Publications by authors named "Stéphanie Légaré"

4 Publications

  • Page 1 of 1

A Unique Morphological Phenotype in Chemoresistant Triple-Negative Breast Cancer Reveals Metabolic Reprogramming and PLIN4 Expression as a Molecular Vulnerability.

Mol Cancer Res 2019 12 19;17(12):2492-2507. Epub 2019 Sep 19.

Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada.

The major obstacle in successfully treating triple-negative breast cancer (TNBC) is resistance to cytotoxic chemotherapy, the mainstay of treatment in this disease. Previous preclinical models of chemoresistance in TNBC have suffered from a lack of clinical relevance. Using a single high dose chemotherapy treatment, we developed a novel MDA-MB-436 cell-based model of chemoresistance characterized by a unique and complex morphologic phenotype, which consists of polyploid giant cancer cells giving rise to neuron-like mononuclear daughter cells filled with smaller but functional mitochondria and numerous lipid droplets. This resistant phenotype is associated with metabolic reprogramming with a shift to a greater dependence on fatty acids and oxidative phosphorylation. We validated both the molecular and histologic features of this model in a clinical cohort of primary chemoresistant TNBCs and identified several metabolic vulnerabilities including a dependence on PLIN4, a perilipin coating the observed lipid droplets, expressed both in the TNBC-resistant cells and clinical chemoresistant tumors treated with neoadjuvant doxorubicin-based chemotherapy. These findings thus reveal a novel mechanism of chemotherapy resistance that has therapeutic implications in the treatment of drug-resistant cancer. IMPLICATIONS: These findings underlie the importance of a novel morphologic-metabolic phenotype associated with chemotherapy resistance in TNBC, and bring to light novel therapeutic targets resulting from vulnerabilities in this phenotype, including the expression of PLIN4 essential for stabilizing lipid droplets in resistant cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-19-0264DOI Listing
December 2019

SPEN, a new player in primary cilia formation and cell migration in breast cancer.

Breast Cancer Res 2017 Sep 6;19(1):104. Epub 2017 Sep 6.

Division of Experimental Medicine, Department of Oncology and Surgery, McGill University, Montréal, PQ, H3A 0G4, Canada.

Background: The primary cilium is a microtubule-based and nonmotile organelle functioning as a cellular antenna that is involved in the regulation of cell proliferation, differentiation, and migration. In breast cancer cells, the primary cilium is a structure that decreases in incidence with increasing degrees of transformation and may be biologically more important in estrogen receptor (ERα)-negative breast cancer cells. Split ends (SPEN) is an ERα corepressor that we have identified as a tumor suppressor protein in ERα-positive breast cancer cells whose hormone-independent roles in breast cancer have never been explored.

Methods: We determined the hormone-independent transcriptional program regulated by the ERα cofactor SPEN in breast cancer using DNA microarrays. The biological functions regulated by SPEN independently of hormones were studied in vitro in ERα-positive and ERα-negative breast cancer cells. Finally, we examined the clinical relevance of SPEN expression in cohorts of breast cancer samples with outcome data.

Results: We found that SPEN is coexpressed with a number of genes involved in ciliary biology, including the ciliogenic transcription factor RFX3, in a hormone-independent manner. SPEN reexpression in T47D cells containing a nonsense mutation in SPEN restored the primary cilium, whereas its knockdown in MCF10A and Hs578T cells considerably decreased primary cilia levels. We also report that SPEN regulates migration in breast cells, but only in those harboring primary cilia, and that KIF3A silencing, a critical factor in primary cilia, partially reverses SPEN's effects, suggesting that SPEN may coordinate cellular movement through primary cilia-dependent mechanisms. Finally, we found that high SPEN RNA levels were predictive of early metastasis in two independent cohorts of 77 (HR 2.25, P = 0.03) and 170 (HR = 2.23, P = 0.004) patients with ERα-negative breast cancer.

