expression of the abundantly secreted IL33Δ34 isoform and augmented nSMase2 expression compared with non-COPD specimens. Using an Alternaria-induced airway disease model, we found that the nSMase2 inhibitor GW4869 abrogated both IL-33 and exosome secretion as well as downstream inflammatory pathways. This work elucidates a potentially novel aspect of IL-33 biology that may be targeted for therapeutic benefit in chronic airway diseases driven by type 2 inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/jci.insight.136166DOI Listing
February 2021

Implementation of a screening tool for primary ciliary dyskinesia (PCD) in a pediatric otolaryngology clinic.

Int J Pediatr Otorhinolaryngol 2021 Mar 31;142:110586. Epub 2020 Dec 31.

Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8052 St Louis, MO 63110, USA.

Background: Primary ciliary dyskinesia (PCD) is a rare genetic disease arising from motile ciliary dysfunction and associated with recurrent and chronic upper and lower respiratory tract infections. Pediatric otolaryngologists may see these patients prior to the development of lung disease. Features of PCD may overlap with other suppurative respiratory diseases, creating diagnostic challenges. A simple screening tool would be beneficial to identify potential patients who have chronic upper respiratory tract disease requiring further specialist evaluation.

Objective: To test a simple screening tool consisting of four questions to detect PCD in children with chronic otitis media and chronic rhinosinusitis seen in a tertiary otolaryngology clinic.

Methods: A prospective, single site, observational study in a tertiary care pediatric otolaryngology clinic. Children aged 3-17 years diagnosed with chronic otitis media or rhinosinusitis with onset at less than 2 years of age were recruited. All study subjects had at least one of four key clinical features for PCD as determined by answers to screening questions, while control subjects had none. All participants completed a medical history questionnaire and nasal nitric oxide measurements. Those with reduced nasal nitric oxide levels were referred to our PCD center for further evaluation.

Results: A total of 153 patients were screened and 62 subjects were enrolled. Of those, 35 were enrolled as study subjects and 27 as matched controls. Study subjects had mean age of 7.5 years (3.2-16.5) with pre-screening diagnosis of chronic otitis media (n = 29) or chronic rhinosinusitis (n = 6). Control subjects (n = 27) had mean age 7.2 years (3.0-16.3) with pre-screening diagnosis of chronic otitis media (n = 25), and chronic rhinosinusitis (n = 2). There were no differences in subject demographics or mean nasal nitric oxide values between the two groups (179.8 vs 210.8 nl/min). Ten individuals had low nasal nitric oxide values, 7 of which were normal on repeat testing. Three subjects failed to return for follow up evaluations. Four referrals were made for further evaluation on the basis of clinical symptoms and nasal nitric oxide results. While no new cases of PCD were detected, a subject and his sibling with recurrent sinopulmonary infections were referred for immunologic evaluation.

Conclusion: The use of standardized screening questions can be used in an otolaryngology clinic to identify patients who require further evaluation for PCD or primary immunodeficiency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijporl.2020.110586DOI Listing
March 2021

Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins.

Elife 2020 12 2;9. Epub 2020 Dec 2.

Department of Molecular Biosciences, University of Texas, Austin, United States.

Ciliary motility is driven by axonemal dyneins that are assembled in the cytoplasm before deployment to cilia. Motile ciliopathy can result from defects in the dyneins themselves or from defects in factors required for their cytoplasmic pre-assembly. Recent work demonstrates that axonemal dyneins, their specific assembly factors, and broadly-acting chaperones are concentrated in liquid-like organelles in the cytoplasm called DynAPs (Dynein Axonemal Particles). Here, we use imaging in to show that inner dynein arm (IDA) and outer dynein arm (ODA) subunits are partitioned into non-overlapping sub-regions within DynAPs. Using affinity- purification mass-spectrometry of in vivo interaction partners, we also identify novel partners for inner and outer dynein arms. Among these, we identify C16orf71/Daap1 as a novel axonemal dynein regulator. Daap1 interacts with ODA subunits, localizes specifically to the cytoplasm, is enriched in DynAPs, and is required for the deployment of ODAs to axonemes. Our work reveals a new complexity in the structure and function of a cell-type specific liquid-like organelle that is directly relevant to human genetic disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.58662DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785291PMC
December 2020

The translational landscape of SARS-CoV-2 and infected cells.

bioRxiv 2020 Nov 5. Epub 2020 Nov 5.

SARS-CoV-2, a betacoronavirus with a positive-sense RNA genome, has caused the ongoing COVID-19 pandemic. Although a large number of transcriptional profiling studies have been conducted in SARS-CoV-2 infected cells, little is known regarding the translational landscape of host and viral proteins. Here, using ribosome profiling in SARS-CoV-2-infected cells, we identify structural elements that regulate viral gene expression, alternative translation initiation events, as well as host responses regulated by mRNA translation. We found that the ribosome density was low within the SARS-CoV-2 frameshifting element but high immediately downstream, which suggests the utilization of a highly efficient ribosomal frameshifting strategy. In SARS-CoV-2-infected cells, although many chemokine, cytokine and interferon stimulated genes were upregulated at the mRNA level, they were not translated efficiently, suggesting a translational block that disarms host innate host responses. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development.

