Publications by authors named "Skylar S Gay"

6 Publications

  • Page 1 of 1

Technical Note: Dose prediction for head and neck radiotherapy using a three-dimensional dense dilated U-net architecture.

Med Phys 2021 Jun 22. Epub 2021 Jun 22.

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Purpose: Radiation therapy treatment planning is a time-consuming and iterative manual process. Consequently, plan quality varies greatly between and within institutions. Artificial intelligence shows great promise in improving plan quality and reducing planning times. This technical note describes our participation in the American Association of Physicists in Medicine Open Knowledge-Based Planning Challenge (OpenKBP), a competition to accurately predict radiation therapy dose distributions.

Methods: A three-dimensional (3D) densely connected U-Net with dilated convolutions was developed to predict 3D dose distributions given contoured CT images of head and neck patients as input. While traditional augmentation techniques such as rotations and translations were explored, it was found that training on random patches alone resulted in the greatest model performance. A custom-weighted mean squared error loss function was employed. Finally, an ensemble of best-performing networks was used to generate the final challenge predictions.

Results: Our team (SuperPod) placed second in the dose stream of the OpenKBP challenge. The average mean absolute difference between the predicted and clinical dose distributions of the testing dataset was 2.56 Gy. On average, the predicted normalized target DVH metrics were within 3% of the clinical plans, and the predicted organ at risk DVH metrics were within 2 Gy of the clinical plans.

Conclusions: The developed 3D dense dilated U-Net architecture can accurately predict 3D radiotherapy dose distributions and can be used as part of a fully automated radiation therapy planning pipeline.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.14827DOI Listing
June 2021

Development and dosimetric assessment of an automatic dental artifact classification tool to guide artifact management techniques in a fully automated treatment planning workflow.

Comput Med Imaging Graph 2021 Jun 26;90:101907. Epub 2021 Mar 26.

The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, USA; The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, Houston, TX, USA.

Purpose: We conducted our study to develop a tool capable of automatically detecting dental artifacts in a CT scan on a slice-by-slice basis and to assess the dosimetric impact of implementing the tool into the Radiation Planning Assistant (RPA), a web-based platform designed to fully automate the radiation therapy treatment planning process.

Methods: We developed an automatic dental artifact identification tool and assessed the dosimetric impact of its use in the RPA. Three users manually annotated 83,676 head-and-neck (HN) CT slices (549 patients). Majority-voting was applied to the individual annotations to determine the presence or absence of dental artifacts. The patients were divided into train, cross-validation, and test data sets (ratio: 3:1:1, respectively). A random subset of images without dental artifacts was used to balance classes (1:1) in the training data set. The Inception-V3 deep learning model was trained with the binary cross-entropy loss function. With use of this model, we automatically identified artifacts on 15 RPA HN plans on a slice-by-slice basis and investigated three dental artifact management methods applied before and after volumetric modulated arc therapy (VMAT) plan optimization. The resulting dose distributions and target coverage were quantified.

Results: Per-slice accuracy, sensitivity, and specificity were 99 %, 91 %, and 99 %, respectively. The model identified all patients with artifacts. Small dosimetric differences in total plan dose were observed between the various density-override methods (±1 Gy). For the pre- and post-optimized plans, 90 % and 99 %, respectively, of dose comparisons resulted in normal structure dose differences of ±1 Gy. Differences in the volume of structures receiving 95 % of the prescribed dose (V95[%]) were ≤0.25 % for 100 % of plans.

Conclusion: The dosimetric impact of applying dental artifact management before and after artifact plan optimization was minor. Our results suggest that not accounting for dental artifacts in the current RPA workflow (where only post-optimization dental artifact management is possible) may result in minor dosimetric differences. If RPA users choose to override CT densities as a solution to managing dental artifacts, our results suggest segmenting the volume of the artifact and overriding its density to water is a safe option.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2021.101907DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8180493PMC
June 2021

Generating High-Quality Lymph Node Clinical Target Volumes for Head and Neck Cancer Radiation Therapy Using a Fully Automated Deep Learning-Based Approach.

Int J Radiat Oncol Biol Phys 2021 03 14;109(3):801-812. Epub 2020 Oct 14.

Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas.

Purpose: To develop a deep learning model that generates consistent, high-quality lymph node clinical target volumes (CTV) contours for head and neck cancer (HNC) patients, as an integral part of a fully automated radiation treatment planning workflow.

Methods And Materials: Computed tomography (CT) scans from 71 HNC patients were retrospectively collected and split into training (n = 51), cross-validation (n = 10), and test (n = 10) data sets. All had target volume delineations covering lymph node levels Ia through V (Ia-V), Ib through V (Ib-V), II through IV (II-IV), and retropharyngeal (RP) nodes, which were previously approved by a radiation oncologist specializing in HNC. Volumes of interest (VOIs) about nodal levels were automatically identified using computer vision techniques. The VOI (cropped CT image) and approved contours were used to train a U-Net autosegmentation model. Each lymph node level was trained independently, with model parameters optimized by assessing performance on the cross-validation data set. Once optimal model parameters were identified, overlap and distance metrics were calculated between ground truth and autosegmentations on the test set. Lastly, this final model was used on 32 additional patient scans (not included in original 71 cases) and autosegmentations visually rated by 3 radiation oncologists as being "clinically acceptable without requiring edits," "requiring minor edits," or "requiring major edits."

