Publications by authors named "Srujan Marepally"

28 Publications

  • Page 1 of 1

Controlled Differentiation of Mesenchymal Stem Cells into Hyaline Cartilage in miR-140-Activated Collagen Hydrogel.

Cartilage 2021 12 28;13(2_suppl):571S-581S. Epub 2021 Sep 28.

Department of Paediatric Orthopaedics, Centre for Stem Cell Research, Christian Medical College, Vellore, Tamil Nadu, India.

Objective: Hypertrophic cartilage formation is a major setback in mesenchymal stem cells (MSCs)-mediated cartilage repair, and overcoming it requires optimization of differentiation. Here, we tested the miR-140 activated collagen hydrogel for the chondrogenic differentiation of MSCs and to produce hyaline cartilage.

Methods: Bone marrow MSCs isolated from 3 patients were pretreated with miR-140 and then chondrogenic differentiated. The 3-dimensional (3D) transfection potential of 5 different transfection reagents (Polyethylenimine, Lipofectamine, TransIT-X2, Amide:Cholesterol-based liposomes [AmC] and AmC pegylated with Tocofersolan [AmCTOC]) was compared and the reagent that showed higher green fluorescent protein (GFP) expression was selected. Finally, the collagen hydrogel was activated using miR-140-transfection complex and sustained delivered to MSCs during chondrogenic differentiation. After differentiation, the outcome was assessed by reverse transcription-polymerase chain reaction (RT-PCR), histology, immunohistochemistry, and compared with scrambled miRNA treated control.

Results: Pretreatment of MSCs with miR-140 significantly increased the expression of cartilage-specific genes (, , and ) with reduced hypertrophic chondrocyte () marker expression and better safranin-O staining than the control. The AmCTOC liposome showed a significant increase in 3D transfection of GFP expressing plasmid than the others. Furthermore, the knockdown of using siRNA in HEK cells and expression of GFP mRNA in human bone marrow MSCs confirmed the 3D-transfection efficiency of AmCTOC. The sustained delivery of miR-140 using activated matrix formed a hyaline cartilage-like tissue with minimal expression in RT-PCR and immunohistochemistry.

Conclusion: Our results demonstrated the therapeutic potential of miR-140-activated hydrogel for MSCs-based cartilage tissue engineering, which could also be used for endogenous stem cells-mediated cartilage repair.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/19476035211047627DOI Listing
December 2021

Preferential Expansion of Human CD34CD133CD90 Hematopoietic Stem Cells Enhances Gene-Modified Cell Frequency for Gene Therapy.

Hum Gene Ther 2022 Jan 7. Epub 2022 Jan 7.

Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, India.

CD34CD133CD90 hematopoietic stem cells (HSCs) are responsible for long-term multilineage hematopoiesis, and the high frequency of gene-modified HSCs is crucial for the success of hematopoietic stem and progenitor cell (HSPC) gene therapy. However, the culture and gene manipulation steps of HSPC graft preparation significantly reduce the frequency of HSCs, thus necessitating large doses of HSPCs and reagents for the manipulation. In this study, we identified a combination of small molecules, Resveratrol, UM729, and SR1 that preferentially expands CD34CD133CD90 HSCs over other subpopulations of adult HSPCs in culture. The preferential expansion enriches the HSCs in culture, enhances the adhesion, and results in a sixfold increase in the long-term engraftment in NSG mice. Further, the culture-enriched HSCs are more responsive to gene modification by lentiviral transduction and gene editing, increasing the frequency of gene-modified HSCs up to 10-fold . The yield of gene-modified HSCs obtained by the culture enrichment is similar to the sort-purification of HSCs and superior to Cyclosporin-H treatment. Our study addresses a critical challenge of low frequency of gene modified HSCs in HSPC graft by developing and demonstrating a facile HSPC culture condition that increases the frequency of gene-modified cells . This strategy will improve the outcome of HSPC gene therapy and also simplify the gene manipulation process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/hum.2021.089DOI Listing
January 2022

Cholesterol Sequestration from Caveolae/Lipid Rafts Enhances Cationic Liposome-Mediated Nucleic Acid Delivery into Endothelial Cells.

Molecules 2021 Jul 30;26(15). Epub 2021 Jul 30.

Centre for Stem Cell Research (CSCR) (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, TN, India.

Delivering nucleic acids into the endothelium has great potential in treating vascular diseases. However, endothelial cells, which line the vasculature, are considered as sensitive in nature and hard to transfect. Low transfection efficacies in endothelial cells limit their potential therapeutic applications. Towards improving the transfection efficiency, we made an effort to understand the internalization of lipoplexes into the cells, which is the first and most critical step in nucleic acid transfections. In this study, we demonstrated that the transient modulation of caveolae/lipid rafts mediated endocytosis with the cholesterol-sequestrating agents, nystatin, filipin III, and siRNA against Cav-1, which significantly increased the transfection properties of cationic lipid-(2-hydroxy--methyl-,-bis(2-tetradecanamidoethyl)ethanaminium chloride), namely, amide liposomes in combination with 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) (AD Liposomes) in liver sinusoidal endothelial cells (SK-Hep1). In particular, nystatin was found to be highly effective with 2-3-fold enhanced transfection efficacy when compared with amide liposomes in combination with Cholesterol (AC), by switching lipoplex internalization predominantly through clathrin-mediated endocytosis and macropinocytosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules26154626DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346983PMC
July 2021

Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor.

Int J Pharm 2021 Aug 22;605:120819. Epub 2021 Jun 22.

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup, Assam 781101, India. Electronic address:

Targeted delivery of chemotherapeutic agents is considered a prominent strategy for the treatment of cancer due to its site-specific delivery, augmented penetration, bioavailability, and improved therapeutic efficiency. In the present study, we employed UniPR126 as a carrier in a mixed nanomicellar delivery system to target and deliver anticancer drug NIC specifically to cancer cells via EphA2 receptors as these receptors are overexpressed in cancer cells but not in normal cells. The specificity of the carrier was confirmed from the significant enhancement in the uptake of coumarin-6 loaded mixed nanomicelle by EphA2 highly expressed PC-3 cells compared to EphA2 low expressed H4 cells. Further, niclosamide-loaded lithocholic acid tryptophan conjugate-based mixed nanomicelle has shown significant synergistic cytotoxicity in PC-3 but not in H4 cells. In vivo anticancer efficacy data in PC-3 xenograft revealed a significant reduction in the tumor volume (66.87%) with niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle, where pure niclosamide showed just half of the activity. Molecular signaling data by western blotting also indicated that niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle interfered with the EphA2 receptor signaling and inhibition of the Wnt/beta-catenin pathway and resulted in the synergistic anticancer activity compared to niclosamide pure drug.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120819DOI Listing
August 2021

Structure-activity relationship of serotonin derived tocopherol lipids.