Highlights: Ribo-seq reveals key translationally regulated events in SARS-CoV-2 replicationSARS-CoV-2 frameshifting is substantially more efficient than HIV-1SARS-CoV-2 infection results in transcriptional upregulation of inflammatory and interferon-stimulated genesSARS-CoV-2 disarms host responses at the level of mRNA translation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.11.03.367516DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654850PMC
November 2020

Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells.

Cell Stem Cell 2021 Jan 23;28(1):79-95.e8. Epub 2020 Oct 23.

Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA. Electronic address:

The derivation of tissue-specific stem cells from human induced pluripotent stem cells (iPSCs) would have broad reaching implications for regenerative medicine. Here, we report the directed differentiation of human iPSCs into airway basal cells ("iBCs"), a population resembling the stem cell of the airway epithelium. Using a dual fluorescent reporter system (NKX2-1;TP63), we track and purify these cells as they first emerge as developmentally immature NKX2-1 lung progenitors and subsequently augment a TP63 program during proximal airway epithelial patterning. In response to primary basal cell medium, NKX2-1/TP63 cells display the molecular and functional phenotype of airway basal cells, including the capacity to self-renew or undergo multi-lineage differentiation in vitro and in tracheal xenografts in vivo. iBCs and their differentiated progeny model perturbations that characterize acquired and genetic airway diseases, including the mucus metaplasia of asthma, chloride channel dysfunction of cystic fibrosis, and ciliary defects of primary ciliary dyskinesia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2020.09.017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796997PMC
January 2021

Single-Nucleus RNA-Sequencing Profiling of Mouse Lung. Reduced Dissociation Bias and Improved Rare Cell-Type Detection Compared with Single-Cell RNA Sequencing.

Am J Respir Cell Mol Biol 2020 12;63(6):739-747

Division of Nephrology, Department of Medicine, and.

Single-cell RNA sequencing (scRNASeq) has advanced our understanding of lung biology, but its utility is limited by the need for fresh samples, loss of cell types by death or inadequate dissociation, and transcriptional stress responses induced during tissue digestion. Single-nucleus RNA sequencing (snRNASeq) has addressed these deficiencies in other tissues, but no protocol exists for lung tissue. We present a snRNASeq protocol and compare its results with those of scRNASeq. Two nuclear suspensions were prepared in lysis buffer on ice while one cell suspension was generated using enzymatic and mechanical dissociation. Cells and nuclei were processed using the 10× Genomics platform, and sequencing data were analyzed by Seurat. A total of 16,110 single-nucleus and 11,934 single-cell transcriptomes were generated. Gene detection rates were equivalent in snRNASeq and scRNASeq (∼1,700 genes and 3,000 unique molecular identifiers per cell) when mapping intronic and exonic reads. In the combined data, 89% of epithelial cells were identified by snRNASeq versus 22.2% of immune cells. snRNASeq transcriptomes are enriched for transcription factors and signaling proteins, with reduction in mitochondrial and stress-response genes. Both techniques improved mesenchymal cell detection over previous studies. Homeostatic signaling relationships among alveolar cell types were defined by receptor-ligand mapping using snRNASeq data, revealing interplay among epithelial, mesenchymal, and capillary endothelial cells. snRNASeq can be applied to archival murine lung samples, improves dissociation bias, eliminates artifactual gene expression, and provides similar gene detection compared with scRNASeq.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2020-0095MADOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790136PMC
December 2020

Preterm intraventricular hemorrhage in vitro: modeling the cytopathology of the ventricular zone.

Fluids Barriers CNS 2020 Jul 20;17(1):46. Epub 2020 Jul 20.

Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA.

Background: Severe intraventricular hemorrhage (IVH) is one of the most devastating neurological complications in preterm infants, with the majority suffering long-term neurological morbidity and up to 50% developing post-hemorrhagic hydrocephalus (PHH). Despite the importance of this disease, its cytopathological mechanisms are not well known. An in vitro model of IVH is required to investigate the effects of blood and its components on the developing ventricular zone (VZ) and its stem cell niche. To address this need, we developed a protocol from our accepted in vitro model to mimic the cytopathological conditions of IVH in the preterm infant.

Methods: Maturing neuroepithelial cells from the VZ were harvested from the entire lateral ventricles of wild type C57BL/6 mice at 1-4 days of age and expanded in proliferation media for 3-5 days. At confluence, cells were re-plated onto 24-well plates in differentiation media to generate ependymal cells (EC). At approximately 3-5 days, which corresponded to the onset of EC differentiation based on the appearance of multiciliated cells, phosphate-buffered saline for controls or syngeneic whole blood for IVH was added to the EC surface. The cells were examined for the expression of EC markers of differentiation and maturation to qualitatively and quantitatively assess the effect of blood exposure on VZ transition from neuroepithelial cells to EC.

