Publications by authors named "Soon Chin Fhong"

13 Publications

  • Page 1 of 1

Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review.

Environ Res 2021 Jun 25;201:111592. Epub 2021 Jun 25.

Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.

MXene based nanomaterial is an uprising two-dimensional material gaining tremendous scientific attentions due to its versatile properties for the applications in electronic devices, power generation, sensors, drug delivery, and biomedicine. However, the cytotoxic effects of MXene still remained a huge concern. Therefore, stringent analysis of biocompatibility of MXene is an essential requirement before introduction to human physiological system. Several in vitro and in vivo toxicological studies have been reported to investigate the interactions between MXenes with living organisms such as microbes, mammalian cells and animal models. The biological response and cytotoxicity reported were dependent on the physicochemical properties of MXene. The biocompatibility and cytotoxicity of MXene were dependent on size, dose, and surface coating. This review demystifies the in vitro and in vivo biocompatibility studies associated with MXene. Various methods proposed to mitigate the cytotoxicity of MXene for in vivo applications were revealed. The machine learning methods were developed to predict the cytotoxicity of experimentally synthesized MXene compounds. Finally, we also discussed the current research gaps of applying MXenes in biomedical interventions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.111592DOI Listing
June 2021

Advanced Nanoscale Surface Characterization of CuO Nanoflowers for Significant Enhancement of Catalytic Properties.

Molecules 2021 May 4;26(9). Epub 2021 May 4.

School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bharu 81310, Malaysia.

In this work, advanced nanoscale surface characterization of CuO Nanoflowers synthesized by controlled hydrothermal approach for significant enhancement of catalytic properties has been investigated. The CuO nanoflower samples were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), selected-area electron diffraction (SAED), high-angular annular dark field scanning transmission electron microscopy (HAADF-STEM) with elemental mapping, energy dispersive spectroscopy (STEM-EDS) and UV-Vis spectroscopy techniques. The nanoscale analysis of the surface study of monodispersed individual CuO nanoflower confirmed the fine crystalline shaped morphology composed of ultrathin leaves, monoclinic structure and purified phase. The result of HR-TEM shows that the length of one ultrathin leaf of copper oxide nanoflower is about ~650-700 nm, base is about ~300.77 ± 30 nm and the average thickness of the tip of individual ultrathin leaf of copper oxide nanoflower is about ~10 ± 2 nm. Enhanced absorption of visible light ~850 nm and larger value of band gap energy (1.68 eV) have further supported that the as-grown material (CuO nanoflowers) is an active and well-designed surface morphology at the nanoscale level. Furthermore, significant enhancement of catalytic properties of copper oxide nanoflowers in the presence of H2O2 for the degradation of methylene blue (MB) with efficiency ~96.7% after 170 min was obtained. The results showed that the superb catalytic performance of well-fabricated CuO nanoflowers can open a new way for substantial applications of dye removal from wastewater and environment fields.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules26092700DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124738PMC
May 2021

MXene in the lens of biomedical engineering: synthesis, applications and future outlook.

Biomed Eng Online 2021 Apr 1;20(1):33. Epub 2021 Apr 1.

Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Centre, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Batu Pahat, Johor, Malaysia.