Int J Pharm 2019 Jan 30;554:134-148. Epub 2018 Oct 30.

CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India. Electronic address:

Tocopherol-based lipids are widely used for nucleic acid delivery. Using tocopherol molecules, we designed and synthesized 5-HT functionalized lipids by tethering 5-hydroxytryptamine (5-HT), a small molecule ligand as the head group to a natural amphiphilic molecule namely α-tocopherol (Vitamin E). This is with the aim of delivering nucleic acids specifically into cells expressing the serotonin receptors (5-hydroxytryptamine[5-HT]) which are abundant in the central nervous system. In order to achieve target recognition, we adopted an approach wherein two structurally different lipid molecules having serotonin as the head group was conjugated to tocopherol via different linkers thus generating lipids with either free -NH or -OH moiety. The corresponding lipids designated as Lipid A (Tocopheryl carbonate serotonin-NH) and Lipid B (Tocopheryl 2-hydroxy propyl ammonium serotonin-OH), were formulated with co-lipids 1,2-dioleoyl-sn-glycero-3-phosphatidyl-ethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-sn-3-phosphatidylcholine (DOPC) and evaluated for their ability to deliver plasmid DNA through reporter gene expression assays in vitro. Furthermore, the physicochemical characteristics and cellular interactions of the formulations were examined using serotonin-receptor enriched cells in order to distinguish the structural and functional attributes of both lipids. Cell-based gene expression studies reveal that in comparison to Lipid A, a formulation of Lipid B prepared with DOPE as the co-lipid, contributes to efficient uptake leading to significant enhancement in transfection. Specific interactions explored by molecular docking studies suggests the role of the hydroxyl moiety and the enantiospecific significance of serotonin- conjugated tocopherol lipids in recognizing these receptors thus signifying a promising lipid-based approach to target the serotonin receptors in the central nervous system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.10.072DOI Listing
January 2019

α-Tocopherol-ascorbic acid hybrid antioxidant based cationic amphiphile for gene delivery: Design, synthesis and transfection.

Bioorg Chem 2019 02 17;82:178-191. Epub 2018 Apr 17.

National Institute of Technology, Warangal 506004, Telangana, India. Electronic address:

Natural antioxidants and vitamins have potential to protect biological systems from peroxidative damage induced by peroxyl radicals, α-tocopherol (Vitamin E, lipid soluble) and ascorbic acid (vitamin C, water soluble), well known natural antioxidant molecules. In the present study we described the synthesis and biological evaluation of hybrid of these two natural antioxidants with each other via ammonium di-ethylether linker, Toc-As in gene delivery. Two control cationic lipids N14-As and Toc-NOH are designed in such a way that one is with ascorbic acid moiety and no tocopherol moiety; another is with tocopherol moiety and no ascorbic acid moiety respectively. All the three cationic lipids can form self-assembled aggregates. The antioxidant efficiencies of the three lipids were compared with free ascorbic acid. The cationic lipids (Toc-As, N14-As and Toc-NOH) were formulated individually with a well-known fusogenic co-lipid DOPE and characterization studies such as DNA binding, heparin displacement, size, charge, circular dichroism were performed. The biological characterization studies such as cell viability assay and in vitro transfection studies were carried out with the above formulations in HepG2, Neuro-2a, CHO andHEK-293T cell lines. The three formulations showed their transfection efficiencies with highest in Toc-As, moderate inN14-As and least in Toc-NOH. Interestingly, the transfection efficiency observed with the antioxidant based conjugated lipid Toc-As is found to be approximately two and half fold higher than the commercially available lipofectamine 2000 at 4:1 charge ratio in Hep G2 cell lines. In the other cell lines studied the efficiency of Toc-As is found to be either higher or similarly active compared to lipofectamine 2000. The physicochemical characterization results show that Toc-As lipid is showing maximum antioxidant potency, strong binding with pDNA, least size and optimal zeta potential. It is also found to be least toxic in all the cell lines studied especially in Neuro-2a cell lines when compared to other two lipids. In summary, the designed antioxidant lipid can be exploited as a delivering system for treating ROS related diseases such as malignancy, brain stroke, etc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2018.02.025DOI Listing
February 2019

Hepatocellular targeted α-tocopherol based pH sensitive galactosylated lipids: design, synthesis and transfection studies.

Medchemcomm 2018 Feb 6;9(2):264-274. Epub 2017 Dec 6.

National Institute of Technology , Warangal-506004 , Telangana , India . Email:

Receptor mediated gene delivery to the liver offers advantages in treating genetic disorders such as hemophilia and hereditary tyrosinemia type I (HTI). Prior findings demonstrated that tethering the d-galactose head group to cationic lipids directs genes to the liver asialoglycoprotein receptors (ASGPRs). In our continued efforts to develop safer and efficient lipofectins, we demonstrated that cationic lipids bearing α-tocopherol, an antioxidant, as a hydrophobic domain could deliver genes efficiently with high safety profiles in multiple cell lines. Towards developing ASGPR targeted pH sensitive cationic lipids, we have designed a galactosylated cationic lipid (Toc-Gal) with α-tocopherol as the hydrophobic core covalently connected with a pH responsive triazole moiety and a non-targeting control lipid (Toc-OH) without the galactose head group. In this study, we present the design and synthesis of a pH sensitive galactosylated cationic lipid (Toc-Gal), its comparative transfection biology, cellular uptake studies, serum stability and cytotoxicity profiles in both ASGPR positive and negative liver cells, HepG2 and SK-Hep-1, respectively.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7md00503bDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6083795PMC
February 2018

Green Transfection: Cationic Lipid Nanocarrier System Derivatized from Vegetable Fat, Palmstearin Enhances Nucleic Acid Transfections.

ACS Omega 2017 Nov 14;2(11):7892-7903. Epub 2017 Nov 14.

Centre for Stem Cell Research (CSCR), (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, India.

