Publications by authors named "Sophie L Wardle"

14 Publications

  • Page 1 of 1

Tibial Macrostructure and Microarchitecture Adaptations in Women During 44 Weeks of Arduous Military Training.

J Bone Miner Res 2021 Apr 15. Epub 2021 Apr 15.

Army Health and Performance Research, Army Headquarters, Andover, UK.

Bone adapts to unaccustomed, high-impact loading but loses mechanosensitivity quickly. Short periods of military training (≤12 weeks) increase the density and size of the tibia in women. The effect of longer periods of military training, where the incidence of stress fracture is high, on tibial macrostructure and microarchitecture in women is unknown. This observational study recruited 51 women (age 19 to 30 years) at the start of 44 weeks of British Army Officer training. Tibial volumetric bone mineral density (vBMD), geometry, and microarchitecture were measured by high-resolution peripheral quantitative computed tomography (HRpQCT). Scans of the right tibial metaphysis (4% site) and diaphysis (30% site) were performed at weeks 1, 14, 28, and 44. Measures of whole-body areal bone mineral density (aBMD) were obtained using dual-energy X-ray absorptiometry (DXA). Blood samples were taken at weeks 1, 28, and 44, and were analyzed for markers of bone formation and resorption. Trabecular vBMD increased from week 1 to 44 at the 4% site (3.0%, p < .001). Cortical vBMD decreased from week 1 to 14 at the 30% site (-0.3%, p < .001). Trabecular area decreased at the 4% site (-0.4%); trabecular bone volume fraction (3.5%), cortical area (4.8%), and cortical thickness (4.0%) increased at the 4% site; and, cortical perimeter increased at the 30% site (0.5%) from week 1 to 44 (p ≤ .005). Trabecular number (3.5%) and thickness (2.1%) increased, and trabecular separation decreased (-3.1%), at the 4% site from week 1 to 44 (p < .001). Training increased failure load at the 30% site from week 1 to 44 (2.5%, p < .001). Training had no effect on aBMD or markers of bone formation or resorption. Tibial macrostructure and microarchitecture continued to adapt across 44 weeks of military training in young women. Temporal decreases in cortical density support a role of intracortical remodeling in the pathogenesis of stress fracture. © 2021 Crown copyright. Journal of Bone and Mineral Research © 2021 American Society for Bone and Mineral Research (ASBMR). This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.4290DOI Listing
April 2021

SEX DIFFERENCES IN THE PHYSICAL PERFORMANCE, PHYSIOLOGICAL, AND PSYCHO-COGNITIVE RESPONSES TO MILITARY OPERATIONAL STRESS.

Eur J Sport Sci 2021 Apr 10:1-34. Epub 2021 Apr 10.

Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory & Warrior Human Performance Research Center, University of Pittsburgh, United States.

Combat roles are physically demanding and expose service personnel to operational stressors such as high levels of physical activity, restricted nutrient intake, sleep loss, psychological stress, and environmental extremes. Women have recently integrated into combat roles, but our knowledge of the physical, physiological, and psycho-cognitive responses to these operational stressors in women is limited. The aim of this narrative review was to evaluate the evidence for sex-specific physical, physiological, and psycho-cognitive responses to real, and simulated, military operational stress. Studies examining physical and cognitive performance, body composition, metabolism, hypothalamic-pituitary-gonadal axis, and psychological health outcomes were evaluated. These studies report that women expend less energy and lose less body mass and fat-free mass, but not fat mass, than men. Despite having similar physical performance decrements as men during operational stress, women experience greater physiological strain than men completing the same physical tasks, but this may be attributed to differences in fitness. From limited data, military operational stress suppresses hypothalamic-pituitary-gonadal, but not hypothalamic-pituitary-adrenal, axis function in both sexes. Men and women demonstrate different psychological and cognitive responses to operational stress, including disturbances in mood, with women having a higher risk of post-traumatic stress symptoms compared with men. Based on current evidence, separate strategies to maximize selection and combat training are not warranted until further data directly comparing men and women are available. However, targeted exercise training programs may be advisable to offset the physical performance gap between sexes and optimize performance prior to inevitable declines caused by intense military operations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/17461391.2021.1916082DOI Listing
April 2021

Measuring Protein Turnover in the Field: Implications for Military Research.