Conclusions: Together, our data demonstrate a role for SPEN in the regulation of primary cilia formation and cell migration in breast cancer cells, which may collectively explain why its expression is associated with time to metastasis in cohorts of patients with ERα-negative breast cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13058-017-0897-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5588740PMC
September 2017

Minireview: The Link Between ERα Corepressors and Histone Deacetylases in Tamoxifen Resistance in Breast Cancer.

Mol Endocrinol 2016 Sep 20;30(9):965-76. Epub 2016 Jul 20.

Division of Experimental Medicine, Department of Oncology and Surgery, Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2.

Approximately 70% of breast cancers express the estrogen receptor (ER)α and are treated with the ERα antagonist, tamoxifen. However, resistance to tamoxifen frequently develops in advanced breast cancer, in part due to a down-regulation of ERα corepressors. Nuclear receptor corepressors function by attenuating hormone responses and have been shown to potentiate tamoxifen action in various biological systems. Recent genomic data on breast cancers has revealed that genetic and/or genomic events target ERα corepressors in the majority of breast tumors, suggesting that the loss of nuclear receptor corepressor activity may represent an important mechanism that contributes to intrinsic and acquired tamoxifen resistance. Here, the biological functions of ERα corepressors are critically reviewed to elucidate their role in modifying endocrine sensitivity in breast cancer. We highlight a mechanism of gene repression common to corepressors previously shown to enhance the antitumorigenic effects of tamoxifen, which involves the recruitment of histone deacetylases (HDACs) to DNA. As an indicator of epigenetic disequilibrium, the loss of ERα corepressors may predispose cancer cells to the cytotoxic effects of HDAC inhibitors, a class of drug that has been shown to effectively reverse tamoxifen resistance in numerous studies. HDAC inhibition thus appears as a promising therapeutic approach that deserves to be further explored as an avenue to restore drug sensitivity in corepressor-deficient and tamoxifen-resistant breast cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2016-1072DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414611PMC
September 2016

The Estrogen Receptor Cofactor SPEN Functions as a Tumor Suppressor and Candidate Biomarker of Drug Responsiveness in Hormone-Dependent Breast Cancers.

Cancer Res 2015 Oct 21;75(20):4351-63. Epub 2015 Aug 21.

Department of Surgery and Oncology, McGill University, Montréal, Québec, Canada. Department of Oncology and Surgery, Lady Davis Institute for Medical Research, Montréal, Québec, Canada.

The treatment of breast cancer has benefitted tremendously from the generation of estrogen receptor-α (ERα)-targeted therapies, but disease relapse continues to pose a challenge due to intrinsic or acquired drug resistance. In an effort to delineate potential predictive biomarkers of therapy responsiveness, multiple groups have identified several uncharacterized cofactors and interacting partners of ERα, including Split Ends (SPEN), a transcriptional corepressor. Here, we demonstrate a role for SPEN in ERα-expressing breast cancers. SPEN nonsense mutations were detectable in the ERα-expressing breast cancer cell line T47D and corresponded to undetectable protein levels. Further analysis of 101 primary breast tumors revealed that 23% displayed loss of heterozygosity at the SPEN locus and that 3% to 4% harbored somatically acquired mutations. A combination of in vitro and in vivo functional assays with microarray-based pathway analyses showed that SPEN functions as a tumor suppressor to regulate cell proliferation, tumor growth, and survival. We also found that SPEN binds ERα in a ligand-independent manner and negatively regulates the transcription of ERα targets. Moreover, we demonstrate that SPEN overexpression sensitizes hormone receptor-positive breast cancer cells to the apoptotic effects of tamoxifen, but has no effect on responsiveness to fulvestrant. Consistent with these findings, two independent datasets revealed that high SPEN protein and RNA expression in ERα-positive breast tumors predicted favorable outcome in patients treated with tamoxifen alone. Together, our data suggest that SPEN is a novel tumor-suppressor gene that may be clinically useful as a predictive biomarker of tamoxifen response in ERα-positive breast cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-14-3475DOI Listing
October 2015