Cationic lipid-guided nucleic acid delivery holds great promise in gene therapy and genome-editing applications for treating genetic diseases. However, the major challenge lies in achieving therapeutically relevant efficiencies. Prior findings, including our own, demonstrated that asymmetry in the hydrophobic core of cationic lipids imparted superior transfection efficiencies. To this end, we have developed a lipid nanocarrier system with an asymmetric hydrophobic core () derived from a mixture of fatty acids of food-grade palmstearin and compared its efficiency with symmetric palmitic acid-based nanocarrier system (). exhibited superior transfection efficiencies with both plasmid DNA (pDNA) and mRNA in multiple cultured cells than the control . More importantly, exhibited 2-fold superior transfections with linear nucleic acid, green fluorescent protein (GFP) mRNA in hematopoietic cells, when compared with the commercial control lipofectamine RNAiMAX. was also found to be effective in delivering genome-editing tools (CRISPR/Cas9, sgRNA encoded pDNA with a reporter GFP construct) than in HEK-293 cells. In the present study, we report that cationic liposomes derivatized from natural food-grade fat palmstearin with a natural hydrophobic core asymmetry are efficient in delivering both linear and circular nucleic acids. In particular, is efficient in delivering mRNA to hematopoietic cells. These findings can be further exploited in the genome-editing approach for treating β-globinopathies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsomega.7b00935DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044896PMC
November 2017

Exploring membrane permeability of Tomatidine to enhance lipid mediated nucleic acid transfections.

Biochim Biophys Acta Biomembr 2019 01 11;1861(1):327-334. Epub 2018 Jun 11.

Centre for Stem Cell Research, Christian Medical College Campus, Bagayam, Vellore 632002, India; Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK-post, Bellary Road, Bengaluru 560065, India. Electronic address:

Intracellular delivery of nucleic acids is one of the critical steps in the transfections. Prior findings demonstrated various strategies including membrane fusion, endosomal escape for the efficient cytoplasmic delivery. In our continuing efforts to improve the nucleic acids transfections, we harnessed cell permeable properties of Tomatidine (T), a steroidal alkaloid abundantly found in green tomatoes for maximizing intracellular delivery of lipoplexes. We doped Tomatidine into liposomes of cationic lipid with amide linker (A) from our lipid library. Six liposomal formulations (AT) of Lipid A (1 mM) with varying concentrations of Tomatidine (0-1 mM) were prepared and evaluated for their transfection efficacies. Owing to its signature characteristic of cell membrane permeability, Tomatidine modulated endocytosis process, enhanced the intracellular delivery of the lipoplexes, and in turn increased the transfection efficacy of cationic liposomes. Our findings provide 'proof of concept' for enhancing transfections in gene delivery applications with Tomatidine in cationic liposomal formulations. These findings can be further applied in lipid mediated gene therapy and drug delivery applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2018.06.006DOI Listing
January 2019

The family of microRNAs is crucial for regeneration of the brain and visual system in the planarian .

Development 2017 09 14;144(18):3211-3223. Epub 2017 Aug 14.

Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India

Brain regeneration in planarians is mediated by precise spatiotemporal control of gene expression and is crucial for multiple aspects of neurogenesis. However, the mechanisms underpinning the gene regulation essential for brain regeneration are largely unknown. Here, we investigated the role of the family of microRNAs in planarian brain regeneration. The family () is highly conserved in animals and regulates neurogenesis by facilitating neural differentiation, yet its role in neural wiring and brain organization is not known. We developed a novel method for delivering anti-miRs using liposomes for the functional knockdown of microRNAs. knockdown revealed a key role for these microRNAs in neuronal organization during planarian brain regeneration. Our results also demonstrated an essential role for in the generation of eye progenitors. Additionally, regulates , which encodes an axon guidance protein, either by targeting mRNA or, potentially, by modulating the canonical Notch pathway. Together, our results reveal a role for in regulating the regeneration of a functional brain and visual system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.144758DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5612250PMC
September 2017

Enhanced Spacer Length between Mannose Mimicking Shikimoyl and Quinoyl Headgroups and Hydrophobic Region of Cationic Amphiphile Increases Efficiency of Dendritic Cell Based DNA Vaccination: A Structure-Activity Investigation.

J Med Chem 2017 02 10;60(4):1605-1610. Epub 2017 Feb 10.

Biomaterials Group, CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007, India.

In the field of dendritic cell based genetic immunization, previously we showed that liposomes of cationic amphiphiles containing mannose-mimicking shikimoyl headgroup are promising DNA vaccine carriers for dendritic cell (DC) transfection. The present structure-activity study reports on the influence of spacer length (between mannose-mimicking headgroups and quaternary nitrogen centers) in modulating the DC-transfection efficiencies. Further, we report on the anti-melanoma immune response inducing properties of the promising cationic amphiphiles in syngeneic C57BL/6J mice under prophylactic settings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.6b01556DOI Listing
February 2017

An anti-oxidant, α-lipoic acid conjugated oleoyl-sn-phosphatidylcholineas a helper lipid in cationic liposomal formulations.

Colloids Surf B Biointerfaces 2017 Apr 10;152:133-142. Epub 2017 Jan 10.

Centre for Stem Cell Research (CSCR), (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, India. Electronic address:

Development of safe non-viral carrier systems for efficient intra-cellular delivery of drugs and genes hold promise in the area of translational research. Liposome based delivery systems have emerged as one of the attractive strategies for efficient delivery of drugs and nucleic acids. To this end, number of investigations was carried on liposomal formulations using lipids for achieving higher efficiency in transfection with lower cytotoxicities. In our efforts to develop safer and efficient liposomal delivery systems, we synthesized a novel anti-oxidant lipid, α-lipoyl, oleyl-sn-phosphatidylcholine (LOPC) and used as a helper lipid in combination with a cationic amphiphile, Di-Stearyl Dihydroxy Ethyl Ammonium Chloride (DSDEAC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at varying concentrations of LOPC. DNA binding properties of the liposomal formulations (DS, DS LA1, DS LA2 and DS LA3) revealed that increasing the percentage of single aliphatic chain lipid LOPC, did not affect the DNA binding properties. But, transfection profiles of these liposomal formulations in 3 different cell lines (HeLa, HEK 293 and MCF7) showed difference in their efficacies. Results showed that optimal percentage of LOPC i.e. 25% in DSDEAC and DOPC at 1:1 molar ratio (DS LA1) enhanced transfection as compared to DSDEAC:DOPC alone. The endosomal escape studies with NBD labelled lysotracker and Rhodamine labelled liposomal formulations revealed that DS LA1 and DS LA2 facilitated the release of genetic cargo with a better efficiency than their counter parts. Reactive Oxygen Species (ROS), a key modulator of necroptosis were lowered with the treatment of DS LA1 than other liposomal formulations. Here in, we present a novel liposomal formulation using DSDEAC and DOPC at 1:1 molar ratio doped with 25-50% (mole ratio) LOPC as an efficient delivery system for enhanced transfection with quenching of ROS levels compared to formulations without LOPC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2017.01.013DOI Listing
April 2017

Sterile Inflammation Enhances ECM Degradation in Integrin β1 KO Embryonic Skin.