Discussion: This protocol will allow investigators to test cytopathological mechanisms contributing to the pathology of IVH with high temporal resolution and query the impact of injury to the maturation of the VZ. This technique recapitulates features of normal maturation of the VZ in vitro, offering the capacity to investigate the developmental features of VZ biogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12987-020-00210-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372876PMC
July 2020

Chemokine Receptor 2-targeted Molecular Imaging in Pulmonary Fibrosis. A Clinical Trial.

Am J Respir Crit Care Med 2021 01;203(1):78-89

Department of Radiology.

Idiopathic pulmonary fibrosis (IPF) is a progressive inflammatory lung disease without effective molecular markers of disease activity or treatment responses. Monocyte and interstitial macrophages that express the C-C motif CCR2 (chemokine receptor 2) are active in IPF and central to fibrosis. To phenotype patients with IPF for potential targeted therapy, we developed Cu-DOTA-ECL1i, a radiotracer to noninvasively track CCR2 monocytes and macrophages using positron emission tomography (PET). CCR2 cells were investigated in mice with bleomycin- or radiation-induced fibrosis and in human subjects with IPF. The CCR2 cell populations were localized relative to fibrotic regions in lung tissue and characterized using immunolocalization, single-cell mass cytometry, and RNA hybridization and then correlated with parallel quantitation of lung uptake by Cu-DOTA-ECL1i PET. Mouse models established that increased Cu-DOTA-ECL1i PET uptake in the lung correlates with CCR2 cell infiltration associated with fibrosis ( = 72). As therapeutic models, the inhibition of fibrosis by IL-1β blockade ( = 19) or antifibrotic pirfenidone ( = 18) reduced CCR2 macrophage accumulation and uptake of the radiotracer in mouse lungs. In lung tissues from patients with IPF, CCR2 cells concentrated in perifibrotic regions and correlated with radiotracer localization ( = 21). Human imaging revealed little lung uptake in healthy volunteers ( = 7), whereas subjects with IPF ( = 4) exhibited intensive signals in fibrotic zones. These findings support a role for imaging CCR2 cells within the fibrogenic niche in IPF to provide a molecular target for personalized therapy and monitoring.Clinical trial registered with www.clinicaltrials.gov (NCT03492762).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.202004-1132OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781144PMC
January 2021

Targeted PET Imaging of Chemokine Receptor 2-Positive Monocytes and Macrophages in the Injured Heart.

J Nucl Med 2021 Jan 22;62(1):111-114. Epub 2020 May 22.

Department of Radiology, Washington University School of Medicine, St. Louis, Missouri

Proinflammatory macrophages are important mediators of inflammation after myocardial infarction and of allograft injury after heart transplantation. The aim of this study was to image the recruitment of proinflammatory chemokine receptor 2-positive (CCR2+) cells in multiple heart injury models. Cu-DOTA-extracellular loop 1 inverso (ECL1i) PET was used to image CCR2+ monocytes and macrophages in a heart transplantation mouse model. Flow cytometry was performed to characterize CCR2+ cells. Autoradiography on a human heart specimen was conducted to confirm binding specificity. Cu- and Ga-DOTA-ECL1i were compared in an ischemia-reperfusion injury mouse model. Cu-DOTA-ECL1i showed sensitive and specific detection of CCR2+ cells in all tested mouse models, with efficacy comparable to that of Ga-DOTA-ECL1i. Flow cytometry demonstrated specific expression of CCR2 on monocytes and macrophages. The tracer binds to human CCR2. This work establishes the utility of Cu-DOTA-ECL1i to image CCR2+ monocytes and macrophages in mouse models and provides the requisite preclinical information to translate the targeted clinical-grade CCR2 imaging probe for clinical investigation of heart diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2967/jnumed.120.244673DOI Listing
January 2021

Efficient Generation and Transcriptomic Profiling of Human iPSC-Derived Pulmonary Neuroendocrine Cells.

iScience 2020 May 21;23(5):101083. Epub 2020 Apr 21.

Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Electronic address:

Expansion of pulmonary neuroendocrine cells (PNECs) is a pathological feature of many human lung diseases. Human PNECs are inherently difficult to study due to their rarity (<1% of total lung cells) and a lack of established protocols for their isolation. We used induced pluripotent stem cells (iPSCs) to generate induced PNECs (iPNECs), which express core PNEC markers, including ROBO receptors, and secrete major neuropeptides, recapitulating known functions of primary PNECs. Furthermore, we demonstrate that differentiation efficiency is increased in the presence of an air-liquid interface and inhibition of Notch signaling. Single-cell RNA sequencing (scRNA-seq) revealed a PNEC-associated gene expression profile that is concordant between iPNECs and human fetal PNECs. In addition, pseudotime analysis of scRNA-seq results suggests a basal cell origin of human iPNECs. In conclusion, our model has the potential to provide an unlimited source of human iPNECs to explore PNEC pathophysiology associated with several lung diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isci.2020.101083DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205764PMC
May 2020

HY-DIN' in the Cilia: Discovery of Central Pair-related Mutations in Primary Ciliary Dyskinesia.