Adv Nutr 2020 Oct 20. Epub 2020 Oct 20.

Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.

Protein turnover reflects the continual synthesis and breakdown of body proteins, and can be measured at a whole-body (i.e. aggregated across all body proteins) or tissue (e.g. skeletal muscle only) level using stable isotope methods. Evaluating protein turnover in free-living environments, such as military training, can help inform protein requirements. We undertook a narrative review of published literature with the aim of reviewing the suitability of, and advancements in, stable isotope methods for measuring protein turnover in field research. The 2 primary approaches for measuring protein turnover are based on precursor- and end-product methods. The precursor method is the gold-standard for measuring acute (over several hours) skeletal muscle protein turnover, whereas the end-product method measures chronic (over several weeks) skeletal muscle protein turnover and provides the opportunity to monitor free-living activities. Both methods require invasive procedures such as the infusion of amino acid tracers and muscle biopsies to assess the uptake of the tracer into tissue. However, the end-product method can also be used to measure acute (over 9-24 h) whole-body protein turnover noninvasively by ingesting 15N-glycine, or equivalent isotope tracers, and collecting urine samples. The end-product method using 15N-glycine is a practical method for measuring whole-body protein turnover in the field over short (24 h) time frames and has been used effectively in recent military field research. Application of this method may improve our understanding of protein kinetics during conditions of high physiological stress in free-living environments such as military training.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/advances/nmaa123DOI Listing
October 2020

Measuring the Exercise Component of Energy Availability during Arduous Training in Women.

Med Sci Sports Exerc 2021 04;53(4):860-868

University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UNITED KINGDOM.

Introduction: Low energy availability (EA) may impede adaptation to exercise, suppressing reproductive function and bone turnover. Exercise energy expenditure (EEE) measurements lack definition and consistency. This study aimed to compare EA measured from moderate and vigorous physical activity from accelerometry (EEEmpva) with EA from total physical activity (EEEtpa) from doubly labeled water in women. The secondary aim was to determine the relationship of EA with physical fitness, body composition by dual-energy x-ray absorptiometry, heart rate variability (HRV), and eating behavior (Brief Eating Disorder in Athletes Questionnaire [BEDA-Q]).

Methods: This was a prospective, repeated-measures study, assessing EA measures and training adaptation during 11-month basic military training. Forty-seven women (23.9 ± 2.6 yr) completed three consecutive 10-d assessments of EEEmvpa, EEEtpa, and energy intake (EI). EA measures were compared using linear regression and Bland-Altman analyses; relationships of EA with fat mass, HRV, 1.5-mile run times, and BEDA-Q were evaluated using partial correlations.

Results: EA from EEEmvpa demonstrated strong agreement with EA from EEEtpa across the measurement range (R2 = 0.76, r = 0.87, P < 0.001) and was higher by 10 kcal·kg-1 FFM·d-1. However, EA was low in absolute terms because of underreported EI. Higher EA was associated with improved 1.5-mile run time (r = 0.28, P < 0.001), fat mass loss (r = 0.38, P < 0.001), and lower BEDA-Q score (r = -0.37, P < 0.001) but not HRV (all P > 0.10).

Conclusion: Accelerometry-based EEE demonstrated validity against doubly labeled water during multistressor training, the difference representing 10 kcal·kg-1 FFM·d-1 EEE from nonexercise activity. Beneficial physical but not autonomic adaptations were associated with higher EA. EAmvpa and BEDA-Q warrant consideration for low EA assessment and screening.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1249/MSS.0000000000002527DOI Listing
April 2021

Energy Deficiency in Soldiers: The Risk of the Athlete Triad and Relative Energy Deficiency in Sport Syndromes in the Military.

Front Nutr 2020 25;7:142. Epub 2020 Aug 25.

Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.