Cell Rep 2016 09;16(12):3334-3347

Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK PO, Bellary Road, Bangalore 560065, India; Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA. Electronic address:

Epidermal knockout of integrin β1 results in complete disorganization of the basement membrane (BM), resulting in neonatal lethality. Here, we report that this disorganization is exacerbated by an early embryonic inflammatory response involving the recruitment of tissue-resident and monocyte-derived macrophages to the dermal-epidermal junction, associated with increased matrix metalloproteinase activity. Remarkably, the skin barrier in the integrin β1 knockout animals is intact, suggesting that this inflammatory response is initiated in a sterile environment. We demonstrate that the molecular mechanism involves de novo expression of integrin αvβ6 in the basal epidermal cells, which activates a TGF-β1 driven inflammatory cascade resulting in upregulation of dermal NF-κB in a Tenascin C-dependent manner. Importantly, treatment of β1 KO embryos in utero with small molecule inhibitors of TGF-βR1 and NF-κB results in marked rescue of the BM defects and amelioration of immune response, revealing an unconventional immuno-protective role for integrin β1 during BM remodeling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2016.08.062DOI Listing
September 2016

Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/β-catenin signaling cascades and reversal of epithelial-mesenchymal transition.

Biofactors 2017 Mar 1;43(2):152-169. Epub 2016 Sep 1.

Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER-Hyderabad), Hyderabad, Telangana, India.

Cardamonin (CD), an active chalconoid, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of CD for the treatment of triple negative breast cancer (TNBC) is unclear. This study aims to examine the cytotoxic effects of CD and investigate the underlying mechanism in human TNBC cells. The results show that CD exhibits cytotoxicity by inducing apoptosis and cell cycle arrest in TNBC cells via modulation of Bcl-2, Bax, cyt-C, cleaved caspase-3, and PARP. We find that CD significantly increases expression of the epithelial marker E-cadherin, while reciprocally decreasing expression of mesenchymal markers such as snail, slug, and vimentin in BT-549 cells. In parallel with epithelial-mesenchymal transition (EMT) reversal, CD down regulates invasion and migration of BT-549 cells. CD markedly reduces stability and nuclear translocation of β-catenin, accompanied with downregulation of β-catenin target genes. Using the TopFlash luciferase reporter assay, we reveal CD as a specific inhibitor of the Wnt3a-induced signaling. These results suggest the involvement of the Wnt/β-catenin signaling in the CD-induced EMT reversion of BT-549 cells. Notably, CD restores the glycogen synthase kinase-3β (GSK3β) activity, required for β-catenin destruction via the proteasome-mediated system, by inhibiting the phosphorylation of GSK3β by Akt. These occurrences ultimately lead to the blockage of EMT and the invasion of TNBC cells. Further antitumor activity of CD was tested in 4T1 (TNBC cells) induced tumor and it was found that CD significantly inhibited the tumor volume at dose of 5 mg/kg-treated mice. © 2016 BioFactors, 43(2):152-169, 2017.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/biof.1315DOI Listing
March 2017

Novel amphiphilic lipid augments the co-delivery of erlotinib and IL36 siRNA into the skin for psoriasis treatment.

J Control Release 2017 01 8;246:120-132. Epub 2016 May 8.

College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA. Electronic address:

In this study, we demonstrate for the first time the concurrent transdermal delivery of erlotinib and IL36α siRNA as a potential dual therapy for psoriasis. The objectives were to develop and evaluate lipid nanocarriers (CYnLIP) using a novel pyrrolidinium lipid to disrupt the skin barrier for enhanced transdermal delivery. CYnLIP (132.00±6.23nm) had encapsulation efficiency of 49.04±2.54% for erlotinib. DSC confirmed encapsulation of erlotinib within CYnLIP. Atomic Force Microscopy demonstrated notable topographical changes in the stratum corneum of skin permeated with CYnLIP that were absent in skin hydrated with water. Peak force distance curves also exhibited a more permeable membrane for CYnLIP-incubated skin than hydrated skin. Permeation studies showed enhanced (p<0.01) skin retention of erlotinib by CYnLIP (40.76-fold) than solution and more pronounced fluorescence at deeper layers of the skin for fluorescein-labeled siRNA-CYnLIP than solution. The enhanced co-transdermal delivery of erlotinib and IL36α siRNA by CYnLIP efficaciously treated psoriatic-like plaques in C57BL/6 mice (PASI score of 1) compared to imiquimod-only treatment (PASI score of 4). IHC and western blotting revealed reduction in epidermal hyperplasia (Ki67) and in the dermal infiltration of inflammatory cytokines (IL36α, pSTAT3, TNFα, NFκB, IL23 and IL17) for erlotinib/IL36α siRNA-CYnLIP (p<0.05) comparable to Tacrolimus but markedly less than imiquimod-only treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2016.05.017DOI Listing
January 2017

Formulation, Pharmacokinetic, and Efficacy Studies of Mannosylated Self-Emulsifying Solid Dispersions of Noscapine.

PLoS One 2016 12;11(1):e0146804. Epub 2016 Jan 12.

Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1520 South Martin Luther King Jr. Blvd., Tallahassee, FL, United States of America.

Purpose: To formulate hydroxypropyl methylcellulose-stabilized self-emulsifying solid dispersible carriers of noscapine to enhance oral bioavailability.

Methods: Formulation of noscapine (Nos) self-emulsifying solid dispersible microparticles (SESDs) was afforded by emulsification using an optimized formula of Labrafil M1944, Tween-80, and Labrasol followed by spray-drying with hydroxypropyl methylcellulose (HPMC), with and without mannosamine (Mann-Nos_SESDs and Nos_SESDs respectively); self-microemulsifying liquid dispersions (SMEDDs) with and without mannosamine (Mann-Nos_SMEDDs and Nos_SMEDDs respectively) were also prepared. SMEDDs and SESDs were characterized for size, polydispersity, surface charge, entrapment efficiency, in vitro permeability, in vitro release kinetics, and oral pharmacokinetics in Sprague-Dawley rats (10 mg/kg p.o). The antitumor efficacy of Mann-Nos_SESDs on the basis of chemosensitization to cisplatin (2.0 mg/kg, i.v.) was investigated in a chemorefractory lung tumor Nu/Nu mouse model up to a maximal oral dose of 300 mg/kg.