Am J Respir Cell Mol Biol 2020 03;62(3):281-282

Department of MedicineWashington University School of MedicineSaint Louis, Missouri.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2019-0316EDDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055694PMC
March 2020

Quantification of image texture in X-ray phase-contrast-enhanced projection images of in vivo mouse lungs observed at varied inflation pressures.

Physiol Rep 2019 08;7(16):e14208

Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.

To date, there are very limited noninvasive, regional assays of in vivo lung microstructure near the alveolar level. It has been suggested that x-ray phase-contrast enhanced imaging reveals information about the air volume of the lung; however, the image texture information in these images remains underutilized. Projection images of in vivo mouse lungs were acquired via a tabletop, propagation-based, X-ray phase-contrast imaging system. Anesthetized mice were mechanically ventilated in an upright position. Consistent with previously published studies, a distinct image texture was observed uniquely within lung regions. Lung regions were automatically identified using supervised machine learning applied to summary measures of the image texture data. It was found that an unsupervised clustering within predefined lung regions colocates with expected differences in anatomy along the cranial-caudal axis in upright mice. It was also found that specifically selected inflation pressures-here, a purposeful surrogate of distinct states of mechanical expansion-can be predicted from the lung image texture alone, that the prediction model itself varies from apex to base and that prediction is accurate regardless of overlap with nonpulmonary structures such as the ribs, mediastinum, and heart. Cross-validation analysis indicated low inter-animal variation in the image texture classifications. Together, these results suggest that the image texture observed in a single X-ray phase-contrast-enhanced projection image could be used across a range of pressure states to study regional variations in regional lung function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14814/phy2.14208DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708057PMC
August 2019

Autophagy proteins are required for club cell structure and function in airways.

Am J Physiol Lung Cell Mol Physiol 2019 08 22;317(2):L259-L270. Epub 2019 May 22.

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.

Epithelial cells that line lung airways produce and secrete proteins with important roles in barrier function and host defense. Secretion of airway goblet cells is controlled by autophagy proteins during inflammatory conditions, resulting in accumulation of mucin proteins. We hypothesized that autophagy proteins would also be important in the function of club cells, dominant secretory airway epithelial cells that are dysregulated in chronic lung disease. We found that in the absence of an inflammatory stimulus, mice with club cells deficient for the autophagy protein Atg5 had a markedly diminished expression of secreted host defense proteins secretoglobulin family 1A, member 1 (Scgb1a1) and surfactant proteins A1 and D (Sftpa1 and Sftpd), as well as abnormal club cell morphology. Adult mice with targeted loss of Atg5 also showed diminished levels of host defense proteins in regenerating cells following ablation with naphthalene. A mouse strain with global deficiency of Atg16-like 1 (Atg16l1), an Atg5 binding partner, had a similar loss of host defense proteins and abnormal club cell morphology. Cigarette smoke exposure reduced levels of Scgb1a1 in wild-type mice as expected. Smoke exposure was not required to trigger club cell abnormalities in mice bearing the human ATG16 variant Atg16l1, which had low Scgb1a1 levels independent of this environmental stress. Evaluation of lung tissues from former smokers with severe chronic obstructive pulmonary disease showed evidence of reduced autophagy and SCGB1A1 expression in club cells. Thus, autophagy proteins are required for the function of club cells, independent of the cellular stress of cigarette smoke, with roles that appear to be distinct from those of other secretory cell types.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00394.2018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734383PMC
August 2019

Regulation of cilia abundance in multiciliated cells.

Elife 2019 04 26;8. Epub 2019 Apr 26.

Nephrology Division, Department of Medicine, Washington University, St Louis, United States.

Multiciliated cells (MCC) contain hundreds of motile cilia used to propel fluid over their surface. To template these cilia, each MCC produces between 100-600 centrioles by a process termed centriole amplification. Yet, how MCC regulate the precise number of centrioles and cilia remains unknown. Airway progenitor cells contain two parental centrioles (PC) and form structures called deuterosomes that nucleate centrioles during amplification. Using an ex vivo airway culture model, we show that ablation of PC does not perturb deuterosome formation and centriole amplification. In contrast, loss of PC caused an increase in deuterosome and centriole abundance, highlighting the presence of a compensatory mechanism. Quantification of centriole abundance in vitro and in vivo identified a linear relationship between surface area and centriole number. By manipulating cell size, we discovered that centriole number scales with surface area. Our results demonstrate that a cell-intrinsic surface area-dependent mechanism controls centriole and cilia abundance in multiciliated cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.44039DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504233PMC
April 2019

An obligatory role for club cells in preventing obliterative bronchiolitis in lung transplants.