MXene is a recently emerged multifaceted two-dimensional (2D) material that is made up of surface-modified carbide, providing its flexibility and variable composition. They consist of layers of early transition metals (M), interleaved with n layers of carbon or nitrogen (denoted as X) and terminated with surface functional groups (denoted as T/T) with a general formula of MXT, where n = 1-3. In general, MXenes possess an exclusive combination of properties, which include, high electrical conductivity, good mechanical stability, and excellent optical properties. MXenes also exhibit good biological properties, with high surface area for drug loading/delivery, good hydrophilicity for biocompatibility, and other electronic-related properties for computed tomography (CT) scans and magnetic resonance imaging (MRI). Due to the attractive physicochemical and biocompatibility properties, the novel 2D materials have enticed an uprising research interest for application in biomedicine and biotechnology. Although some potential applications of MXenes in biomedicine have been explored recently, the types of MXene applied in the perspective of biomedical engineering and biomedicine are limited to a few, titanium carbide and tantalum carbide families of MXenes. This review paper aims to provide an overview of the structural organization of MXenes, different top-down and bottom-up approaches for synthesis of MXenes, whether they are fluorine-based or fluorine-free etching methods to produce biocompatible MXenes. MXenes can be further modified to enhance the biodegradability and reduce the cytotoxicity of the material for biosensing, cancer theranostics, drug delivery and bio-imaging applications. The antimicrobial activity of MXene and the mechanism of MXenes in damaging the cell membrane were also discussed. Some challenges for in vivo applications, pitfalls, and future outlooks for the deployment of MXene in biomedical devices were demystified. Overall, this review puts into perspective the current advancements and prospects of MXenes in realizing this 2D nanomaterial as a versatile biological tool.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12938-021-00873-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017618PMC
April 2021

Covid-19 pandemic in the lens of food safety and security.

Environ Res 2021 Feb 29;193:110405. Epub 2020 Oct 29.

Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Danish Centre for Environment and Energy (DCE), Frederiksborgvej 399, POBox 358, DK-4000, Roskilde, Denmark. Electronic address:

The recently emerged coronavirus disease (COVID-19), which has been characterised as a pandemic by the World Health Organization (WHO), is impacting all parts of human society including agriculture, manufacturing, and tertiary sectors involving all service provision industries. This paper aims to give an overview of potential host reservoirs that could cause pandemic outbreak caused by zoonotic transmission. Amongst all, continues surveillance in slaughterhouse for possible pathogens transmission is needed to prevent next pandemic outbreak. This paper also summarizes the potential threats of pandemic to agriculture and aquaculture sector that control almost the total food supply chain and market. The history lesson from the past, emerging and reemerging infectious disease including the Severe Acute Respiratory Syndrome (SARS) in 2002, Influenza A H1N1 (swine flu) in 2009, Middle East Respiratory Syndrome (MERS) in 2012 and the recent COVID-19 should give us some clue to improve especially the governance to be more ready for next coming pandemic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2020.110405DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598367PMC
February 2021

Development of formaldehyde-free bio-board produced from mushroom mycelium and substrate waste.

J Hazard Mater 2020 12 24;400:123296. Epub 2020 Jun 24.

Henan Province Engineering Research Centre for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, 450002, China; Department of Bioscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO box 358, DK-4000 Roskilde, Denmark. Electronic address:

Synthetic adhesives in the plywood industry are usually volatile compounds such as formaldehyde-based chemical which are costly and hazardous to health and the environment. This phenomenon promotes an interest in developing bio-boards without synthetic adhesives. This study proposed a novel application of natural mycelium produced during mushroom cultivation as natural bio-adhesive material that convert spent mushroom substrate (SMS) into high-performance bio-board material. Different types of spent mushroom substrates were compressed with specific designed mould with optimal temperature at 160 °C and 10 mPa for 20 min. The bio-board made from Ganoderma lucidum SMS had the highest internal bonding strength up to 2.51 mPa. This is far above the 0.4-0.8 range of China and US national standards. In addition, the material had high water and fire resistance, high bonding and densified structures despite free of any adhesive chemicals. These properties and the low cost one step procedure show the potential as a zero-waste economy chain for sustainable agricultural practice for waste and remediation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.123296DOI Listing
December 2020

Surface Study of CuO Nanopetals by Advanced Nanocharacterization Techniques with Enhanced Optical and Catalytic Properties.

Nanomaterials (Basel) 2020 Jul 2;10(7). Epub 2020 Jul 2.

Microelectronics and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat Johor 86400, Malaysia.