Results: The oil/surfactant/co-surfactant mixture of Labrafil M1944, Tween-80, and Labrasol optimized at weight ratios of 62.8:9.30:27.90% produced stable self-microemulsifying dispersions (SMEDDs) at a SMEDD to water ratio of 1-3:7-9 parts by weight. SMEDDs had hydrodynamic diameters between 231 and 246 nm; surface charges ranged from -16.50 to -18.7 mV; and entrapment efficiencies were between 32 and 35%. SESDs ranged in size between 5.84 and 6.60 μm with surface charges from -10.62 to -12.40 mV and entrapment efficiencies of 30.96±4.66 and 32.05±3.72% (Nos_SESDs and Mann-Nos_SESDs respectively). Mann-Nos_SESDs exhibited saturating uptake across Caco-2 monolayers (Papp = 4.94±0.18 × 10(-6) cm/s), with controlled release of 50% of Nos in 6 hr at pH 6.8 following Higuchi kinetics. Mann-Nos_ SESDs was 40% more bioavailable compared to Nos_SESDs; and was effective in sensitizing H1650 SP cells to Cisplatin in vitro and in an orthotopic lung tumor model of H1650 SP origin.

Conclusions: Mannosylated noscapine self-emulsifying solid dispersions (Mann-Nos_SESDs) are bioavailable and potentiate the antineoplastic effect of cisplatin-based chemotherapy in cisplatin-resistant NSCLC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146804PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710382PMC
July 2016

Elastic liposome-mediated transdermal immunization enhanced the immunogenicity of P. falciparum surface antigen, MSP-119.

Vaccine 2015 Aug 30;33(36):4630-8. Epub 2015 Jun 30.

Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore 560065, India.

Transdermal immunization results in poor immunogenicity, which can be attributed to poor permeability of antigens through the skin. Therefore, elastic liposome, ultradeformable lipid vesicles, may overcome the challenges faced during transdermal immunization. This versatile carrier proves better vehicle for transcutaneous delivery of protein, peptide and nucleic acid antigens. The present results are suggestive of improved immunogenicity of carboxyl-terminal 19 kDa fragment of merozoite surface protein-1 (PfMSP-119) of Plasmodium falciparum when administered subcutaneously through elastic liposomes. The prepared elastic liposomes were characterized with respect to vesicles shape and surface morphology, size and size distribution, entrapment efficiency, elasticity, stability and in vitro release. Humoral and cell-mediated immune (CMI) response elicited by topically applied PfMSP-119-loaded elastic liposomes, intramuscularly administered alum-adsorbed PfMSP-119 solution, and topically applied PfMSP-119-loaded conventional liposomes were compared and normalized with vehicle control. Results suggest greater transcutaneous immunization via elastic liposomes, and induced robust and perdurable IgG-specific antibody and cytophilic isotype responses. We report to have achieved sizeable CMI activating factor (IFNγ), a crucial player in conferring resistance to asexual blood stage malaria, responses with elastic liposomes when compared with other formulations. The fluorescence microscopy and histopathology results are suggestive of prominent skin permeation and biodistribution, and demonstrate efficient delivery of malaria antigen via elastic liposomes to immunocompetent Langerhans cells (LC) and lymphatics. In conclusion, elastic liposomal formulation provided greater entrapment efficiency, enhanced penetration and heightened and long-lasting immune response. Moreover, effective immunoadjuvant property of this carrier justifies its potential for improved vaccine delivery, and opens new avenues to explore further on the development of malaria vaccine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2015.06.054DOI Listing
August 2015

Lipid nanocarriers of a lipid-conjugated estrogenic derivative inhibit tumor growth and enhance cisplatin activity against triple-negative breast cancer: pharmacokinetic and efficacy evaluation.

Mol Pharm 2015 Apr 2;12(4):1105-20. Epub 2015 Mar 2.

‡Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, Andhra Pradesh 500007, India.

Breast cancer is the leading cause of malignancies among women globally. The triple negative breast cancer (TNBC) subtype is the most difficult to treat and accounts for 15% of all cases. Targeted therapies have been developed for TNBC but come short of clinical translation due to acquired tumor resistance. An effective therapy against TNBC must combine properties of target specificity, efficient tumor killing, and translational relevance. The objective of this study was to formulate a nontoxic, cationic, lipid-conjugated estrogenic derivative (ESC8), with demonstrated anticancer activity, for oral delivery in mice bearing triple negative breast cancer (TNBC) as xenograft tumors. The in vitro cell viability, Caco-2 permeability, and cell cycle dynamics of ESC8-treated TNBC cells were investigated. ESC8 was formulated as liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs) and characterized for size, zeta potential, entrapment efficiency, size stability, and tumor biodistribution. Pharmacokinetic modeling of plasma concentration-time course data was carried out following intravenous and oral administration in Sprague-Dawley rats. In vivo efficacy investigation of ESC8-SLNC was carried out in Nu/Nu mice bearing MDA-MB-231 TNBC as xenograft tumors, and the molecular dynamics modulating tumor growth inhibition was analyzed by Western blot. In vitro ESC8 inhibited TNBC and non-TNBC cell viability with IC50 ranging from 1.81 to 3.33 μM. ESC8 was superior to tamoxifen and Cisplatin in inhibiting MDA-MB-231 cell viability; and at 2.0 μM ESC8 enhanced Cisplatin cytotoxicity 16-fold. Intravenous ESC8 (2.0 mg/kg) was eliminated at a rate of 0.048 ± 0.01 h(-1) with a half-life of 14.63 ± 2.95 h in rats. ESC8 was orally bioavailable (47.03%) as solid lipid nanoparticles (ESC8-SLN). ESC8-SLN (10 mg/kg/day, ×14 days, p.o.) inhibited breast tumor growth by 74% (P < 0.0001 vs control) in mice bearing MDA-MB-231 cells as xenografts; and when given in combination with Cisplatin (2.0 mg/kg/biweekly, ×2 weeks, IV), tumor growth was inhibited by 87% (P = 0.0002, vs ESC8-SLN; 10 mg/kg/day, ×14 days, p.o). ESC8-SLN tumor growth inhibition was associated with increased expression of p21 and Caspase-9; as well as by inhibition of EGFR, Slug, p-Akt1, Vimentin, NFkβ, and IKKγ. These results show the promise of ESC8 as an oral adjuvant or neoadjuvant against triple negative breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp5008629DOI Listing
April 2015

Cationic lipid guided short-hairpin RNA interference of annexin A2 attenuates tumor growth and metastasis in a mouse lung cancer stem cell model.