JCI Insight 2019 04 16;5. Epub 2019 Apr 16.

Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.

Obliterative bronchiolitis (OB) is a poorly understood airway disease characterized by the generation of fibrotic bronchiolar occlusions. In the lung transplant setting, OB is a pathological manifestation of bronchiolitis obliterans syndrome (BOS), which is a major impediment to long-term recipient survival. Club cells play a key role in bronchiolar epithelial repair, but whether they promote lung transplant tolerance through preventing OB remains unclear. We determined if OB occurs in mouse orthotopic lung transplants following conditional transgene-targeted club cell depletion. In syngeneic lung transplants club cell depletion leads to transient epithelial injury followed by rapid club cell-mediated repair. In contrast, allogeneic lung transplants develop severe OB lesions and poorly regenerate club cells despite immunosuppression treatment. Lung allograft club cell ablation also triggers the recognition of alloantigens, and pulmonary restricted self-antigens reported associated with BOS development. However, CD8+ T cell depletion restores club cell reparative responses and prevents OB. In addition, ex-vivo analysis reveals a specific role for alloantigen-primed effector CD8+ T cells in preventing club cell proliferation and maintenance. Taken together, we demonstrate a vital role for club cells in maintaining lung transplant tolerance and propose a new model to identify the underlying mechanisms of OB.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/jci.insight.124732DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538316PMC
April 2019

Frequenting Sequencing: How Genetics Teaches Us Cilia Biology.

Am J Respir Cell Mol Biol 2019 Oct;61(4):403-404

Department of MedicineWashington University School of MedicineSaint Louis, Missouri.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2019-0103EDDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775949PMC
October 2019

Molecular Imaging Visualizes Recruitment of Inflammatory Monocytes and Macrophages to the Injured Heart.

Circ Res 2019 03;124(6):881-890

Department of Medicine (B.K., G.F., G.B., S.L.B., K.J.L.), Washington University School of Medicine, St. Louis, MO.

Rationale: Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy.

Objective: To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart.

Methods And Results: We synthesized and tested the performance of a positron emission tomography radiotracer (Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2 mice, demonstrating target specificity. Autoradiography demonstrated that Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance.

Conclusions: These findings demonstrate the sensitivity and specificity of Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.118.314030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435034PMC
March 2019

Technical Considerations for Lung Transplantation in Kartagener's Syndrome.

Ann Thorac Surg 2019 05 26;107(5):e337-e339. Epub 2018 Oct 26.

Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri. Electronic address:

Kartagener's syndrome is a rare genetic disorder of ciliated epithelial cells associated with recurrent respiratory tract infections, bronchiectasis, and situs inversus. In some patients, the accumulation of airway secretions and recurrent infections lead to end-stage lung disease, for which lung transplantation is the only effective treatment. Anatomical variations, such as dextrocardia and pulmonary situs inversus, make the procedure challenging, yet feasible with certain technical modifications and careful preparation of donor lungs. We report a case of bilateral lung transplantation without the use of cardiopulmonary bypass in a patient with Kartagener's syndrome while describing important technical details of the operation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.athoracsur.2018.08.095DOI Listing
May 2019

A liquid-like organelle at the root of motile ciliopathy.

Elife 2018 12 18;7. Epub 2018 Dec 18.

Department of Molecular Biosciences, University of Texas, Austin, United States.

Motile ciliopathies are characterized by specific defects in cilia beating that result in chronic airway disease, subfertility, ectopic pregnancy, and hydrocephalus. While many patients harbor mutations in the dynein motors that drive cilia beating, the disease also results from mutations in so-called dynein axonemal assembly factors (DNAAFs) that act in the cytoplasm. The mechanisms of DNAAF action remain poorly defined. Here, we show that DNAAFs concentrate together with axonemal dyneins and chaperones into organelles that form specifically in multiciliated cells, which we term DynAPs, for dynein axonemal particles. These organelles display hallmarks of biomolecular condensates, and remarkably, DynAPs are enriched for the stress granule protein G3bp1, but not for other stress granule proteins or P-body proteins. Finally, we show that both the formation and the liquid-like behaviors of DynAPs are disrupted in a model of motile ciliopathy. These findings provide a unifying cell biological framework for a poorly understood class of human disease genes and add motile ciliopathy to the growing roster of human diseases associated with disrupted biological phase separation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.38497DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349401PMC
December 2018

Intracellular C3 Protects Human Airway Epithelial Cells from Stress-associated Cell Death.

Am J Respir Cell Mol Biol 2019 02;60(2):144-157

2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.