Military personnel experience energy deficit (total energy expenditure higher than energy intake), particularly during combat training and field exercises where exercising energy expenditures are high and energy intake is reduced. Low energy availability (energy intake minus exercising energy expenditure expressed relative to fat free mass) impairs endocrine function and bone health, as recognized in female athletes as the Female Athlete Triad syndrome. More recently, the Relative Energy Deficiency in Sport (RED-S) syndrome encompasses broader health outcomes, physical and cognitive performance, non-athletes, and men. This review summarizes the evidence for the effect of low energy availability and energy deficiency in military training and operations on health and performance outcomes. Energy availability is difficult to measure in free-living individuals but doubly labeled water studies demonstrate high total energy expenditures during military training; studies that have concurrently measured energy intake, or measured body composition changes with DXA, suggest severe and/or prolonged energy deficits. Military training in energy deficit disturbs endocrine and metabolic function, menstrual function, bone health, immune function, gastrointestinal health, iron status, mood, and physical and cognitive performance. There are more data for men than women, and little evidence on the chronic effects of repeated exposures to energy deficit. Military training impairs indices of health and performance, indicative of the Triad and RED-S, but the multi-stressor environment makes it difficult to isolate the independent effects of energy deficiency. Studies supplementing with energy to attenuate the energy deficit suggest an independent effect of energy deficiency in the disturbances to metabolic, endocrine and immune function, and physical performance, but randomized controlled trials are lacking.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnut.2020.00142DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477333PMC
August 2020

Human skeletal muscle metabolic responses to 6 days of high-fat overfeeding are associated with dietary n-3PUFA content and muscle oxidative capacity.

Physiol Rep 2020 08;8(16):e14529

Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, UK.

Understanding human physiological responses to high-fat energy excess (HFEE) may help combat the development of metabolic disease. We aimed to investigate the impact of manipulating the n-3PUFA content of HFEE diets on whole-body and skeletal muscle markers of insulin sensitivity. Twenty healthy males were overfed (150% energy, 60% fat, 25% carbohydrate, 15% protein) for 6 d. One group (n = 10) received 10% of fat intake as n-3PUFA rich fish oil (HF-FO), and the other group consumed a mix of fats (HF-C). Oral glucose tolerance tests with stable isotope tracer infusions were conducted before, and following, HFEE, with muscle biopsies obtained in basal and insulin-stimulated states for measurement of membrane phospholipids, ceramides, mitochondrial enzyme activities, and PKB and AMPKα2 activity. Insulin sensitivity and glucose disposal did not change following HFEE, irrespective of group. Skeletal muscle ceramide content increased following HFEE (8.5 ± 1.2 to 12.1 ± 1.7 nmol/mg, p = .03), irrespective of group. No change in mitochondrial enzyme activity was observed following HFEE, but citrate synthase activity was inversely associated with the increase in the ceramide content (r=-0.52, p = .048). A time by group interaction was observed for PKB activity (p = .003), with increased activity following HFEE in HF-C (4.5 ± 13.0mU/mg) and decreased activity in HF-FO (-10.1 ± 20.7 mU/mg) following HFEE. Basal AMPKα2 activity increased in HF-FO (4.1 ± 0.6 to 5.3 ± 0.7mU/mg, p = .049), but did not change in HF-C (4.6 ± 0.7 to 3.8 ± 0.9mU/mg) following HFEE. We conclude that early skeletal muscle signaling responses to HFEE appear to be modified by dietary n-3PUFA content, but the potential impact on future development of metabolic disease needs exploring.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14814/phy2.14529DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7448800PMC
August 2020

Skeletal responses to an all-female unassisted Antarctic traverse.

Bone 2019 04 5;121:267-276. Epub 2019 Feb 5.

Army Personnel Research Capability, Army Headquarters, Andover, UK. Electronic address:

Purpose: To investigate the skeletal effects of the first all-female trans-Antarctic traverse.

Methods: Six women (mean ± SD, age 32 ± 3 years, height 1.72 ± 0.07 m, body mass 72.8 ± 4.0 kg) hauled 80 kg sledges over 1700 km in 61 days from coast-to-coast across the Antarctic. Whole-body areal bone mineral density (aBMD) (dual-energy X-ray absorptiometry) and tibial volumetric BMD (vBMD), geometry, microarchitecture and estimated mechanical properties (high-resolution peripheral quantitative computed tomography) were assessed 39 days before (pre-expedition) and 15 days after the expedition (post-expedition). Serum and plasma markers of bone turnover were assessed pre-expedition, and 4 and 15 days after the expedition.