J Control Release 2014 Jun 12;184:67-78. Epub 2014 Apr 12.

Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1520 South Martin Luther King Jr. Blvd., Tallahassee, FL 32307, USA. Electronic address:

The role of side populations (SP) or cancer stem-like cells (CSC) in promoting the resistance phenotype presents a viable anticancer target. Human-derived H1650 SP cells over-express annexin A2 (AnxA2) and SOX2, and are resistant to conventional cytotoxic chemotherapeutics. AnxA2 and SOX2 bind to proto-oncogenes, c-Myc and c-Src, and AnxA2 forms a functional heterotetramer with S100A10 to promote tumor motility. However, the combined role of AnxA2, S100A10 and SOX2 in promoting the resistant phenotype of SP cells has not been investigated. In the current studies, we examined for the first time a possible role of AnxA2 in regulating SA100A10 and SOX2 in promoting a resistant phenotype of lung tumors derived from H1650 SP cells. The resistance of H1650 SP cells to chemotherapy compared to H1650 MP cells was investigated by cell viability studies. A short hairpin RNA targeting AnxA2 (shAnxA2) was formulated in a liposomal (cationic ligand-guided, CLG) carrier and characterized for size, charge and entrapment and loading efficiencies; CLG carrier uptake by H1650 SP cells was demonstrated by fluorescence microscopy, and knockdown of AnxA2 confirmed by qRT-PCR and Western blot. Targeting of xenograft and orthotopic lung tumors was demonstrated with fluorescent (DiR) CLG carriers in mice. The therapeutic efficacy of CLG-AnxA2, compared to that of placebo, was investigated after 2 weeks of treatment in terms of tumor weights and tumor burden in vivo. Compared to mixed population cells, H1650 SP cells showed exponential resistance to docetaxel (15-fold), cisplatin (13-fold), 5-fluorouracil (31-fold), camptothecin (7-fold), and gemcitabine (16-fold). CLG carriers were nanoparticulate (199nm) with a slight positive charge (21.82mV); CLG-shAnx2 was of similar size (217nm) with decreased charge (12.11mV), and entrapment and loading efficiencies of 97% and 6.13% respectively. Fluorescence microscopy showed high uptake of CLG-shAnxA2 in H1650 SP cells after 2h resulting in a 6-fold reduction in AnxA2 mRNA expression and 92% decreased protein expression. Fluorescence imaging confirmed targeting of tumors and lungs by DiR-CLG carriers with sustained localization up to 4h in mice. CLG-shAnxA2 treatment of mice significantly reduced the weights of lung tumors derived from H1650 SP cells and tumor burden was reduced to only 19% of controls. The loss in tumor weights in response to CLG-shAnxA2 was associated with a significant loss in the relative levels of AnxA2, SOX2, total β-catenin and S100A10, both at the RNA and protein levels. These results suggest the intriguing possibility that AnxA2 may directly or indirectly regulate relative levels of β-catenin, S100A10 and SOX2, and that the combination of these factors may contribute to the resistant phenotype of H1650 SP cells. Thus down-regulating AnxA2 using RNAi methods may provide a useful method for targeting cancer stem cells and help advance therapeutic efficacy against lung cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2014.03.049DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674431PMC
June 2014

Topical administration of dual siRNAs using fusogenic lipid nanoparticles for treating psoriatic-like plaques.

Nanomedicine (Lond) 2014 Jul 5;9(14):2157-74. Epub 2014 Mar 5.

College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.

Aim: Psoriasis is a chronic autoimmune skin disorder with substantial negative impact on the patient's quality of life. The present study was carried out to demonstrate the efficiency of a novel topical delivery system in the transport of two siRNAs for the treatment of psoriatic-like plaques.

Materials & Methods: We designed and developed a novel fusogenic nucleic acid lipid particle (F-NALP) system containing two therapeutic nucleic acids, anti-STAT3 siRNA (siSTAT3) and anti-TNF-α siRNA (siTNF-α). Novel cationic amphiphilic lipid with oleyl chains was synthesized and used in the nanocarrier system. Therapeutic efficacies of F-NALPs were assessed using an imiquimod-induced psoriatic-like plaque model.

Results: Hydrodynamic size and surface potential of F-NALPs were 102 ± 6 nm and 32.14 ± 6.21 mV, respectively. F-NALPs delivered fluorescein isothiocyanate-siRNA to a skin depth of 360 µm. F-NALPs carrying siSTAT3 and siTNF-α significantly (p < 0.05) reduced expression of STAT3 and TNF-α mRNAs and IL-23 and Ki-67 proteins compared with solution, and was superior in comparison with Topgraf(®) (GlaxoSmithKline Pharmaceuticals Limited, Maharashtra, India).

Conclusion: Our observations demonstrate that F-NALPs can efficiently carry siSTAT3 and siTNF-α into the dermis and combination of the two nucleic acids can synergistically treat psoriatic-like plaques.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.13.202DOI Listing
July 2014

Design, synthesis of novel lipids as chemical permeation enhancers and development of nanoparticle system for transdermal drug delivery.

PLoS One 2013 12;8(12):e82581. Epub 2013 Dec 12.

College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, United States of America.