In the present work, a facile one-step hydrothermal synthesis of well-defined stabilized CuO nanopetals and its surface study by advanced nanocharacterization techniques for enhanced optical and catalytic properties has been investigated. Characterization by Transmission electron microscopy (TEM) analysis confirmed existence of high crystalline CuO nanopetals with average length and diameter of 1611.96 nm and 650.50 nm, respectively. The nanopetals are monodispersed with a large surface area, controlled morphology, and demonstrate the nanocrystalline nature with a monoclinic structure. The phase purity of the as-synthesized sample was confirmed by Raman spectroscopy and X-ray diffraction (XRD) patterns. A significantly wide absorption up to 800 nm and increased band gap were observed in CuO nanopetals. The valance band (VB) and conduction band (CB) positions at CuO surface are measured to be of +0.7 and -1.03 eV, respectively, using X-ray photoelectron spectroscopy (XPS), which would be very promising for efficient catalytic properties. Furthermore, the obtained CuO nanopetals in the presence of hydrogen peroxide ( H 2 O 2 ) achieved excellent catalytic activities for degradation of methylene blue (MB) under dark, with degradation rate > 99% after 90 min, which is significantly higher than reported in the literature. The enhanced catalytic activity was referred to the controlled morphology of monodispersed CuO nanopetals, co-operative role of H 2 O 2 and energy band structure. This work contributes to a new approach for extensive application opportunities in environmental improvement.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nano10071298DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408456PMC
July 2020

Effect of transforming growth factor-β2 on biological regulation of multilayer primary chondrocyte culture.

Cell Tissue Bank 2018 Dec 30;19(4):763-775. Epub 2018 Oct 30.

The Laboratory of Veterinary Preparations, The Veterinary Scientific-Research Institute, Baku, Azerbaijan.

Cytokines are extremely potent biomolecules that regulate cellular functions and play multiple roles in initiation and inhibition of disease. These highly specialised macromolecules are actively involved in control of cellular proliferation, apoptosis, cell migration and adhesion. This work, investigates the effect of transforming growth factor-beta2 (TGF-β2) on the biological regulation of chondrocyte and the repair of a created model wound on a multilayer culture system. Also the effect of this cytokine on cell length, proliferation, and cell adhesion has been investigated. Chondrocytes isolated from knee joint of rats and cultured at 4 layers. Each layer consisted of 2 × 10 cells/ml with and without TGF-β2. The expression of mRNA and protein levels of TGF-β receptors and Smad1, 3, 4, and 7 have been analysed by RT-PCR and western blot analysis. The effect of different supplementations in chondrocyte cell proliferation, cell length, adhesion, and wound repair was statistically analysed by One-way ANOVA test. Our results showed that the TGFβ2 regulates mRNA levels of its own receptors, and of Smad3 and Smad7. Also the TGF-β2 caused an increase in chondrocyte cell length, but decreased its proliferation rate and the wound healing process. TGF-β2 also decreased cell adhesion ability to the surface of the culture flask. Since, TGF-β2 increased the cell size, but showed negative effect on cell proliferation and adhesion of CHC, the effect of manipulated TGF-β2 with other growth factors and/or proteins needs to be investigated to finalize the utilization of this growth factor and design of scaffolding in treatment of different types of arthritis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10561-018-9732-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280861PMC
December 2018

Comparison of biophysical properties characterized for microtissues cultured using microencapsulation and liquid crystal based 3D cell culture techniques.

Cytotechnology 2018 Feb 30;70(1):13-29. Epub 2017 Nov 30.

Faculty of Engineering and Informatics, Medical and Healthcare Technology Department, University of Bradford, Bradford, BD7 1DP, UK.