Results: There were reductions in trunk (-2.6%), ribs (-5.0%) and spine (-3.4%) aBMD from pre- to post-expedition (all P ≤ 0.046); arms, legs, pelvis and total body aBMD were not different (all P ≥ 0.075). Tibial vBMD, geometry, microarchitecture and estimated mechanical properties at the metaphysis (4% site) and diaphysis (30% site) were not different between pre- and post-expedition (all P ≥ 0.082). Bone-specific alkaline phosphatase was higher 15 days post- than 4 days post-expedition (1.7 μg∙l, P = 0.028). Total 25(OH)D decreased from pre- to 4 days post-expedition (-36 nmol∙l, P = 0.008). Sclerostin, procollagen 1 N-terminal propeptide, C-telopeptide cross-links of type 1 collagen and adjusted calcium were unchanged (all P ≥ 0.154).

Conclusion: A decline in aBMD of the axial skeleton may be due to indirect and direct effects of prolonged energy deficit. We propose that weight-bearing exercise was protective against the effects of energy deficit on tibial vBMD, geometry, microarchitecture and strength.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2019.02.002DOI Listing
April 2019

Female Reproductive, Adrenal, and Metabolic Changes during an Antarctic Traverse.

Med Sci Sports Exerc 2019 03;51(3):556-567

Research & Clinical Innovation, Royal Centre for Defence Medicine, Lichfield, UNITED KINGDOM.

Purpose: To explore the effects of the first all-female transantarctic expedition on hormonal axes pertinent to reproductive and metabolic function.

Methods: Six females (age, 28-36 yr; body mass index, 24.2 ± 0.97 kg·m) hauled 80-kg sledges 1700 km in 61 d. Estimated average energy intake was 20.8 ± 0.1 MJ·d (4970 ± 25 kcal·d). Whole and regional body composition was measured by dual-energy x-ray absorptiometry 1 and 2 months before and 15 d after, the expedition. Body fat was also estimated by skinfold and bioimpedance immediately before and after the expedition. Basal metabolic and endocrine blood markers and, after 0.25 mg dexamethasone suppression, 1-h 10-μg gonadorelin and 1.0 μg adrenocortiocotrophin-(1-24) tests were completed, 39-38 d preexpedition and 4 to 5 d and 15 to 16 d postexpedition. Cortisol was assessed in hair (monthly average concentrations) and saliva (five-point day curves and two-point diurnal sampling).

Results: Average body mass loss was 9.37 ± 2.31 kg (P < 0.0001), comprising fat mass only; total lean mass was maintained. Basal sex steroids, corticosteroids, and metabolic markers were largely unaffected by the expedition except leptin, which decreased during the expedition and recovered after 15 d, a proportionately greater change than body fat. Luteinizing hormone reactivity was suppressed before and during the expedition, but recovered after 15 d, whereas follicle-stimulating hormone did not change during or after the expedition. Cortisol reactivity did not change during or after the expedition. Basal (suppressed) cortisol was 73.25 ± 45.23 mmol·L before, 61.66 ± 33.11 mmol·L 5 d postexpedition and 54.43 ± 28.60 mmol·L 16 d postexpedition (P = 0.7). Hair cortisol was elevated during the expedition.

Conclusions: Maintenance of reproductive and hypothalamic-pituitary-adrenal axis function in women after an extreme physical endeavor, despite energy deficiency, suggests high female biological capacity for extreme endurance exercise.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1249/MSS.0000000000001803DOI Listing
March 2019

Mitigating the risk of musculoskeletal injury: A systematic review of the most effective injury prevention strategies for military personnel.

J Sci Med Sport 2017 Nov 23;20 Suppl 4:S3-S10. Epub 2017 Sep 23.

Division of Applied Human Physiology, Army Personnel Research Capability, Army Headquarters, Andover, UK.

Objectives: To update the current injury prevention strategy evidence base for making recommendations to prevent physical training-related musculoskeletal injury.