Results: When comparing ground truths to autosegmentations on the test data set, median Dice Similarity Coefficients were 0.90, 0.90, 0.89, and 0.81, and median mean surface distance values were 1.0 mm, 1.0 mm, 1.1 mm, and 1.3 mm for node levels Ia-V, Ib-V, II-IV, and RP nodes, respectively. Qualitative scoring varied among physicians. Overall, 99% of autosegmented target volumes were either scored as being clinically acceptable or requiring minor edits (ie, stylistic recommendations, <2 minutes).

Conclusions: We developed a fully automated artificial intelligence approach to autodelineate nodal CTVs for patients with intact HNC. Most autosegmentations were found to be clinically acceptable after qualitative review when considering recommended stylistic edits. This promising work automatically delineates nodal CTVs in a robust and consistent manner; this approach can be implemented in ongoing efforts for fully automated radiation treatment planning.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2020.10.005DOI Listing
March 2021

Dosimetric impact and detectability of multi-leaf collimator positioning errors on Varian Halcyon.

J Appl Clin Med Phys 2019 Aug 11;20(8):47-55. Epub 2019 Jul 11.

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

The purpose of this study is to investigate the dosimetric impact of multi-leaf collimator (MLC) positioning errors on a Varian Halcyon for both random and systematic errors, and to evaluate the effectiveness of portal dosimetry quality assurance in catching clinically significant changes caused by these errors. Both random and systematic errors were purposely added to 11 physician-approved head and neck volumetric modulated arc therapy (VMAT) treatment plans, yielding a total of 99 unique plans. Plans were then delivered on a preclinical Varian Halcyon linear accelerator and the fluence was captured by an opposed portal dosimeter. When comparing dose-volume histogram (DVH) values of plans with introduced MLC errors to known good plans, clinically significant changes to target structures quickly emerged for plans with systematic errors, while random errors caused less change. For both error types, the magnitude of clinically significant changes increased as error size increased. Portal dosimetry was able to detect all systematic errors, while random errors of ±5 mm or less were unlikely to be detected. Best detection of clinically significant errors, while minimizing false positives, was achieved by following the recommendations of AAPM TG-218. Furthermore, high- to moderate correlation was found between dose DVH metrics for normal tissues surrounding the target and portal dosimetry pass rates. Therefore, it may be concluded that portal dosimetry on the Halcyon is robust enough to detect errors in MLC positioning before they introduce clinically significant changes to VMAT treatment plans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acm2.12677DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698762PMC
August 2019

A snapshot of medical physics practice patterns.

J Appl Clin Med Phys 2018 Nov 1;19(6):306-315. Epub 2018 Oct 1.

Morton Plant Mease Health System, Clearwater, FL, USA.

A large number of surveys have been sent to the medical physics community addressing many clinical topics for which the medical physicist is, or may be, responsible. Each survey provides an insight into clinical practice relevant to the medical physics community. The goal of this study was to create a summary of these surveys giving a snapshot of clinical practice patterns. Surveys used in this study were created using SurveyMonkey and distributed between February 6, 2013 and January 2, 2018 via the MEDPHYS and MEDDOS listserv groups. The format of the surveys included questions that were multiple choice and free response. Surveys were included in this analysis if they met the following criteria: more than 20 responses, relevant to radiation therapy physics practice, not single-vendor specific, and formatted as multiple-choice questions (i.e., not exclusively free-text responses). Although the results of free response questions were not explicitly reported, they were carefully reviewed, and the responses were considered in the discussion of each topic. Two-hundred and fifty-two surveys were available, of which 139 passed the inclusion criteria. The mean number of questions per survey was 4. The mean number of respondents per survey was 63. Summaries were made for the following topics: simulation, treatment planning, electron treatments, linac commissioning and quality assurance, setup and treatment verification, IMRT and VMAT treatments, SRS/SBRT, breast treatments, prostate treatments, brachytherapy, TBI, facial lesion treatments, clinical workflow, and after-hours/emergent treatments. We have provided a coherent overview of medical physics practice according to surveys conducted over the last 5 yr, which will be instructive for medical physicists.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acm2.12464DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236839PMC
November 2018

Cost-effective immobilization for whole brain radiation therapy.

J Appl Clin Med Phys 2017 Jul 6;18(4):116-122. Epub 2017 Jun 6.

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

To investigate the inter- and intra-fraction motion associated with the use of a low-cost tape immobilization technique as an alternative to thermoplastic immobilization masks for whole-brain treatments. The results of this study may be of interest to clinical staff with severely limited resources (e.g., in low-income countries) and also when treating patients who cannot tolerate standard immobilization masks. Setup reproducibility of eight healthy volunteers was assessed for two different immobilization techniques. (a) One strip of tape was placed across the volunteer's forehead and attached to the sides of the treatment table. (b) A second strip was added to the first, under the chin, and secured to the table above the volunteer's head. After initial positioning, anterior and lateral photographs were acquired. Volunteers were positioned five times with each technique to allow calculation of inter-fraction reproducibility measurements. To estimate intra-fraction reproducibility, 5-minute anterior and lateral videos were taken for each technique per volunteer. An in-house software was used to analyze the photos and videos to assess setup reproducibility. The maximum intra-fraction displacement for all volunteers was 2.8 mm. Intra-fraction motion increased with time on table. The maximum inter-fraction range of positions for all volunteers was 5.4 mm. The magnitude of inter-fraction and intra-fraction motion found using the "1-strip" and "2-strip" tape immobilization techniques was comparable to motion restrictions provided by a thermoplastic mask for whole-brain radiotherapy. The results suggest that tape-based immobilization techniques represent an economical and useful alternative to the thermoplastic mask.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acm2.12101DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874864PMC
July 2017
-->