Publications by authors named "Stéphane Brézillon"

40 Publications

Lumican Inhibits In Vivo Melanoma Metastasis by Altering Matrix-Effectors and Invadopodia Markers.

Cells 2021 Apr 8;10(4). Epub 2021 Apr 8.

CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, 51100 Reims, France.

It was reported that lumican inhibits the activity of metalloproteinase MMP-14 and melanoma cell migration in vitro and in vivo. Moreover, Snail triggers epithelial-to-mesenchymal transition and the metastatic potential of cancer cells. Therefore, the aim of this study was to examine the effect of lumican on Mock and Snail overexpressing melanoma B16F1 cells in vivo. Lung metastasis was analyzed after intravenous injections of Mock-B16F1 and Snail-B16F1 cells in Lum and Lum mice. At day 14, mice were sacrificed, and lungs were collected. The number of lung metastatic nodules was significantly higher in mice injected with Snail-B16F1 cells as compared to mice injected with Mock-B16F1 cells confirming the pro-metastatic effect of Snail. This effect was stronger in Lum mice as compared to Lum, suggesting that endogenous lumican of wild-type mice significantly inhibits metastasis to lungs. Scanning electron and confocal microscopy investigations demonstrated that lumican inhibits the development of elongated cancer cell phenotypes which are known to develop invadopodia releasing MMPs. Moreover, lumican was shown to affect the expression of cyclin D1, cortactin, vinculin, hyaluronan synthase 2, heparanase, MMP-14 and the phosphorylation of FAK, AKT, p130 Cas and GSK3α/β. Altogether, these data demonstrated that lumican significantly inhibits lung metastasis in vivo, as well as cell invasion in vitro, suggesting that a lumican-based strategy targeting Snail-induced metastasis could be useful for melanoma treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells10040841DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068222PMC
April 2021

Hair Histology and Glycosaminoglycans Distribution Probed by Infrared Spectral Imaging: Focus on Heparan Sulfate Proteoglycan and Glypican-1 during Hair Growth Cycle.

Biomolecules 2021 01 30;11(2). Epub 2021 Jan 30.

Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51097 Reims, France.

The expression of glypicans in different hair follicle (HF) compartments and their potential roles during hair shaft growth are still poorly understood. Heparan sulfate proteoglycan (HSPG) distribution in HFs is classically investigated by conventional histology, biochemical analysis, and immunohistochemistry. In this report, a novel approach is proposed to assess hair histology and HSPG distribution changes in HFs at different phases of the hair growth cycle using infrared spectral imaging (IRSI). The distribution of HSPGs in HFs was probed by IRSI using the absorption region relevant to sulfation as a spectral marker. The findings were supported by Western immunoblotting and immunohistochemistry assays focusing on the glypican-1 expression and distribution in HFs. This study demonstrates the capacity of IRSI to identify the different HF tissue structures and to highlight protein, proteoglycan (PG), glycosaminoglycan (GAG), and sulfated GAG distribution in these structures. The comparison between anagen, catagen, and telogen phases shows the qualitative and/or quantitative evolution of GAGs as supported by Western immunoblotting. Thus, IRSI can simultaneously reveal the location of proteins, PGs, GAGs, and sulfated GAGs in HFs in a reagent- and label-free manner. From a dermatological point of view, IRSI shows its potential as a promising technique to study alopecia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom11020192DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912031PMC
January 2021

Infrared Microspectroscopy and Imaging Analysis of Inflammatory and Non-Inflammatory Breast Cancer Cells and Their GAG Secretome.

Molecules 2020 Sep 19;25(18). Epub 2020 Sep 19.

Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, 51097 Reims, France.

Glycosaminoglycans (GAGs)/proteoglycans (PGs) play a pivotal role in the metastasis of inflammatory breast cancer (IBC). They represent biomarkers and targets in diagnosis and treatment of different cancers including breast cancer. Thus, GAGs/PGs could represent potential prognostic/diagnostic biomarkers for IBC. In the present study, non-IBC MDA-MB-231, MCF7, SKBR3 cells and IBC SUM149 cells, as well as their GAG secretome were analyzed. The latter was measured in toto as dried drops with high-throughput (HT) Fourier Transform InfraRed (FTIR) spectroscopy and imaging. FTIR imaging was also employed to investigate single whole breast cancer cells while synchrotron-FTIR microspectroscopy was used to specifically target their cytoplasms. Data were analyzed by hierarchical cluster analysis and principal components analysis. Results obtained from HT-FTIR analysis of GAG drops showed that the inter-group variability enabled us to delineate between cell types in the GAG absorption range 1350-800 cm. Similar results were obtained for FTIR imaging of GAG extracts and fixed single whole cells. Synchrotron-FTIR data from cytoplasms allowed discrimination between non-IBC and IBC. Thus, by using GAG specific region, not only different breast cancer cell lines could be differentiated, but also non-IBC from IBC cells. This could be a potential diagnostic spectral marker for IBC detection useful for patient management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules25184300DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570935PMC
September 2020

Glypican-1 Level Is Elevated in Extracellular Vesicles Released from MC38 Colon Adenocarcinoma Cells Overexpressing Snail.

Cells 2020 06 30;9(7). Epub 2020 Jun 30.

CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne Ardenne, 51100 Reims, France.