Growing three dimensional (3D) cells is an emerging research in tissue engineering. Biophysical properties of the 3D cells regulate the cells growth, drug diffusion dynamics and gene expressions. Scaffold based or scaffoldless techniques for 3D cell cultures are rarely being compared in terms of the physical features of the microtissues produced. The biophysical properties of the microtissues cultured using scaffold based microencapsulation by flicking and scaffoldless liquid crystal (LC) based techniques were characterized. Flicking technique produced high yield and highly reproducible microtissues of keratinocyte cell lines in alginate microcapsules at approximately 350 ± 12 pieces per culture. However, microtissues grown on the LC substrates yielded at lower quantity of 58 ± 21 pieces per culture. The sizes of the microtissues produced using alginate microcapsules and LC substrates were 250 ± 25 μm and 141 ± 70 μm, respectively. In both techniques, cells remodeled into microtissues via different growth phases and showed good integrity of cells in field-emission scanning microscopy (FE-SEM). Microencapsulation packed the cells in alginate scaffolds of polysaccharides with limited spaces for motility. Whereas, LC substrates allowed the cells to migrate and self-stacking into multilayered structures as revealed by the nuclei stainings. The cells cultured using both techniques were found viable based on the live and dead cell stainings. Stained histological sections showed that both techniques produced cell models that closely replicate the intrinsic physiological conditions. Alginate microcapsulation and LC based techniques produced microtissues containing similar bio-macromolecules but they did not alter the main absorption bands of microtissues as revealed by the Fourier transform infrared spectroscopy. Cell growth, structural organization, morphology and surface structures for 3D microtissues cultured using both techniques appeared to be different and might be suitable for different applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10616-017-0168-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809678PMC
February 2018

In Vitro Growth of Human Keratinocytes and Oral Cancer Cells into Microtissues: An Aerosol-Based Microencapsulation Technique.

Bioengineering (Basel) 2017 May 14;4(2). Epub 2017 May 14.

School of Engineering, Design and Technology, Medical Engineering, University of Bradford, Bradford BD7 1DP, UK.

Cells encapsulation is a micro-technology widely applied in cell and tissue research, tissue transplantation, and regenerative medicine. In this paper, we proposed a growth of microtissue model for the human keratinocytes (HaCaT) cell line and an oral squamous cell carcinoma (OSCC) cell line (ORL-48) based on a simple aerosol microencapsulation technique. At an extrusion rate of 20 μL/min and air flow rate of 0.3 L/min programmed in the aerosol system, HaCaT and ORL-48 cells in alginate microcapsules were encapsulated in microcapsules with a diameter ranging from 200 to 300 μm. Both cell lines were successfully grown into microtissues in the microcapsules of alginate within 16 days of culture. The microtissues were characterized by using a live/dead cell viability assay, field emission-scanning electron microscopy (FE-SEM), fluorescence staining, and cell re-plating experiments. The microtissues of both cell types were viable after being extracted from the alginate membrane using alginate lyase. However, the microtissues of HaCaT and ORL-48 demonstrated differences in both nucleus size and morphology. The microtissues with re-associated cells in spheroids are potentially useful as a cell model for pharmacological studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/bioengineering4020043DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590479PMC
May 2017

Flicking technique for microencapsulation of cells in calcium alginate leading to the microtissue formation.

J Microencapsul 2016 15;33(2):162-71. Epub 2016 Feb 15.

a Faculty of Electrical and Electronic Engineering , MiNT-SRC Research Center, Universiti Tun Hussein Onn Malaysia , Batu Pahat , Johor , Malaysia ;

Microbeads have wide applications in biomedical engineering field that include drug delivery, encapsulation of biomolecules, tissue padding and tissue regeneration. In this paper, we report a simple, yet efficient, flicking technique to produce microcapsules of calcium alginate at a narrow distribution of size. The system consists of an infusion pump and a customised flicker that taps the syringe needle for dispersing microcapsules of sodium alginate that polymerised in the calcium chloride solution. The flow rate of the syringe pump and the velocity of the flicker were studied to achieve a well controlled and tunable size distribution of microbeads ranging from 200 to 400 μm. At a flow rate of 4 μl/min and flicking rate of 80 rpm, a narrow size distribution of microbeads were produced. Via this technique, HaCaT cells were encapsulated in calcium alginate microbeads that grown into microtissues with a size ranging from 100 to 300 μm after two weeks of culture. These microtissues could be potentially useful for pharmacological application.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3109/02652048.2016.1142017DOI Listing
December 2016

Tracking traction force changes of single cells on the liquid crystal surface.