The complement system provides host defense against pathogens and environmental stress. C3, the central component of complement, is present in the blood and increases in BAL fluid after injury. We recently discovered that C3 is taken up by certain cell types and cleaved intracellularly to C3a and C3b. C3a is required for CD4 T-cell survival. These observations made us question whether complement operates at environmental interfaces, particularly in the respiratory tract. We found that airway epithelial cells (AECs, represented by both primary human tracheobronchial cells and BEAS-2B [cell line]) cultured in C3-free media were unique from other cell types in that they contained large intracellular stores of de novo synthesized C3. A fraction of this protein reduced ("storage form") but the remainder did not, consistent with it being pro-C3 ("precursor form"). These two forms of intracellular C3 were absent in CRISPR knockout-induced C3-deficient AECs and decreased with the use of C3 siRNA, indicating endogenous generation. Proinflammatory cytokine exposure increased both stored and secreted forms of C3. Furthermore, AECs took up C3 from exogenous sources, which mitigated stress-associated cell death (e.g., from oxidative stress or starvation). C3 stores were notably increased within AECs in lung tissues from individuals with different end-stage lung diseases. Thus, at-risk cells furnish C3 through biosynthesis and/or uptake to increase locally available C3 during inflammation, while intracellularly, these stores protect against certain inducers of cell death. These results establish the relevance of intracellular C3 to airway epithelial biology and suggest novel pathways for complement-mediated host protection in the airway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2017-0405OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376412PMC
February 2019

Blood Exposure Causes Ventricular Zone Disruption and Glial Activation In Vitro.

J Neuropathol Exp Neurol 2018 09;77(9):803-813

Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, St. Louis, Missouri.

Intraventricular hemorrhage (IVH) is the most common cause of pediatric hydrocephalus in North America but remains poorly understood. Cell junction-mediated ventricular zone (VZ) disruption and astrogliosis are associated with the pathogenesis of congenital, nonhemorrhagic hydrocephalus. Recently, our group demonstrated that VZ disruption is also present in preterm infants with IVH. On the basis of this observation, we hypothesized that blood triggers the loss of VZ cell junction integrity and related cytopathology. In order to test this hypothesis, we developed an in vitro model of IVH by applying syngeneic blood to cultured VZ cells obtained from newborn mice. Following blood treatment, cells were assayed for N-cadherin-dependent adherens junctions, ciliated ependymal cells, and markers of glial activation using immunohistochemistry and immunoblotting. After 24-48 hours of exposure to blood, VZ cell junctions were disrupted as determined by a significant reduction in N-cadherin expression (p < 0.05). This was also associated with significant decrease in multiciliated cells and increase in glial fibrillary acid protein-expressing cells (p < 0.05). These observations suggest that, in vitro, blood triggers VZ cell loss and glial activation in a pattern that mirrors the cytopathology of human IVH and supports the relevance of this in vitro model to define injury mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnen/nly058DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927874PMC
September 2018

Quantifying Ciliary Dynamics during Assembly Reveals Stepwise Waveform Maturation in Airway Cells.

Am J Respir Cell Mol Biol 2018 10;59(4):511-522

1 Department of Medicine and.

Motile cilia are essential for clearance of particulates and pathogens from airways. For effective transport, ciliary motor proteins and axonemal structures interact to generate the rhythmic, propulsive bending, but the mechanisms that produce a dynamic waveform remain incompletely understood. Biomechanical measures of human ciliary motion and their relationships to ciliary assembly are needed to illuminate the biophysics of normal ciliary function and to quantify dysfunction in ciliopathies. To these ends, we analyzed ciliary motion by high-speed video microscopy of ciliated cells sampled from human lung airways compared with primary culture cells that undergo ciliogenesis in vitro. Quantitative assessment of waveform parameters showed variations in waveform shape between individual cilia; however, general trends in waveform parameters emerged, associated with progression of cilia length and stage of differentiation. When cilia emerged from cultured cells, beat frequency was initially elevated, then fell and remained stable as cilia lengthened. In contrast, the average bending amplitude and the ability to generate force gradually increased and eventually approached values observed in ex vivo samples. Dynein arm motor proteins DNAH5, DNAH9, DNAH11, and DNAH6 were localized within specific regions of the axoneme in the ex vivo cells; however, distinct stages of in vitro waveform development identified by biomechanical features were associated with the progressive movement of dyneins to the appropriate proximal or distal sections of the cilium. These observations suggest that the stepwise variation in waveform development during ciliogenesis is dependent on cilia length and potentially on outer dynein arm assembly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2017-0436OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6178159PMC
October 2018

Visualization of Monocytic Cells in Regressing Atherosclerotic Plaques by Intravital 2-Photon and Positron Emission Tomography-Based Imaging-Brief Report.

Arterioscler Thromb Vasc Biol 2018 05 22;38(5):1030-1036. Epub 2018 Mar 22.

From the Department of Surgery (W.L., H.-M.H., S.T., R.H., J.M.G., A.E.G., D.K.)