The transcription factor Snail triggers epithelial-to-mesenchymal transition (EMT), endowing cancer cells with invasive properties during tumor progression. Extracellular vesicles (EVs) released from cancer cells at various stages of cancer progression are known to influence the tumor pre-metastatic niche and metastatic potential. The aim of this study was to analyze the effect of Snail on murine colon adenocarcinoma cells (MC38 line) and on the characteristics of their EVs. Stable clones of Snail-overexpressing MC38 cells were investigated in vitro versus Mock cells. Increased expression of matrix metalloproteinase MMP-14 and augmented activity of MMP-9 and -14 were observed in Snail-MC38 cells. There was no change in the transcriptomic profile of proteoglycans in Snail-MC38 cells; however, the protein level of Glypican-1 (GPC1) was enhanced in EVs released from those cells. Our finding that GPC1 protein level was enhanced in EVs released from MC38 cells that overexpressed Snail and were in an early EMT stage might explain the specificity of the GPC1 biomarker in colon cancer diagnosis. Further, our data suggest that Snail, by changing the level of GPC1 on EVs released by colon cancer cells, may affect the generation of a distant premetastatic niche and metastatic organotropism in colon adenocarcinoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells9071585DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408449PMC
June 2020

HS2ST1-dependent signaling pathways determine breast cancer cell viability, matrix interactions, and invasive behavior.

Cancer Sci 2020 Aug 9;111(8):2907-2922. Epub 2020 Jul 9.

Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.

Heparan sulfate proteoglycans (HSPGs) act as signaling co-receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2-O-sulfotransferase (HS2ST1), the enzyme mediating 2-O-sulfation of HS, is largely unknown. Hence, a comparative study on the functional consequences of HS2ST1 overexpression and siRNA knockdown was performed in the breast cancer cell lines MCF-7 and MDA-MB-231. HS2ST1 overexpression inhibited Matrigel invasion, while its knockdown reversed the phenotype. Likewise, cell motility and adhesion to fibronectin and laminin were affected by altered HS2ST1 expression. Phosphokinase array screening revealed a general decrease in signaling via multiple pathways. Fluorescent ligand binding studies revealed altered binding of fibroblast growth factor 2 (FGF-2) to HS2ST1-expressing cells compared with control cells. HS2ST1-overexpressing cells showed reduced MAPK signaling responses to FGF-2, and altered expression of epidermal growth factor receptor (EGFR), E-cadherin, Wnt-7a, and Tcf4. The increased viability of HS2ST1-depleted cells was reduced to control levels by pharmacological MAPK pathway inhibition. Moreover, MAPK inhibitors generated a phenocopy of the HS2ST1-dependent delay in scratch wound repair. In conclusion, HS2ST1 modulation of breast cancer cell invasiveness is a compound effect of altered E-cadherin and EGFR expression, leading to altered signaling via MAPK and additional pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cas.14539DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419026PMC
August 2020

Label-Free Infrared Spectral Histology of Skin Tissue Part II: Impact of a Lumican-Derived Peptide on Melanoma Growth.

Front Cell Dev Biol 2020 29;8:377. Epub 2020 May 29.

Université de Reims Champagne-Ardenne, BioSpecT-EA7506, Reims, France.

Melanoma is the most aggressive type of cutaneous malignancies. In addition to its role as a regulator of extracellular matrix (ECM) integrity, lumican, a small leucine-rich proteoglycan, also exhibits anti-tumor properties in melanoma. This work focuses on the use of infrared spectral imaging (IRSI) and histopathology (IRSH) to study the effect of lumican-derived peptide (L9Mc) on B16F1 melanoma primary tumor growth. Female C57BL/6 mice were injected with B16F1 cells treated with L9Mc ( = 10) or its scrambled peptide ( = 8), and without peptide (control, = 9). The melanoma primary tumors were subjected to histological and IR imaging analysis. In addition, immunohistochemical staining was performed using anti-Ki-67 and anti-cleaved caspase-3 antibodies. The IR images were analyzed by common K-means clustering to obtain high-contrast IRSH that allowed identifying different ECM tissue regions from the epidermis to the tumor area, which correlated well with H&E staining. Furthermore, IRSH showed good correlation with immunostaining data obtained with anti-Ki-67 and anti-cleaved caspase-3 antibodies, whereby the L9Mc peptide inhibited cell proliferation and increased strongly apoptosis of B16F1 cells in this mouse model of melanoma primary tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2020.00377DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273845PMC
May 2020

Label-Free Infrared Spectral Histology of Skin Tissue Part I: Impact of Lumican on Extracellular Matrix Integrity.

Front Cell Dev Biol 2020 12;8:320. Epub 2020 May 12.

Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.

Proteoglycans (PG) play an important role in maintaining the extracellular matrix (ECM) integrity. Lumican, a small leucine rich PG, is one such actor capable of regulating such properties. In this study, the integrity of the dermis of lumican-deleted vs. wild-type mice was investigated by conventional histology and by infrared spectral histology (IRSH). Infrared spectroscopy is a non-invasive, rapid, label-free and sensitive technique that allows to probe molecular vibrations of biomolecules present in a tissue. Our IRSH results obtained on control (WT, = 3) and ( = 3) mice showed that different histological structures were identified by using K-means clustering and validated by hematoxylin eosin saffron (HES) staining. Furthermore, an important increase of the dermis thickness was observed in compared to WT mice. In terms of structural information, analysis of the spectral images also revealed an intra-group homogeneity and inter-group heterogeneity. In addition, type I collagen contribution was evaluated by HES and picrosirius red staining as well as with IRSH. Both techniques showed a strong remodeling of the ECM in mice due to the looseness of collagen fibers in the increased dermis space. These results confirmed the impact of lumican on the ECM integrity. The loss of collagen fibers organization due to the absence of lumican can potentially increase the accessibility of anti-cancer drugs to the tumor. These results are qualitatively interesting and would need further structural characterization of type I collagen fibers in terms of size, organization, and orientation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2020.00320DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235349PMC
May 2020

Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression.

Front Oncol 2020 15;10:397. Epub 2020 Apr 15.

Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.

The tumor microenvironment (TME) is composed of various cell types embedded in an altered extracellular matrix (ECM). ECM not only serves as a support for tumor cell but also regulates cell-cell or cell-matrix cross-talks. Alterations in ECM may be induced by hypoxia and acidosis, by oxygen free radicals generated by infiltrating inflammatory cells or by tumor- or stromal cell-secreted proteases. A poorer diagnosis for patients is often associated with ECM alterations. Tumor ECM proteome, also named cancer matrisome, is strongly altered, and different ECM protein signatures may be defined to serve as prognostic biomarkers. Collagen network reorganization facilitates tumor cell invasion. Proteoglycan expression and location are modified in the TME and affect cell invasion and metastatic dissemination. ECM macromolecule degradation by proteases may induce the release of angiogenic growth factors but also the release of proteoglycan-derived or ECM protein fragments, named matrikines or matricryptins. This review will focus on current knowledge and new insights in ECM alterations, degradation, and reticulation through cross-linking enzymes and on the role of ECM fragments in the control of cancer progression and their potential use as biomarkers in cancer diagnosis and prognosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2020.00397DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174611PMC
April 2020

Evaluation of lumican effects on morphology of invading breast cancer cells, expression of integrins and downstream signaling.

FEBS J 2020 Nov 31;287(22):4862-4880. Epub 2020 Mar 31.

Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, Reims, France.

The small leucine-rich proteoglycan lumican regulates estrogen receptors (ERs)-associated functional properties of breast cancer cells, expression of matrix macromolecules, and epithelial-to-mesenchymal transition. However, it is not known whether the ER-dependent lumican effects on breast cancer cells are related to the expression of integrins and their intracellular signaling pathways. Here, we analyzed the effects of lumican in three breast cancer cell lines: the highly metastatic ERβ-positive MDA-MB-231, cells with the respective ERβ-suppressed (shERβMDA-MB-231), and lowly invasive ERα-positive MCF-7/c breast cancer cells. Scanning electron microscopy, confocal microscopy, real-time PCR, western blot, and cell adhesion assays were performed. Lumican effects on breast cancer cell morphology were also investigated in 3-dimensional collagen cultures. Lumican treatment induced cell-cell contacts and cell grouping and inhibited microvesicles and microvilli formation. The expression of the cell surface adhesion receptor CD44, its isoform and variants, hyaluronan (HA), and HA synthases was also investigated. Lumican inhibited the expression of CD44 and HA synthases, and its effect on cell adhesion revealed a major role of α1, α2, α3, αVβ3, and αVβ5 integrins in MDA-MB-231 cells, but not in MCF-7/c cells. Lumican upregulated the expression of α2 and β1 integrin subunits both in MDA-MB-231 and in shERβMDA-MB-231 as compared to MCF-7/c cells. Downstream signaling pathways for integrins, such as FAK, ERK 1/2 MAPK 42/44, and Akt, were found to be downregulated by lumican. Our data shed light to the molecular mechanisms responsible for the anticancer activity of lumican in invasive breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.15289DOI Listing
November 2020

Epithelial-to-mesenchymal transition and invadopodia markers in breast cancer: Lumican a key regulator.

Semin Cancer Biol 2020 05 8;62:125-133. Epub 2019 Aug 8.

CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France. Electronic address:

A great hallmark of breast cancer is the absence or presence of estrogen receptors ERα and ERβ, with a dominant role in cell proliferation, differentiation and cancer progression. Both receptors are related with Epithelial-to-Mesenchymal Transition (EMT) since there is a relation between ERs and extracellular matrix (ECM) macromolecules expression, and therefore, cell-cell and cell-ECM interactions. The endocrine resistance of ERα endows epithelial cells with increased aggressiveness and induces cell proliferation, resulting into a mesenchymal phenotype and an EMT status. ERα signaling may affect the transcriptional factors which govern EMT. Knockdown or silencing of ERα and ERβ in MCF-7 and MDA-MB-231 breast cancer cells respectively, provoked pivotal changes in phenotype, cellular functions, mRNA and protein levels of EMT markers, and consequently the EMT status. Mesenchymal cells owe their migratory and invasive properties to invadopodia, while in epithelial cells, lamellipodia and filopodia are mostly observed. Invadopodia, are actin-rich protrusions of plasma membrane, promoting proteolytic degradation of ECM and tumor invasion. Cortactin and MMP-14 govern the formation and principal functions of invadopodia. In vitro experiments proved that lumican inhibits cortactin and MMP-14 expression, alters the formation of lamellipodia and transforms mesenchymal cells into epithelial-like. Conclusively, lumican may inhibit or even reverse the several metastatic features that EMT endows in breast cancer cells. Therefore, a lumican-based anti-cancer therapy which will pharmacologically target and inhibit EMT might be interesting to be developed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2019.08.003DOI Listing
May 2020

Characterization of inflammatory breast cancer: a vibrational microspectroscopy and imaging approach at the cellular and tissue level.

Analyst 2018 Dec;143(24):6103-6112

Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UFR de Médecine, Reims, France.