Biosensors (Basel) 2015 Jan 5;5(1):13-24. Epub 2015 Jan 5.

School of Medical Sciences, University of Bradford, BD7 1DP Bradford, UK.

Cell migration is a key contributor to wound repair. This study presents findings indicating that the liquid crystal based cell traction force transducer (LCTFT) system can be used in conjunction with a bespoke cell traction force mapping (CTFM) software to monitor cell/surface traction forces from quiescent state in real time. In this study, time-lapse photo microscopy allowed cell induced deformations in liquid crystal coated substrates to be monitored and analyzed. The results indicated that the system could be used to monitor the generation of cell/surface forces in an initially quiescent cell, as it migrated over the culture substrate, via multiple points of contact between the cell and the surface. Future application of this system is the real-time assaying of the pharmacological effects of cytokines on the mechanics of cell migration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/bios5010013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384078PMC
January 2015

Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals.

Micron 2014 Jan 24;56:73-9. Epub 2013 Oct 24.

Biosensor and Bioengineering Laboratory, MiNT-SRC Research Center, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia; School of Medical Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom. Electronic address:

This study aimed at examining the biophysical characteristics of human derived keratinocytes (HaCaT) cultured on cholesteryl ester liquid crystals (CELC). CELC was previously shown to improve sensitivity in sensing cell contractions. Characteristics of the cell integrin expressions and presence of extracellular matrix (ECM) proteins on the liquid crystals were interrogated using various immunocytochemical techniques. The investigation was followed by characterization of the chemical properties of the liquid crystals (LC) after immersion in cell culture media using Fourier transform infrared spectroscopy (FTIR). The surface morphology of cells adhered to the LC was studied using atomic force microscopy (AFM). Consistent with the expressions of the integrins α2, α3 and β1, extracellular matrix proteins (laminin, collagen type IV and fibronectin) were found secreted by the HaCaT onto CELC and these proteins were also secreted by cells cultured on the glass substrates. FTIR analysis of the LC revealed the existence of spectrum assigned to cholesterol and ester moieties that are essential compounds for the metabolizing activities of keratinocytes. The immunostainings indicated that cell adhesion on the LC is mediated by self-secreted ECM proteins. As revealed by the AFM imaging, the constraint in cell membrane spread on the LC leads to the increase in cell surface roughness and thickness of cell membrane. The biophysical expressions of cells on biocompatible CELC suggested that CELC could be a new class of biological relevant material.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2013.10.011DOI Listing
January 2014

Interfacial study of cell adhesion to liquid crystals using widefield surface plasmon resonance microscopy.

Colloids Surf B Biointerfaces 2013 Oct 25;110:156-62. Epub 2013 Apr 25.

Biosensor and Bioengineering Laboratory, MiNT-SRC Research Center, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.

Widefield surface plasmon resonance (WSPR) microscopy provides high resolution imaging of interfacial interactions. We report the application of the WSPR imaging system in the study of the interaction between keratinocytes and liquid crystals (LC). Imaging of fixed keratinocytes cultured on gold coated surface plasmon substrates functionalized with a thin film of liquid crystals was performed in air using a 1.45NA objective based system. Focal adhesion of the cells adhered to glass and LC were further studied using immunofluorescence staining of the vinculin. The imaging system was also simulated with 2×2 scattering matrix to investigate the optical reflection of the resonant plasmonic wave via the glass/gold/cell and glass/gold/LC/cell layers. WSPR imaging indicated that keratinocytes are less spread and formed distinct topography of cell-liquid crystal couplings when cultured on liquid crystal coated substrates. The simulation indicates that glass/LC shifted the surface plasmon excitation angle to 75.39° as compared to glass/air interface at 44°. The WSPR microcopy reveals that the cells remodelled their topography of adhesion at different interfaces.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2013.04.012DOI Listing
October 2013
-->