Objective: Aortic arch transplants have advanced our understanding of processes that contribute to progression and regression of atherosclerotic plaques. To characterize the dynamic behavior of monocytes and macrophages in atherosclerotic plaques over time, we developed a new model of cervical aortic arch transplantation in mice that is amenable to intravital imaging.

Approach And Results: Vascularized aortic arch grafts were transplanted heterotropically to the right carotid arteries of recipient mice using microsurgical suture techniques. To image immune cells in atherosclerotic lesions during regression, plaque-bearing aortic arch grafts from B6 ApoE-deficient donors were transplanted into syngeneic CXCR1 GFP reporter mice. Grafts were evaluated histologically, and monocytic cells in atherosclerotic plaques in ApoE-deficient grafts were imaged intravitally by 2-photon microscopy in serial fashion. In complementary experiments, CCR2 cells in plaques were serially imaged by positron emission tomography using specific molecular probes. Plaques in ApoE-deficient grafts underwent regression after transplantation into normolipidemic hosts. Intravital imaging revealed clusters of largely immotile CXCR1 monocytes/macrophages in regressing plaques that had been recruited from the periphery. We observed a progressive decrease in CXCR1 monocytic cells in regressing plaques and a decrease in CCR2 positron emission tomography signal during 4 months.

Conclusions: Cervical transplantation of atherosclerotic mouse aortic arches represents a novel experimental tool to investigate cellular mechanisms that contribute to the remodeling of atherosclerotic plaques.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.117.310517DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920767PMC
May 2018

Development of Fully Degradable Phosphonium-Functionalized Amphiphilic Diblock Copolymers for Nucleic Acids Delivery.

Biomacromolecules 2018 04 11;19(4):1212-1222. Epub 2018 Mar 11.

Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77842 , United States.

To expand the range of functional polymer materials to include fully hydrolytically degradable systems that bear bioinspired phosphorus-containing linkages both along the backbone and as cationic side chain moieties for packaging and delivery of nucleic acids, phosphonium-functionalized polyphosphoester- block-poly(l-lactide) copolymers of various compositions were synthesized, fully characterized, and their self-assembly into nanoparticles were studied. First, an alkyne-functionalized polyphosphoester- block-poly(l-lactide) copolymer was synthesized via a one pot sequential ring opening polymerization of an alkyne-functionalized phospholane monomer, followed by the addition of l-lactide to grow the second block. Second, the alkynyl side groups of the polyphosphoester block were functionalized via photoinitiated thiol-yne radical addition of a phosphonium-functionalized free thiol. The polymers of varying phosphonium substitution degrees were self-assembled in aqueous buffers to afford formation of well-defined core-shell assemblies with an average size ranging between 30 and 50 nm, as determined by dynamic light scattering. Intracellular delivery of the nanoparticles and their effects on cell viability and capability at enhancing transfection efficiency of nucleic acids (e.g., siRNA) were investigated. Cell viability assays demonstrated limited toxicity of the assembly to RAW 264.7 mouse macrophages, except at high polymer concentrations, where the polymer of high degree of phosphonium functionalization induced relatively higher cytotoxicity. Transfection efficiency was strongly affected by the phosphonium-to-phosphate (P/P) ratios of the polymers and siRNA, respectively. The AllStars Hs Cell Death siRNA complexed to the various copolymers at a P/P ratio of 10:1 induced comparable cell death to Lipofectamine. These fully degradable nanoparticles might provide biocompatible nanocarriers for therapeutic nucleic acid delivery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.8b00069DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5894060PMC
April 2018

Establishment of the early cilia preassembly protein complex during motile ciliogenesis.

Proc Natl Acad Sci U S A 2018 02 22;115(6):E1221-E1228. Epub 2018 Jan 22.

Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.

Motile cilia are characterized by dynein motor units, which preassemble in the cytoplasm before trafficking into the cilia. Proteins required for dynein preassembly were discovered by finding human mutations that result in absent ciliary motors, but little is known about their expression, function, or interactions. By monitoring ciliogenesis in primary airway epithelial cells and MCIDAS-regulated induced pluripotent stem cells, we uncovered two phases of expression of preassembly proteins. An early phase, composed of HEATR2, SPAG1, and DNAAF2, preceded other preassembly proteins and was independent of MCIDAS regulation. The early preassembly proteins colocalized within perinuclear foci that also contained dynein arm proteins. These proteins also interacted based on immunoprecipitation and Förster resonance energy transfer (FRET) studies. FRET analysis of HEAT domain deletions and human mutations showed that HEATR2 interacted with itself and SPAG1 at multiple HEAT domains, while DNAAF2 interacted with SPAG1. Human mutations in HEATR2 did not affect this interaction, but triggered the formation of p62/Sequestosome-1-positive aggregates containing the early preassembly proteins, suggesting that degradation of an early preassembly complex is responsible for disease and pointing to key regions required for HEATR2 scaffold stability. We speculate that HEATR2 is an early scaffold for the initiation of dynein complex assembly in motile cilia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1715915115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819421PMC
February 2018

The complement system in the airway epithelium: An overlooked host defense mechanism and therapeutic target?