Inflammatory breast cancer (IBC) has a poor prognosis because of the lack of specific biomarkers and its late diagnosis. An accurate and rapid diagnosis implemented early enough can significantly improve the disease outcome. Vibrational spectroscopy has proven to be useful for cell and tissue characterization based on the intrinsic molecular information. Here, we have applied infrared and Raman microspectroscopy and imaging to differentiate between non-IBC and IBC at both cell and tissue levels. Two human breast cancer cell lines (MDA-MB-231 and SUM-149), 20 breast cancer patients (10 non-IBC and 10 IBC), and 4 healthy volunteer biopsies were investigated. Fixed cells and tissues were analyzed by FTIR microspectroscopy and imaging, while live cells were studied by Raman microspectroscopy. Spectra were analyzed by hierarchical cluster analysis (HCA) and images by common k-means clustering algorithms. For both cell suspensions and single cells, FTIR spectroscopy showed sufficient high inter-group variability to delineate MDA-MB-231 and SUM-149 cell lines. Most significant differences were observed in the spectral regions of 1096-1108 and 1672-1692 cm-1. Analysis of live cells by Raman microspectroscopy gave also a good discrimination of these cell types. The most discriminant regions were 688-992, 1019-1114, 1217-1375 and 1516-1625 cm-1. Finally, k-means cluster analysis of FTIR images allowed delineating non-IBC from IBC tissues. This study demonstrates the potential of vibrational spectroscopy and imaging to discriminate between non-IBC and IBC at both cell and tissue levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8an01292jDOI Listing
December 2018

Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics.

Chem Rev 2018 09 11;118(18):9152-9232. Epub 2018 Sep 11.

Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College , Thomas Jefferson University , Philadelphia , Pennsylvania 10107 , United States.

The extracellular matrix (ECM) constitutes a highly dynamic three-dimensional structural network comprised of macromolecules, such as proteoglycans/glycosaminoglycans (PGs/GAGs), collagens, laminins, fibronectin, elastin, other glycoproteins and proteinases. In recent years, the field of PGs has expanded rapidly. Due to their high structural complexity and heterogeneity, PGs mediate several homeostatic and pathological processes. PGs consist of a protein core and one or more covalently attached GAG chains, which provide the protein cores with the ability to interact with several proteins. The GAG building blocks of PGs significantly influence the chemical and functional properties of PGs. The primary goal of this comprehensive review is to summarize major achievements and paradigm-shifting discoveries made on the PG/GAG chemistry-biology axis, focusing on structural variability, structure-function relationships, metabolic, molecular, and epigenetic mechanisms underlying their synthesis. Recent insights related to exosome biogenesis, degradation, and cell signaling, their status as diagnostic tools and potential pharmacological targets in diseases as well as current applications in nanotechnology and biotechnology are addressed. Moreover, issues related to docking studies, molecular modeling, GAG/PG interaction networks, and their integration are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.8b00354DOI Listing
September 2018

Lumican as a multivalent effector in wound healing.

Adv Drug Deliv Rev 2018 04 1;129:344-351. Epub 2018 Mar 1.

Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France. Electronic address:

Wound healing, a complex physiological process, is responsible for tissue repair after exposure to destructive stimuli, without resulting in complete functional regeneration. Injuries can be stromal or epithelial, and most cases of wound repair have been studied in the skin and cornea. Lumican, a small leucine-rich proteoglycan, is expressed in the extracellular matrices of several tissues, such as the cornea, cartilage, and skin. This molecule has been shown to regulate collagen fibrillogenesis, keratinocyte phenotypes, and corneal transparency modulation. Lumican is also involved in the extravasation of inflammatory cells and angiogenesis, which are both critical in stromal wound healing. Lumican is the only member of the small leucine-rich proteoglycan family expressed by the epithelia during wound healing. This review summarizes the importance of lumican in wound healing and potential methods of lumican drug delivery to target wound repair are discussed. The involvement of lumican in corneal wound healing is described based on in vitro and in vivo models, with critical emphasis on its underlying mechanisms of action. Similarly, the expression and role of lumican in the healing of other tissues are presented, with emphasis on skin wound healing. Overall, lumican promotes normal wound repair and broadens new therapeutic perspectives for impaired wound healing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.addr.2018.02.011DOI Listing
April 2018

Small leucine-rich proteoglycans and matrix metalloproteinase-14: Key partners?

Matrix Biol 2019 01 15;75-76:271-285. Epub 2017 Dec 15.

CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France. Electronic address:

Small leucine-rich proteoglycans (SLRPs) are important regulators of extracellular matrix assembly and cell signaling. They are a family of proteoglycans that are present in extracellular matrix and that share in common multiple repeats of a leucine-rich structural motif. SLRPs have been identified as inhibitors of cancer progression by affecting MMPs, especially MMP-14 activity. Lumican, a member of the SLRPs family, and its derived peptides were shown to possess anti-tumor activity. Interestingly, it was demonstrated recently that lumican interacts directly with the catalytic domain of MMP-14 and inhibits its activity. The aim of this review was to summarize the interactions between SLRPs and MMPs with a special interest to lumican.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.matbio.2017.12.006DOI Listing
January 2019

Lumican delays melanoma growth in mice and drives tumor molecular assembly as well as response to matrix-targeted TAX2 therapeutic peptide.

Sci Rep 2017 08 9;7(1):7700. Epub 2017 Aug 9.

Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, 51100, Reims, France.

Lumican is a small leucine-rich proteoglycan (SLRP) being known as a key regulator of collagen fibrillogenesis. However, little attention has been given so far in studying its influence on tumor-associated matrix architecture. Here, we investigate the role of host lumican on tumor matrix organization as well as on disease progression considering an immunocompetent model of melanoma implanted in Lum vs. wild type syngeneic mice. Conjointly, lumican impact on tumor response to matrix-targeted therapy was evaluated considering a previously validated peptide, namely TAX2, that targets matricellular thrombospondin-1. Analysis of available genomics and proteomics databases for melanoma first established a correlation between lumican expression and patient outcome. In the B16 melanoma allograft model, endogenous lumican inhibits tumor growth and modulates response to TAX2 peptide. Indeed, IHC analyses revealed that lumican deficiency impacts intratumoral distribution of matricellular proteins, growth factor and stromal cells. Besides, innovative imaging approaches helped demonstrating that lumican host expression drives biochemical heterogeneity of s.c. tumors, while modulating intratumoral collagen deposition as well as organization. Altogether, the results obtained present lumican as a strong endogenous inhibitor of tumor growth, while identifying for the first time this proteoglycan as a major driver of tumor matrix coherent assembly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-07043-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550434PMC
August 2017

Lumican effectively regulates the estrogen receptors-associated functional properties of breast cancer cells, expression of matrix effectors and epithelial-to-mesenchymal transition.