In the present study, we designed and developed novel lipids that include (Z)-1-(Octadec-9-en-1-yl)-pyrrolidine (Cy5T), 1, 1-Di-((Z)-octadec-9-en-1-yl)pyrrolidin-1-ium iodide (Cy5), (Z)-1-(Octadec-9-en-1-yl)-piperidine (Cy6T), and 1, 1-Di-((Z)-octadec-9-en-1-yl) piperidin-1-ium iodide (Cy6) to enhance the transdermal permeation of some selected drugs. Firstly, we evaluated the transdermal permeation efficacies of these lipids as chemical permeation enhancers in vehicle formulations for melatonin, ß-estradiol, caffeine, α-MSH, and spantide using franz diffusion cells. Among them Cy5 lipid was determined to be the most efficient by increasing the transdermal permeation of melatonin, ß-estradiol, caffeine, α-MSH, and spantide by 1.5 to 3.26-fold more at the epidermal layer and 1.3 to 2.5-fold more at the dermal layer, in comparison to either NMP or OA. Hence we developed a nanoparticle system (cy5 lipid ethanol drug nanoparticles) to evaluate any further improvement in the drug penetration. Cy5 lipid formed uniformly sized nanoparticles ranging from 150-200 nm depending on the type of drug. Further, Cy5 based nanoparticle system significantly (p<0.05) increased the permeation of all the drugs in comparison to the lipid solution and standard permeation enhancers. There were about 1.54 to 22-fold more of drug retained in the dermis for the Cy5 based nanoparticles compared to OA/NMP standard enhancers and 3.87 to 66.67-fold more than lipid solution. In addition, epifluorescent microscopic analysis in rhodamine-PE permeation studies confirmed the superior permeation enhancement of LEDs (detection of fluorescence up to skin depth of 340 μm) more than lipid solution, which revealed fluorescence up to skin depth of only 260 μm. In summary the present findings demonstrate that i) cationic lipid with 5 membered amine heterocyclic ring has higher permeating efficacy than the 6 membered amine hertocyclic ring. ii) The nanoparticle system prepared with Cy5 showed significant (p<0.05) increase in the permeation of the drugs than the control penetration enhancers, oleic acid and NMP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082581PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861410PMC
October 2014

Inhalation delivery of Telmisartan enhances intratumoral distribution of nanoparticles in lung cancer models.

J Control Release 2013 Nov 7;172(1):86-95. Epub 2013 Jul 7.

Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, 32307, USA. Electronic address:

The purpose of the present study was to evaluate the effect of Telmisartan (Tel) and Losartan (Los) on nanoparticle intratumoral distribution and anticancer effects in lung cancer. A549 lung tumor cells were orthotopically and metastatically administered to Nu/nu mice. Fluorescent polystyrene nanoparticles (FPNPs, size ~200 nm) beads were used to study their intratumoral distribution after Tel and Los treatments. Animals were administered with FPNPs and after 2h, FPNPs intratumoral distribution was studied by fluorescent microscopy. Tel (~1.12 mg/kg) and Los (~4.5mg/kg) were administered by inhalation delivery at alternative days for 4 weeks to tumor bearing animals. Collagen-1, transforming growth factor beta 1 (TGF-β1), cleaved caspase-3, Vimentin and E-Cadherin expressions were studied by western blotting. To correlate the AT1 receptor blockage to anticancer effects, VEGF levels and microvessel densities (MVD) were quantified. Los and Tel treated group resulted in the 5.33 and 14.33 fold increase respectively in the FPNPs intratumoral distribution as compared to the controls. Tel treatment attenuated 2.23 and 1.70 fold Collagen 1 expression compared to untreated control and Los groups, respectively. Further, in Tel and Los treated groups, the TGF-β1 active levels were significantly (p<0.05) decreased. Tel (at four times less dose) was 1.89 and 1.92 fold superior in anticancer activity to Los respectively in A549 orthotopic and metastatic tumor models (p<0.05) when given by inhalation route. Tel, by virtue of its dual pharmacophoric nature could be an ideal candidate for combination therapy to improve the nanoparticle intratumoral distribution and anticancer effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2013.06.036DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3895504PMC
November 2013

Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo.

J Control Release 2013 Aug 3;170(1):51-63. Epub 2013 May 3.

College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee 32307, USA.

The barrier properties of the skin pose a significant but not insurmountable obstacle for development of new effective anti-inflammatory therapies. The objective of this study was to design and evaluate therapeutic efficacy of anti-nociception agent Capsaicin (Cap) and anti-TNFα siRNA (siTNFα) encapsulated cyclic cationic head lipid-polymer hybrid nanocarriers (CyLiPns) against chronic skin inflammatory diseases. Physico-chemical characterizations including hydrodynamic size, surface potential and entrapment efficacies of CyLiPns were found to be 163±9nm, 35.14±8.23mV and 92% for Cap, respectively. In vitro skin distribution studies revealed that CyLiPns could effectively deliver FITC-siRNA up to 360μm skin depth. Further, enhanced (p<0.001) Cap permeation from CyLiPns was observed compared to Capsaicin-Solution and Capzasin-HP. Therapeutic efficacies of CyLiPns were assessed using imiquamod-induced psoriatic plaque like model. CyLiPns carrying both Cap and siTNFα showed significant reduced expression of TNFα, NF-κB, IL-17, IL-23 and Ki-67 genes compared to either drugs alone (p<0.05) and were in close comparison with Topgraf®. Collectively these findings support our notion that novel cationic lipid-polymer hybrid nanoparticles can efficiently carry siTNFα and Cap into deeper dermal milieu and Cap with a combination of siTNFα shows synergism in treating skin inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2013.04.021DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759511PMC
August 2013

The influence of the structural orientation of amide linkers on the serum compatibility and lung transfection properties of cationic amphiphiles.

Biomaterials 2011 Aug 17;32(22):5231-40. Epub 2011 Apr 17.

Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500607, India.

Understanding the structural parameters of cationic amphiphiles which can influence gene transfer efficiencies of cationic amphiphiles continues to remain important for designing efficient liposomal gene delivery reagents. Previously we demonstrated the influence of structural orientation of the ester linker (widely used in covalently tethering the polar head and the non-polar tails) in modulating in vitro gene transfer efficiencies of cationic amphiphiles. However, our previously described cationic amphiphiles with ester linkers failed to deliver genes under in vivo conditions. Herein we report on the development of a highly serum compatible cationic amphiphile with circulation stable amide linker which shows remarkable selectivity in transfecting mouse lung. We also demonstrate that reversing structural orientation of the amide linker adversely affects both serum compatibility and the lung selective gene transfer property. Dynamic laser light scattering and atomic force microscopic studies revealed smaller average hydrodynamic sizes of the liposomes of transfection efficient lipid than those for the liposomes of transfection incompetent analog (148 ± 1 nm vs 214 ± 4 nm). Average surface potential of the liposomes of transfection competent amphiphiles were found to be significantly higher than that for the liposomes of transfection incompetent analog (10.7 ± 5.4 mV vs 2.8 ± 1.3 mV, respectively). Findings in fluorescence resonance energy transfer and dye entrapment experiments support lower rigidity and higher biomembrane fusogenicity of the liposomes of the transfection efficient amphiphiles. Importantly, cationic lipoplexes of the novel amide-linker based amphiphile exhibited higher mouse lung selective gene transfer properties than DOTAP, one of the widely used commercially available liposomal lung transfection kits. In summary, the present findings demonstrate for the first time that amide linker structural orientation profoundly influences the serum compatibility and lung transfection efficiencies of cationic amphiphiles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2011.03.059DOI Listing
August 2011

Cationic amphiphiles with fatty acyl chain asymmetry of coconut oil deliver genes selectively to mouse lung.