Design: We conducted a systematic review to update the evidence base on injury prevention strategies for military personnel.

Methods: Literature was systematically searched and extracted from five databases, and reported according to PRISMA guidelines. Sixty one articles meeting the inclusion criteria and published during the period 2008-2015 were selected for systematic review.

Results: The retrieved articles were broadly categorised into six injury prevention strategies; (1) conditioning, (2) footwear modifications, (3) bracing, (4) physical activity volume, (5) physical fitness, and (6) leadership/supervision/awareness. The majority of retrieved articles (n=37 (of 61) evaluated or systematically reviewed a conditioning intervention of some nature. However, the most well-supported strategies were related to reducing physical activity volume and improving leadership/supervision/awareness of injuries and injury prevention efforts.

Conclusions: Several injury prevention strategies effectively reduce musculoskeletal injury rates in both sexes, and many show promise for utility with military personnel. However, further evaluation, ideally with prospective randomised trials, is required to establish the most effective injury prevention strategies, and to understand any sex-specific differences in the response to these strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsams.2017.09.014DOI Listing
November 2017

The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein.

Physiol Rep 2016 08;4(15)

Health and Exercise Sciences Research Group, University of Stirling, Stirling, Scotland

The currently accepted amount of protein required to achieve maximal stimulation of myofibrillar protein synthesis (MPS) following resistance exercise is 20-25 g. However, the influence of lean body mass (LBM) on the response of MPS to protein ingestion is unclear. Our aim was to assess the influence of LBM, both total and the amount activated during exercise, on the maximal response of MPS to ingestion of 20 or 40 g of whey protein following a bout of whole-body resistance exercise. Resistance-trained males were assigned to a group with lower LBM (≤65 kg; LLBM n = 15) or higher LBM (≥70 kg; HLBM n = 15) and participated in two trials in random order. MPS was measured with the infusion of (13)C6-phenylalanine tracer and collection of muscle biopsies following ingestion of either 20 or 40 g protein during recovery from a single bout of whole-body resistance exercise. A similar response of MPS during exercise recovery was observed between LBM groups following protein ingestion (20 g - LLBM: 0.048 ± 0.018%·h(-1); HLBM: 0.051 ± 0.014%·h(-1); 40 g - LLBM: 0.059 ± 0.021%·h(-1); HLBM: 0.059 ± 0.012%·h(-1)). Overall (groups combined), MPS was stimulated to a greater extent following ingestion of 40 g (0.059 ± 0.020%·h(-1)) compared with 20 g (0.049 ± 0.020%·h(-1); P = 0.005) of protein. Our data indicate that ingestion of 40 g whey protein following whole-body resistance exercise stimulates a greater MPS response than 20 g in young resistance-trained men. However, with the current doses, the total amount of LBM does not seem to influence the response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14814/phy2.12893DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985555PMC
August 2016

Protein Considerations for Optimising Skeletal Muscle Mass in Healthy Young and Older Adults.

Nutrients 2016 Mar 23;8(4):181. Epub 2016 Mar 23.

Health & Exercise Sciences Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4LA, UK.

Skeletal muscle is critical for human health. Protein feeding, alongside resistance exercise, is a potent stimulus for muscle protein synthesis (MPS) and is a key factor that regulates skeletal muscle mass (SMM). The main purpose of this narrative review was to evaluate the latest evidence for optimising the amino acid or protein source, dose, timing, pattern and macronutrient coingestion for increasing or preserving SMM in healthy young and healthy older adults. We used a systematic search strategy of PubMed and Web of Science to retrieve all articles related to this review objective. In summary, our findings support the notion that protein guidelines for increasing or preserving SMM are more complex than simply recommending a total daily amount of protein. Instead, multifactorial interactions between protein source, dose, timing, pattern and macronutrient coingestion, alongside exercise, influence the stimulation of MPS, and thus should be considered in the context of protein recommendations for regulating SMM. To conclude, on the basis of currently available scientific literature, protein recommendations for optimising SMM should be tailored to the population or context of interest, with consideration given to age and resting/post resistance exercise conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu8040181DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848650PMC
March 2016

Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men.