Sci Rep 2017 03 23;7:45138. Epub 2017 Mar 23.

Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.

Lumican is a small leucine-rich proteoglycan that has been shown to contribute in several physiological processes, but also to exert anticancer activity. On the other hand, it has been recently shown that knockdown of the estrogen receptor α (ERα) in low invasive MCF-7 (ERα+) breast cancer cells and the suppression of ERβ in highly aggressive MDA-MB-231 (ERβ+) cells significantly alter the functional properties of breast cancer cells and the gene expression profile of matrix macromolecules related to cancer progression and cell morphology. In this report, we evaluated the effects of lumican in respect to the ERs-associated breast cancer cell behaviour, before and after suppression of ERs, using scanning electron and confocal microscopies, qPCR and functional assays. Our data pinpointed that lumican significantly attenuated cell functional properties, including proliferation, migration and invasion. Furthermore, it modified cell morphology, inducing cell-cell junctions, evoked EMT/MET reprogramming and suppressed the expression of major matrix effectors (matrix metalloproteinases and EGFR) implicated in breast cancer progression. The effects of lumican were found to be related to the type of breast cancer cells and the ERα/β type. These data support the anticancer activity of lumican and open a new area for the pharmacological targeting of the invasive breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep45138DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362815PMC
March 2017

Implementation of infrared and Raman modalities for glycosaminoglycan characterization in complex systems.

Glycoconj J 2017 06 7;34(3):309-323. Epub 2016 Dec 7.

CNRS UMR7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France.

Glycosaminoglycans (GAGs) are natural, linear and negatively charged heteropolysaccharides which are incident in every mammalian tissue. They consist of repeating disaccharide units, which are composed of either sulfated or non-sulfated monosaccharides. Depending on tissue types, GAGs exhibit structural heterogeneity such as the position and degree of sulfation or within their disaccharide units composition being heparin, heparan sulfate, chondroitine sulfate, dermatan sulfate, keratan sulfate, and hyaluronic acid. They are covalently linked to a core protein (proteoglycans) or as free chains (hyaluronan). GAGs affect cell properties and functions either by direct interaction with cell receptors or by sequestration of growth factors. These evidences of divert biological roles of GAGs make their characterization at cell and tissue levels of importance. Thus, non-invasive techniques are interesting to investigate, to qualitatively and quantitatively characterize GAGs in vitro in order to use them as diagnostic biomarkers and/or as therapeutic targets in several human diseases including cancer. Infrared and Raman microspectroscopies and imaging are sensitive enough to differentiate and classify GAG types and subtypes in spite of their close molecular structures. Spectroscopic markers characteristic of reference GAG molecules were identified. Beyond these investigations of the standard GAG spectral signature, infrared and Raman spectral signatures of GAG were searched in complex biological systems like cells. The aim of the present review is to describe the implementation of these complementary vibrational spectroscopy techniques, and to discuss their potentials, advantages and disadvantages for GAG analysis. In addition, this review presents new data as we show for the first time GAG infrared and Raman spectral signatures from conditioned media and live cells, respectively.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10719-016-9743-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5487820PMC
June 2017

The influence of oral copper-methionine on matrix metalloproteinase-2 gene expression and activation in right-sided heart failure induced by cold temperature: A broiler chicken perspective.

J Trace Elem Med Biol 2017 Jan 7;39:71-75. Epub 2016 Jul 7.

Unité de Recherche "Matrice Extracellulaire et Dynamique Cellulaire" (MEDyC), UMR CNRS/URCA N° 7369, Faculté de Médecine de Reims, 51095 Reims cedex, France; CHU de Reims, Laboratoire Central de Biochimie, 51092 Reims cedex, France.

This study was designed to investigate the expression, activation and activity of matrix metalloproteinase-2 (MMP-2) in the heart of broiler chickens reared in cold conditions and fed with copper-methionine supplement at different levels. The chickens (n=480) were randomly allotted to six treatments and four replicates. Treatments included two rearing temperatures (i.e. normal and cold temperatures) each combined with three levels of supplemental copper-methionine (i.e. 0, 100 and 200mg/kg). On d 38 and 45 of age, four broilers from each treatment were sacrificed and their hearts were stored at -80°C. Right-sided heart failure, as evident from abdominal and pericardial fluid accumulation, was observed in broilers under cold stress and not receiving supplemental copper. This clinical observation was confirmed at molecular level through increased MMP-2 expression, activation and activity in this group. Birds reared under normal temperature, however, were not involved in right-sided heart failure nor benefitted from copper-methionine supplementation. In contrast, gelatin zymography and real-time PCR demonstrated that dietary supplementation with copper-methionine decreased pro-MMP-2 and MMP-2 in the heart of chickens reared in cold conditions. However, gelatin reverse zymography did not show any difference between treatments in tissue inhibitor of metalloproteinase-2. Level of supplementation showed similar effects on parameters determined. It is concluded that dietary supplementation with copper-methionine reduced right-sided heart failure at clinical and molecular levels in cold-stressed chickens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2016.07.003DOI Listing
January 2017

'Click'-xylosides as initiators of the biosynthesis of glycosaminoglycans: Comparison of mono-xylosides with xylobiosides.

