Publications by authors named "Somchoke Traewachiwiphak"

2 Publications

  • Page 1 of 1

Three novel mutations in α-galactosidase gene involving in galactomannan degradation in endosperm of curd coconut.

Phytochemistry 2018 Dec 30;156:33-42. Epub 2018 Aug 30.

Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.

The deficiency of α-galactosidase activity in coconut endosperm has been reported to cause a disability to hydrolyze oligogalactomannan in endosperm resulting in curd coconut phenotype. However, neither the α-galactosidase encoding gene in coconut nor the mutation type has been identified and characterized in normal and curd coconuts. In this study, cDNA and genomic DNA encoding α-galactosidase gene alleles from a normal and two curd coconuts were successfully cloned and characterized. The deduced amino acid of wild type α-galactosidase contains 398 amino acid residues with a 17 N-terminal amino acids signal peptide sequence. Three mutant alleles, the first 19-amino acids from 67 to 85 (ADALVSTGLARLGYQYVNL) deletion with S137R and the second R216T, were identified from curd coconut plant no.1 while the third P250R was identified from curd coconut plant no. 10. All mutations of α-galactosidase gene were confirmed by the analysis of parental genomic DNA from normal and curd coconuts. Heterologous expression in Komagataella phaffii (Pichia pastoris) indicated that recombinant P250R, R216T and 19-amino acids deletion-S137R mutant proteins showed no α-galactosidase activity. Only the recombinant wild-type protein was able to detect for α-galactosidase activity. These results are in accordance with the no detection of α-galactosidase activity in developing curd coconut endosperms by tissue staining. While, the accumulation of enzyme activity was present in the solid endosperm of normal coconut. The full-length cDNA and parental genomic DNA sequences encoding α-galactosidase in normal coconut as well as identified curd coconut mutant alleles are reported in Genbank accession no. KJ957156 and KM001681-3. Transcription level of the α-galactosidase gene in mature curd coconut endosperm was at least 20 times higher than normal. In conclusion, absence of α-galactosidase activity caused by gene mutations associates with an accumulation of oligogalactomannan in endosperms, resulting in curd coconut phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2018.08.015DOI Listing
December 2018

Gene expression and promoter characterization of heat-shock protein 90B gene (HSP90B) in the model unicellular green alga Chlamydomonas reinhardtii.

Plant Sci 2018 Jul 17;272:107-116. Epub 2018 Apr 17.

Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand. Electronic address:

Molecular chaperones or heat shock proteins are a large protein family with important functions in every cellular organism. Among all types of the heat shock proteins, information on the ER-localized HSP90 protein (HSP90B) and its encoding gene is relatively scarce in the literature, especially in photosynthetic organisms. In this study, expression profiles as well as promoter sequence of the HSP90B gene were investigated in the model green alga Chlamydomonas reinhardtii. We have found that HSP90B is strongly induced by heat and ER stresses, while other short-term exposure to abiotic stresses, such as salinity, dark-to-light transition or light stress does not appear to affect the expression. Promoter truncation analysis as well as chromatin immunoprecipitation using the antibodies recognizing histone H3 and acetylated histone H3, revealed a putative core constitutive promoter sequence between -1 to -253 bp from the transcription start site. Our results also suggested that the nucleotides upstream of the core promoter may contain repressive elements such as putative repressor binding site(s).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2018.04.010DOI Listing
July 2018
-->