J Allergy Clin Immunol 2018 05 12;141(5):1582-1586.e1. Epub 2018 Jan 12.

Division of Rheumatology, Department of Medicine, Washington University in St Louis, St Louis, Mo. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2017.11.046DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955701PMC
May 2018

Autophagy regulates DUOX1 localization and superoxide production in airway epithelial cells during chronic IL-13 stimulation.

Redox Biol 2018 04 22;14:272-284. Epub 2017 Sep 22.

Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.

The airway epithelium is a broad interface with the environment, mandating well-orchestrated responses to properly modulate inflammation. Classically, autophagy is a homeostatic pathway triggered in response to external cellular stresses, and is elevated in chronic airway diseases. Recent findings highlight the additional role of autophagy in vesicle trafficking and protein secretion, implicating autophagy pathways in complex cellular responses in disease. Th2 cytokines, IL-13 and IL-4, are increased in asthma and other airway diseases contributing to chronic inflammation. Previously, we observed that IL-13 increases reactive oxygen species (ROS) in airway epithelial cells in an autophagy-dependent fashion. Here, we tested our hypothesis that autophagy is required for IL-13-mediated superoxide production via the NADPH oxidase DUOX1. Using a mouse model of Th2-mediated inflammation induced by OVA-allergen, we observed elevated lung amounts of IL-13 and IL-4 accompanied by increased autophagosome levels, determined by LC3BII protein levels and immunostaining. ROS levels were elevated and DUOX1 expression was increased 70-fold in OVA-challenged lungs. To address the role of autophagy and ROS in the airway epithelium, we treated primary human tracheobronchial epithelial cells with IL-13 or IL-4. Prolonged, 7-day treatment increased autophagosome formation and degradation, while brief activation had no effect. Under parallel culture conditions, IL-13 and IL-4 increased intracellular superoxide levels as determined by electron paramagnetic resonance (EPR) spectroscopy. Prolonged IL-13 activation increased DUOX1, localized at the apical membrane. Silencing DUOX1 by siRNA attenuated IL-13-mediated increases in superoxide, but did not reduce autophagy activities. Notably, depletion of autophagy regulatory protein ATG5 significantly reduced superoxide without diminishing total DUOX1 levels. Depletion of ATG5, however, diminished DUOX1 localization at the apical membrane. The findings suggest non-canonical autophagy activity regulates DUOX1-dependent localization required for intracellular superoxide production during Th2 inflammation. Thus, in chronic Th2 inflammatory airway disease, autophagy proteins may be responsible for persistent intracellular superoxide production.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.redox.2017.09.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635347PMC
April 2018

17β-Estradiol Dysregulates Innate Immune Responses to Pseudomonas aeruginosa Respiratory Infection and Is Modulated by Estrogen Receptor Antagonism.

Infect Immun 2017 10 20;85(10). Epub 2017 Sep 20.

Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA

Females have a more severe clinical course than males in terms of several inflammatory lung conditions. Notably, females with cystic fibrosis (CF) suffer worse outcomes, particularly in the setting of infection. Sex hormones have been implicated in experimental and clinical studies; however, immune mechanisms responsible for this sex-based disparity are unknown and the specific sex hormone target for therapeutic manipulation has not been identified. The objective of this study was to assess mechanisms behind the impact of female sex hormones on host immune responses to We used wild-type and CF mice, which we hormone manipulated, inoculated with , and then examined for outcomes and inflammatory responses. Neutrophils isolated from mice and human subjects were tested for responses to We found that female mice inoculated with died earlier and showed slower bacterial clearance than males ( < 0.0001). Ovariectomized females supplemented with 17β-estradiol succumbed to challenge earlier than progesterone- or vehicle-supplemented mice ( = 0.0003). 17β-Estradiol-treated ovariectomized female mice demonstrated increased lung levels of inflammatory cytokines, and when rendered neutropenic the mortality difference was abrogated. Neutrophils treated with 17β-estradiol demonstrated an enhanced oxidative burst but decreased killing and earlier cell necrosis. The estrogen receptor (ER) antagonist ICI 182,780 improved survival in female mice infected with and restored neutrophil function. We concluded that ER antagonism rescues estrogen-mediated neutrophil dysfunction and improves survival in response to ER-mediated processes may explain the sex-based mortality gap in CF and other inflammatory lung illnesses, and the ER blockade represents a rational therapeutic strategy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/IAI.00422-17DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607430PMC
October 2017

Harnessing TGF-β and BMP signaling for expansion of p63-positive epithelial stem cells.

Stem Cell Investig 2016 15;3:82. Epub 2016 Nov 15.

Department Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.21037/sci.2016.10.13DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5182203PMC
November 2016