Chem Biol Drug Des 2017 Mar 2;89(3):319-326. Epub 2016 Nov 2.

CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France.

Different mono-xylosides and their corresponding xylobiosides obtained by a chemo-enzymatic approach featuring various substituents attached to a triazole ring were probed as priming agents for glycosaminoglycan (GAG) biosynthesis in the xylosyltransferase-deficient pgsA-745 Chinese hamster ovary cell line. Xylosides containing a hydrophobic aglycone moiety were the most efficient priming agents. Mono-xylosides induced higher GAG biosynthesis in comparison with their corresponding xylobiosides. The influence of the degree of polymerization of the carbohydrate part on the priming activity was investigated through different experiments. We demonstrated that in case of mono-xylosides, the cellular uptake as well as the affinity and the catalytic efficiency of β-1,4-galactosyltransferase 7 were higher than for xylobiosides. Altogether, these results indicate that hydrophobicity of the aglycone and degree of polymerization of glycone moiety were critical factors for an optimal priming activity for GAG biosynthesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.12865DOI Listing
March 2017

Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity.

PLoS One 2016 1;11(3):e0150226. Epub 2016 Mar 1.

CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, Reims, France.

Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150226PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773148PMC
July 2016

Effects of Dietary Copper-Methionine on Matrix Metalloproteinase-2 in the Lungs of Cold-Stressed Broilers as an Animal Model for Pulmonary Hypertension.

Biol Trace Elem Res 2016 Aug 9;172(2):504-510. Epub 2016 Jan 9.

Unité de Recherche "Matrice Extracellulaire et Dynamique Cellulaire" (MEDyC), UMR CNRS/URCA NO 7369, Faculté de Médecine de Reims, 51095, Reims Cedex, France.

The objective of the present study was to investigate the effects of different levels of copper (as supplemental copper-methionine) on ascites incidence and matrix metalloproteinase-2 (MMP-2) changes in the lungs of cold-stressed broilers. For this purpose, 480 1-day-old Ross 308 broiler chickens were randomly assigned to six treatments. Treatments consisted of two ambient temperatures (thermoneutral and cold stress) each combined with 0, 100, and 200 mg supplemental copper/kg as copper-methionine in a 2 × 3 factorial arrangement in a completely randomized design with four replicates. Ascites was diagnosed based on abdominal and pericardial fluid accumulation at 45 days of age. Fourty-eight broilers were killed at 38 and 45 days of age, and their lungs were collected for biological analysis. Results showed that MMP-2 increased in the lungs of ascitic broilers and that copper-methionine supplementation significantly reduced MMP-2 in cold-stressed broiler chickens. Treatments did not affect tissue inhibitor of metalloproteinase-2 (TIMP-2) at 38 and 45 days of age, and no difference was observed between 100 and 200 mg/kg copper-methionine treatments. In conclusion, copper-methionine at higher than conventional levels of supplementation decreased ascites incidence in low temperature through reduced MMP-2 concentration. Further research is warranted to investigate the effect of copper on MMP-2 concentrations in other tissues with high oxygen demand.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-015-0612-0DOI Listing
August 2016

Lumican: a new inhibitor of matrix metalloproteinase-14 activity.

FEBS Lett 2014 Nov 7;588(23):4319-24. Epub 2014 Oct 7.

CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, Reims, France. Electronic address:

We previously showed that lumican regulates MMP-14 expression. The aim of this study was to compare the effect of lumican and decorin on MMP-14 activity. In contrast to decorin, the glycosylated form of lumican was able to significantly decrease MMP-14 activity in B16F1 melanoma cells. Our results suggest that a direct interaction occurs between lumican and MMP-14. Lumican behaves as a competitive inhibitor which leads to a complete blocking of the activity of MMP-14. It binds to the catalytic domain of MMP-14 with moderate affinity (KD∼275 nM). Lumican may protect collagen against MMP-14 proteolysis, thus influencing cell-matrix interaction in tumor progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2014.09.040DOI Listing
November 2014

Glycosaminoglycan profiling in different cell types using infrared spectroscopy and imaging.

Anal Bioanal Chem 2014 Sep 15;406(24):5795-803. Epub 2014 Jul 15.

Laboratoire de Biochimie médicale et de Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51095, Reims Cedex, France.

We recently identified vibrational spectroscopic markers characteristic of standard glycosaminoglycan (GAG) molecules. The aims of the present work were to further this investigation to more complex biological systems and to characterize, via their spectral profiles, cell types with different capacities for GAG synthesis. After recording spectral information from individual GAG standards (hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparan sulfate) and GAG-GAG mixtures, GAG-defective mutant Chinese hamster ovary (CHO)-745 cells, wild-type CHO cells, and chondrocytes were analyzed as suspensions by high-throughput infrared spectroscopy and as single isolated cells by infrared imaging. Spectral data were processed and interpreted by exploratory unsupervised chemometric methods based on hierarchical cluster analysis and principal component analysis. Our results showed that the spectral information obtained was discriminant enough to clearly delineate between the different cell types both at the cell suspension and single-cell levels. The abilities of the technique are to perform spectral profiling and to identify single cells with different potentials to synthesize GAGs. Infrared microspectroscopy/imaging could therefore be developed for cell screening purposes and further for identifying GAG molecules in normal tissues during physiological conditions (aging, healing process) and numerous pathological states (arthritis, cancer).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-014-7994-2DOI Listing
September 2014

Lumican - derived peptides inhibit melanoma cell growth and migration.

PLoS One 2013 2;8(10):e76232. Epub 2013 Oct 2.

Laboratoire de Biochimie Médicale et de Biologie Moléculaire, CNRS FRE 3481, Université de Reims-Champagne-Ardenne, Reims, France.

