Publications by authors named "Sophie Lambertz"

3 Publications

  • Page 1 of 1

The GORKY glycoalkaloid transporter is indispensable for preventing tomato bitterness.

Nat Plants 2021 04 11;7(4):468-480. Epub 2021 Mar 11.

Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.

Fruit taste is determined by sugars, acids and in some species, bitter chemicals. Attraction of seed-dispersing organisms in nature and breeding for consumer preferences requires reduced fruit bitterness. A key metabolic shift during ripening prevents tomato fruit bitterness by eliminating α-tomatine, a renowned defence-associated Solanum alkaloid. Here, we combined fine mapping with information from 150 resequenced genomes and genotyping a 650-tomato core collection to identify nine bitter-tasting accessions including the 'high tomatine' Peruvian landraces reported in the literature. These 'bitter' accessions contain a deletion in GORKY, a nitrate/peptide family transporter mediating α-tomatine subcellular localization during fruit ripening. GORKY exports α-tomatine and its derivatives from the vacuole to the cytosol and this facilitates the conversion of the entire α-tomatine pool to non-bitter forms, rendering the fruit palatable. Hence, GORKY activity was a notable innovation in the process of tomato fruit domestication and breeding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-021-00865-6DOI Listing
April 2021

An Optimized Screen Reduces the Number of GA Transporters and Provides Insights Into Nitrate Transporter 1/Peptide Transporter Family Substrate Determinants.

Front Plant Sci 2019 3;10:1106. Epub 2019 Oct 3.

DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.

Based on recent in vitro data, a relatively large number of the plant nitrate transporter 1/peptide transporter family (NPF) proteins have been suggested to function as gibberellic acid (GA) transporters. Most GA transporting NPF proteins also appear to transport other structurally unrelated phytohormones or metabolites. Several of the GAs used in previous in vitro assays are membrane permeable weak organic acids whose movement across membranes are influenced by the pH-sensitive ion-trap mechanism. Moreover, a large proportion of in vitro GA transport activities have been demonstrated indirectly via long-term yeast-based GA-dependent growth assays that are limited to detecting transport of bioactive GAs. Thus, there is a need for an optimized transport assay for identifying and characterizing GA transport. Here, we develop an improved transport assay in Xenopus laevis oocytes, wherein we directly measure movement of six different GAs across oocyte membranes over short time. We show that membrane permeability of GAs in oocytes can be predicted based on number of oxygen atoms and that several GAs do not diffuse over membranes regardless of changes in pH values. In addition, we show that small changes in internal cellular pH can result in strongly altered distribution of membrane permeable phytohormones. This prompts caution when interpreting heterologous transport activities. We use our transport assay to screen all Arabidopsis thaliana NPF proteins for transport activity towards six GAs (two membrane permeable and four non-permeable). The results presented here, significantly reduce the number of bona fide NPF GA transporters in Arabidopsis and narrow the activity to fewer subclades within the family. Furthermore, to gain first insight into the molecular determinants of substrate specificities toward organic molecules transported in the NPF, we charted all surface exposed amino acid residues in the substrate-binding cavity and correlated them to GA transport. This analysis suggests distinct residues within the substrate-binding cavity that are shared between GA transporting NPF proteins; the potential roles of these residues in determining substrate specificity are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpls.2019.01106DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785635PMC
October 2019

Two fatty acid desaturases, STEAROYL-ACYL CARRIER PROTEIN Δ9-DESATURASE6 and FATTY ACID DESATURASE3, are involved in drought and hypoxia stress signaling in Arabidopsis crown galls.

Plant Physiol 2014 Feb 24;164(2):570-83. Epub 2013 Dec 24.

Department of Molecular Plant Physiology and Biophysics , Julius-von-Sachs-Institute, University of Wuerzburg, D-97082 Wuerzburg, Germany.

Agrobacterium tumefaciens-derived crown galls of Arabidopsis (Arabidopsis thaliana) contain elevated levels of unsaturated fatty acids and strongly express two fatty acid desaturase genes, ω3 FATTY ACID DESATURASE3 (FAD3) and STEAROYL-ACYL CARRIER PROTEIN Δ9-DESATURASE6 (SAD6). The fad3-2 mutant with impaired α-linolenic acid synthesis developed significantly smaller crown galls under normal, but not under high, relative humidity. This strongly suggests that FAD3 plays a role in increasing drought stress tolerance of crown galls. SAD6 is a member of the SAD family of as yet unknown function. Expression of the SAD6 gene is limited to hypoxia, a physiological condition found in crown galls. As no sad6 mutant exists and to link the function of SAD6 with fatty acid desaturation in crown galls, the lipid pattern was analyzed of plants with constitutive SAD6 overexpression (SAD6-OE). SAD6-OE plants contained lower stearic acid and higher oleic acid levels, which upon reduction of SAD6 overexpression by RNA interference (SAD6-OE-RNAi) regained wild-type-like levels. The development of crown galls was not affected either in SAD6-OE or SAD6-OE-RNAi or by RNA interference in crown galls. Since biochemical analysis of SAD6 in yeast (Saccharomyces cerevisiae) and Escherichia coli failed, SAD6 was ectopically expressed in the background of the well-known suppressor of salicylic acid-insensitive2 (ssi2-2) mutant to confirm the desaturase function of SAD6. All known ssi2-2 phenotypes were rescued, including the high stearic acid level. Thus, our findings suggest that SAD6 functions as a Δ9-desaturase, and together with FAD3 it increases the levels of unsaturated fatty acids in crown galls under hypoxia and drought stress conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1104/pp.113.230326DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912090PMC
February 2014
-->