Physiol Rep 2016 Mar;4(6)

Health and Exercise Sciences Research Group, School of Sport University of Stirling, Stirling, UK.

Fish oil (FO) supplementation potentiates muscle protein synthesis (MPS) in response to a hyperaminoacidemic-hyperinsulinemic infusion. Whether FO supplementation potentiates MPS in response to protein ingestion or when protein ingestion is combined with resistance exercise (RE) remains unknown. In a randomized, parallel group design, 20 healthy males were randomized to receive 5 g/day of either FO or coconut oil control (CO) for 8 weeks. After supplementation, participants performed a bout of unilateral RE followed by ingestion of 30 g of whey protein. Skeletal muscle biopsies were obtained before and after supplementation for assessment of muscle lipid composition and relevant protein kinase activities. Infusion of L-[ring-(13)C6] phenylalanine was used to measure basal myofibrillar MP Sat rest (REST), in a nonexercised leg following protein ingestion (FED) and following RE and protein ingestion (FEDEX).MPS was significantly elevated above REST during FEDEX in both the FO and CO groups, but there was no effect of supplementation. There was a significant increase in MPS in both groups above REST during FED but no effect of supplementation. Supplementation significantly decreased pan PKB activity at RESTin the FO group but not the CO group. There was a significant increase from REST at post-RE for PKB and AMPKα2 activity in the CO group but not in the FO group. In FEDEX, there was a significant increase in p70S6K1 activity from REST at 3 h in the CO group only. These data highlight that 8 weeks of FO supplementation alters kinase signaling activity in response to RE plus protein ingestion without influencing MPS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14814/phy2.12715DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814892PMC
March 2016

Plasma microRNA levels differ between endurance and strength athletes.

PLoS One 2015 16;10(4):e0122107. Epub 2015 Apr 16.

Health and Exercise Sciences Research Group, University of Stirling, Stirling, Scotland.

Aim: MicroRNAs (miRNAs) are stable in the circulation and are likely to function in inter-organ communication during a variety of metabolic responses that involve changes in gene expression, including exercise training. However, it is unknown whether differences in circulating-miRNA (c-miRNA) levels are characteristic of training modality.

Methods: We investigated whether levels of candidate c-miRNAs differ between elite male athletes of two different training modalities (n = 10 per group)--endurance (END) and strength (STR)--and between these groups and untrained controls (CON; n = 10). Fasted, non-exercised, morning plasma samples were analysed for 14 c-miRNAs (miR-1, miR-16-2, miR-20a-1, miR-21, miR-93, miR-103a, miR-133a, miR-146a, miR-192, miR-206, miR-221, miR-222, miR-451, miR-499). Moreover, we investigated whether c-miRNA levels were associated with quantitative performance-related phenotypes within and between groups.

Results: miR-222 was present at different levels in the three participant groups (p = 0.028) with the highest levels being observed in END and the lowest in STR. A number of other c-miRNAs were present at higher levels in END than in STR (relative to STR, ± 1 SEM; miR-222: 1.94 fold (1.73-2.18), p = 0.011; miR-21: 1.56 fold (1.39-1.74), p = 0.013; miR-146a: 1.50 fold (1.38-1.64), p = 0.019; miR-221: 1.51 fold (1.34-1.70), p = 0.026). Regression analyses revealed several associations between candidate c-miRNA levels and strength-related performance measures before and after adjustment for muscle or fat mass, but not following adjustment for group.

Conclusion: Certain c-miRNAs (miR-222, miR-21, miR-146a and miR-221) differ between endurance- and resistance-trained athletes and thus have potential as useful biomarkers of exercise training and / or play a role in exercise mode-specific training adaptations. However, levels of these c-miRNAs are probably unrelated to muscle bulk or fat reserves.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122107PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400105PMC
January 2016

Pattern of protein ingestion to maximise muscle protein synthesis after resistance exercise.

J Physiol 2013 Jun;591(12):2969-70

Health and Exercise Sciences Research Group, University of Stirling, Scotland, UK.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/jphysiol.2013.256156DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832113PMC
June 2013