Lumican, a small leucine-rich proteoglycan of the extracellular matrix, presents potent anti-tumor properties. Previous works from our group showed that lumican inhibited melanoma cell migration and tumor growth in vitro and in vivo. Melanoma cells adhered to lumican, resulting in a remodeling of their actin cytoskeleton and preventing their migration. In addition, we identified a sequence of 17 amino acids within the lumican core protein, named lumcorin, which was able to inhibit cell chemotaxis and reproduce anti-migratory effect of lumican in vitro. The aim of the present study was to characterize the anti-tumor mechanism of action of lumcorin. Lumcorin significantly decreased the growth in monolayer and in soft agar of two melanoma cell lines - mice B16F1 and human SK-MEL-28 cells - in comparison to controls. Addition of lumcorin to serum free medium significantly inhibited spontaneous motility of these two melanoma cell lines. To characterize the mechanisms involved in the inhibition of cell migration by lumcorin, the status of the phosphorylation/dephosphorylation of proteins was examined. Inhibition of focal adhesion kinase phosphorylation was observed in presence of lumcorin. Since cancer cells have been shown to migrate and to invade by mechanisms that involve matrix metalloproteinases (MMPs), the expression and activity of MMPs were analyzed. Lumcorin induced an accumulation of an intermediate form of MMP-14 (~59kDa), and inhibited MMP-14 activity. Additionally, we identified a short, 10 amino acids peptide within lumcorin sequence, which was able to reproduce its anti-tumor effect on melanoma cells. This peptide may have potential pharmacological applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076232PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788744PMC
July 2014

Quantitative analysis of type I collagen fibril regulation by lumican and decorin using AFM.

J Struct Biol 2013 Sep 6;183(3):394-403. Epub 2013 Jun 6.

DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe, Germany. Electronic address:

Lumican and decorin, two members of the small leucine-rich repeat proteoglycan (SLRP) family, have been implicated as regulators of collagen I fibril structure in different tissues. Both proteoglycans consist of a core protein and a glycosaminoglycan (GAG) chain, but quantitative information regarding the precise role of the protein and GAG moieties in regulating collagen structure is still limited. In this study, we used AFM imaging and a model system of aligned collagen I nanofibrils to investigate the role of lumican and decorin on collagen I fibril structure with high resolution. When co-assembled with collagen I, recombinant lumican or decorin proteins lacking the GAG chains decreased collagen fibril width to values below <100nm and increased interfibrillar spacing in a dose-dependent manner. At lower concentrations, lumican appeared to have a stabilizing effect on newly-formed collagen fibrils, while at higher concentrations both lumican and decorin inhibited collagen fibrillogenesis. GAG-containing decorin also increased interfibrillar spacing, decreased fibril width and ultimately inhibited fibrillogenesis, but these effects required lower concentrations compared to recombinant decorin, indicating that the decorin core protein alone cannot compensate for the full regulatory and structural contribution of the GAG chain during collagen I fibrillogenesis. Using a 2D autocorrelation approach, we furthermore analyzed and compared the effects of recombinant and glycosylated decorin on collagen ultrastructure, providing a quantitative measure for the observed structural differences. AFM analysis of ordered fibrillar collagen arrays in combination with quantitative autocorrelation image analysis thus provides a useful tool for investigating SLRP-dependent nanoscale effects on collagen fibril structure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2013.05.022DOI Listing
September 2013

Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins.

FEBS J 2013 May 18;280(10):2369-81. Epub 2013 Mar 18.

Laboratoire de Biochimie Médicale et de Biologie Moléculaire, CNRS FRE 3481, Université de Reims-Champagne-Ardenne, Reims, France.

Lumican is a member of the small leucine-rich proteoglycan family. It is present in numerous extracellular matrices of different tissues, such as muscle, cartilage, and cornea. In skin, lumican is present as a glycoprotein. It plays a critical role in collagen fibrillogenesis, as shown by knocking out of its gene in mice. A direct link between lumican expression and melanoma progression and metastasis has been demonstrated. Lumican was shown to impede tumour cell migration and invasion by directly interacting with the α2β1 integrin. In addition, an active sequence of the lumican core protein, called lumcorin, was identified as being responsible for inhibition of melanoma cell migration. Lumican was also shown to exert angiostatic properties by downregulating the proteolytic activity associated with endothelial cell membranes, particularly matrix metalloproteinase (MMP)-14 and MMP-9. Globally, lumican appears to be a potent agent for inhibiting tumour progression rather than tumorigenesis. However, progressive changes in proteoglycans occur in the tumour environment. The complexity and diversity of proteoglycan structure might be responsible for a variety of functions that regulate cell behaviour. Through their core protein and their glycosaminoglycan chains, proteoglycans can interact with growth factors and chemokines. These interactions affect cell signalling, motility, adhesion, growth, and apoptosis. This review summarizes recent data concerning lumican control of tumour progression in different cancers, with a particular focus on its interactions with MMPs and integrins. Its potential therapeutic implications are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.12210DOI Listing
May 2013

Effect of lumican on the migration of human mesenchymal stem cells and endothelial progenitor cells: involvement of matrix metalloproteinase-14.

PLoS One 2012 7;7(12):e50709. Epub 2012 Dec 7.

Laboratoire de Biochimie Médicale et de Biologie Moléculaire, CNRS FRE 3481, Université de Reims Champagne-Ardenne, Reims, France.