Bioconjug Chem 2011 Mar 21;22(3):497-509. Epub 2011 Feb 21.

Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad, India.

Recent structure-activity studies have revealed a dramatic influence of hydrophobic chain asymmetry in enhancing gene delivery efficacies of synthetic cationic amphiphiles (Nantz, M. H. et al. Mol. Pharmaceutics2010, 7, 786-794; Koynova, R. et al. Mol. Pharmaceutics2009, 6, 951-958). The present findings demonstrate for the first time that such a transfection enhancing influence of asymmetric hydrocarbon chains observed in pure synthetic cationic amphiphiles also works for cationic amphiphiles designed with natural, asymmetric fatty acyl chains of a food-grade oil. Herein, we demonstrate that cationic amphiphiles designed with the natural fatty acyl chain asymmetry of food-grade coconut oil are less cytotoxic and deliver genes selectively to mouse lung. Despite lauroyl chains being the major fatty acyl chains of coconut oil, both the in vitro and In vivo gene transfer efficiencies of such cationic amphiphiles were found to be remarkably superior (>4-fold) to those of their pure dilauroyl analogue. Mechanistic studies involving the technique of fluorescence resonance energy transfer (FRET) revealed higher biomembrane fusibility of the cationic liposomes of the coconut amphiphiles than that of the symmetric dilauroyl analogue. AFM study revealed pronounced fusogenic nonlamellar structures of the liposomes of coconut amphiphiles. Findings in the FRET and cellular uptake study, taken together, support the notion that the higher cellular uptake resulting from the more fusogenic nature of the liposomes of coconut amphiphiles 1 are likely to play a dominant role in making the coconut amphiphiles transfection competent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc100537rDOI Listing
March 2011

Cationic glycolipids with cyclic and open galactose head groups for the selective targeting of genes to mouse liver.

Biomaterials 2009 Apr 20;30(12):2369-84. Epub 2009 Jan 20.

Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500 007, India.

Toward probing an hitherto unexplored structure-activity issue namely, the relative in vitro and in vivo efficacies of cationic glycolipids with cyclic and acyclic sugar heads for targeting of genes to liver, we have designed and synthesized two novel series of cationic glycolipids with cyclic (lipids 1-5) and open d-galactose heads (lipids 6-10) containing varying spacer arm lengths in between the sugar and positively charged nitrogen atoms. Among the cyclic glycolipids, lipid 3 with six methylene units spacer in between the quaternary nitrogen atom and among the glycolipids with the open-sugar heads, lipid 6 with only two methylene units spacer were found to be the most efficacious in targeting genes to cultured HepG2 (human hepatocarcinoma cells) and primary hepatocytes. Findings in the fluorescence resonance energy transfer (FRET) studies revealed biomembrane fusibilities as important physico-chemical parameters behind the varying spacer arm dependencies in the two series. Importantly, both the serum compatible glycolipids 3 &6 were found to be equally efficacious in selectively targeting genes to mouse livers under systemic settings. The significantly reduced efficiencies of the glycolipids 3 &6 in transfecting primary hepatocytes as well as mice pretreated with asialofetuin (the ligands of asialoglycoprotein receptors) support the notion that the cellular uptake of the lipoplexes prepared from both the open and the cyclic sugar-head series is mediated via asialoglycoprotein receptor. In summary, our present findings demonstrate for the first time that cationic glycolipids with cyclic sugar-head require longer spacer arms than their acyclic sugar-head counterparts for efficient gene transfection and both the series hold equal promise for selective gene targeting to liver under systemic settings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2008.12.074DOI Listing
April 2009

Dramatic influence of the orientation of linker between hydrophilic and hydrophobic lipid moiety in liposomal gene delivery.

J Am Chem Soc 2007 Sep 25;129(37):11408-20. Epub 2007 Aug 25.

Division of Lipid Science and Technology, Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad-500 007, India.

A number of prior studies have demonstrated that the DNA-binding and gene transfection efficacies of cationic amphiphiles crucially depend on their various structural parameters including hydrophobic chain lengths, headgroup functionalities, and the nature of the linker-functionality used in tethering the polar headgroup and hydrophobic tails. However, to date addressing the issue of linker orientation remains unexplored in liposomal gene delivery. Toward probing the influence of linker orientation in cationic lipid mediated gene delivery, we have designed and synthesized two structurally isomeric remarkably similar cationic amphiphiles 1 and 2 bearing the same hydrophobic tails and the same polar headgroups connected by the same ester linker group. The only structural difference between the cationic amphiphiles 1 and 2 is the orientation of their linker ester functionality. While lipid 1 showed high gene transfer efficacies in multiple cultured animal cells, lipid 2 was essentially transfection incompetent. Findings in both transmission electron microscopic and dynamic laser light scattering studies revealed no significant size difference between the lipoplexes of lipids 1 and 2. Findings in confocal microscopic and fluorescence resonance energy transfer (FRET) experiments, taken together, support the notion that the remarkably higher gene transfer efficacies of lipid 1 compared to those of lipid 2 presumably originate from higher biomembrane fusogenicity of lipid 1 liposomes. Differential scanning calorimetry (DSC) and fluorescence anisotropy studies revealed a significantly higher gel-to-liquid crystalline temperature for the lipid 2 liposomes than that for lipid 1 liposomes. Findings in the dye entrapment experiment were also consistent with the higher rigidity of lipid 2/cholesterol (1:1 mole ratio) liposomes. Thus, the higher biomembrane fusibility of lipid 1 liposomes than that of lipid 2 liposomes presumably originates from the more rigid nature of lipid 2 cationic liposomes. Taken together, the present findings demonstrate for the first time that even as minor a structural variation as linker orientation reversal in cationic amphiphiles can profoundly influence DNA-binding characteristics, membrane rigidity, membrane fusibility, cellular uptake, and consequently gene delivery efficacies of cationic liposomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0704683DOI Listing
September 2007
-->