Background: Increasing number of evidence shows that soluble factors and extracellular matrix (ECM) components provide an optimal microenvironment controlling human bone marrow mesenchymal stem cell (MSC) functions. Successful in vivo administration of stem cells lies in their ability to migrate through ECM barriers and to differentiate along tissue-specific lineages, including endothelium. Lumican, a protein of the small leucine-rich proteoglycan (SLRP) family, was shown to impede cell migration and angiogenesis. The aim of the present study was to analyze the role of lumican in the control of MSC migration and transition to functional endothelial progenitor cell (EPC).

Methodology/principal Findings: Lumican inhibited tube-like structures formation on Matrigel® by MSC, but not EPC. Since matrix metalloproteinases (MMPs), in particular MMP-14, play an important role in remodelling of ECM and enhancing cell migration, their expression and activity were investigated in the cells grown on different ECM substrata. Lumican down-regulated the MMP-14 expression and activity in MSC, but not in EPC. Lumican inhibited MSC, but not EPC migration and invasion. The inhibition of MSC migration and invasion by lumican was reversed by MMP-14 overexpression.

Conclusion/significance: Altogether, our results suggest that lumican inhibits MSC tube-like structure formation and migration via mechanisms that involve a decrease of MMP-14 expression and activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050709PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517548PMC
May 2013

Tetrastatin, the NC1 domain of the α4(IV) collagen chain: a novel potent anti-tumor matrikine.

PLoS One 2012 23;7(4):e29587. Epub 2012 Apr 23.

CNRS UMR 6237, Université de Reims Champagne-Ardenne, Reims, France.

Background: NC1 domains from α1, α2, α3 and α6(IV) collagen chains were shown to exert anti-tumor or anti-angiogenic activities, whereas the NC1 domain of the α4(IV) chain did not show such activities so far.

Methodology/principal Findings: We demonstrate in the present paper that the NC1 α4(IV) domain exerts a potent anti-tumor activity both in vitro and in an experimental human melanoma model in vivo. The overexpression of NC1 α4(IV) in human UACC-903 melanoma cells strongly inhibited their in vitro proliferative (-38%) and invasive (-52%) properties. MT1-MMP activation was largely decreased and its cellular distribution was modified, resulting in a loss of expression at the migration front associated with a loss of migratory phenotype. In an in vivo xenograft model in athymic nude mice, the subcutaneous injection of NC1 α4(IV)-overexpressing melanoma cells induced significantly smaller tumors (-80% tumor volume) than the Mock cells, due to a strong inhibition of tumor growth. Exogenously added recombinant human NC1 α4(IV) reproduced the inhibitory effects of NC1 α4(IV) overexpression in UACC-903 cells but not in dermal fibroblasts. An anti-αvβ3 integrin blocking antibody inhibited cell adhesion on recombinant human NC1 α4(IV) substratum. The involvement of αvβ3 integrin in mediating NC1 α4(IV) effect was confirmed by surface plasmon resonance (SPR) binding assays showing that recombinant human NC1 α4(IV) binds to αvβ3 integrin (K(D) = 148 ± 9.54 nM).

Conclusion/significance: Collectively, our results demonstrate that the NC1 α4(IV) domain, named tetrastatin, is a new endogenous anti-tumor matrikine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029587PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335157PMC
September 2012

Characterization of glycosaminoglycans by tandem vibrational microspectroscopy and multivariate data analysis.

Methods Mol Biol 2012 ;836:117-30

Laboratoire de Biochimie Médicale et de Biologie Moléculaire, CNRS UMR 6237-MEDyC, Université de Reims-Champagne-Ardenne, Reims, France.

Vibrational spectroscopies (VS), INFRARED SPECTROSCOPY and RAMAN SPECTROSCOPY, are well-established techniques for exploring the chemical composition of samples. VS are based on the molecular vibrations and give a spectral signature also called "molecular fingerprint" characteristic of the studied material. Recent advances in these techniques have rendered them faster, more sensitive, and easier to use. This chapter describes their application to characterize the main glycosaminoglycans-without any sample destruction or degradation. Nowadays, the use of multivariate statistical analysis for analyzing spectral data allows to extract rapidly the discriminant spectral information from large data sets. The combination of VS and this type of data analysis is also discussed in this chapter.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-498-8_8DOI Listing
May 2012

Lumican inhibits angiogenesis by interfering with α2β1 receptor activity and downregulating MMP-14 expression.

Thromb Res 2011 Nov 12;128(5):452-7. Epub 2011 Jul 12.

Department of Molecular and Medical Biophysics, Medical University of Lodz, Poland.

Introduction: Previous studies showed that lumican, a small leucine-rich proteoglycan that binds to α2 integrin I domain, is an efficient inhibitor of cell adhesion and migration. In this report, we tested its effect on angiogenesis in vitro and in vivo.

Materials And Methods: Effect of lumican on angiogenesis was evaluated by in vitro capillary tube formation test performed between Fibrin II Gels or in Matrigel™ and in vivo by Matrigel(™) plug assay in BALB/c mice. Changes in matrix metalloproteinases expression caused by lumican were analyzed in endothelial cells by real-time PCR, Western immunoblotting and gelatin zymography.

Results: In unchallenged endothelial cells, Matrigel™ induced robust capillary morphogenesis. In contrast, tube formation was dramatically reduced by lumican, and by siRNA to β1 integrin subunit mRNA but not by control siRNA. Similarly, lumican effectively inhibited neovascularization in vivo in assays using Matrigel™ plugs formed in BALB/c mice. Interestingly, lumican significantly reduced expression of matrix metalloproteinases, particularly MMP-14 that is known to activate other MMPs in close vicinity of endothelial cell membranes.

Conclusions: Our results provide strong evidence that lumican affects angiogenesis both by interfering with α2β1 receptor activity and downregulating proteolytic activity associated with surface membranes of endothelial cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.thromres.2011.06.011DOI Listing
November 2011