Publications by authors named "Sirinapa Thangsiri"

4 Publications

  • Page 1 of 1

Impact of Drying Processes on Phenolics and In Vitro Health-Related Activities of Indigenous Plants in Thailand.

Plants (Basel) 2022 Jan 22;11(3). Epub 2022 Jan 22.

Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand.

Thailand has vast areas of tropical forests with many indigenous plants, but limited information is available on their phytochemical profile and in vitro inhibitions of enzymatic and nonenzymatic reactions. This study investigated phenolic profiles using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), antioxidant activities, and in vitro inhibitory activities of 10 indigenous plants on key enzymes related to obesity (lipase), diabetes (α-amylase and α-glucosidase), and Alzheimer's disease (cholinesterases and β-secretase). The nonenzymatic anti-glycation reaction was also investigated. The 10 indigenous plants were (L.) Benth, (Burm.) Roscoe, Roxb., (Retz.) Swartz, Wall., Kurz., , L., Roxb, and J. Mood & T. Theleide. Preparations were made by either freeze-drying or oven-drying processes. Results suggested that the drying processes had a minor impact on in vitro inhibitions of enzymatic and nonenzymatic reactions (<4-fold difference). was the most potent antioxidant provider with high anti-glycation activity (>80% inhibition using the extract concentration of ≤6 mg/mL), while effectively inhibited β-secretase activity (>80% inhibition using the extract concentration of 10 mg/mL). exhibited the highest inhibitory activities against lipase (47-51% inhibition using the extract concentration of 1 mg/mL) and cholinesterases (>60% inhibition using the extract concentration of 2 mg/mL), while dominantly provided α-amylase and α-glucosidase inhibitors (>80% inhibition using the extract concentration of ≤2 mg/mL). Information obtained from this research may support usage of the oven-drying method due to its lower cost and easier preparation step for these studied plant species and plant parts. Furthermore, the information on in vitro inhibitions of enzymatic and nonenzymatic reactions could be used as fundamental knowledge for further investigations into other biological activities such as cell culture or in vivo experiments of these health-beneficial plants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/plants11030294DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838347PMC
January 2022

Influence of Plant Origins and Seasonal Variations on Nutritive Values, Phenolics and Antioxidant Activities of Craib., an Endangered Species from Thailand.

Foods 2021 Nov 14;10(11). Epub 2021 Nov 14.

Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand.

Craib. is an indigenous plant found in Thailand, Cambodia and Vietnam that has become threatened owing to lack of knowledge about its agricultural management. This plant is now rare in the wild and was registered in the Plant Genetic Conservation Project under the initiation of Her Royal Highness Princess Maha Chakri Sirindhorn (RSPG) to promote sustainable conservation and optimally beneficial utilization. has a long history of utilization as a nutrient-rich source with medicinal properties but scientific evidence of the veracity of these claims is limited. Here, the nutritional compositions, phenolic contents and antioxidant activities of different plant parts (young shoots and old leaves) of were investigated using plants collected from four areas of Thailand as Kamphaeng Phet (KP), Muang Nakhon Ratchasima (MN), Pakchong Nakhon Ratchasima (PN) and Uthai Thani (UT) at different harvesting periods (March-April, May-June and July-August). Results indicated that young shoots provided higher energy, protein, fat, dietary fiber, phosphorus, sodium, and zinc than old leaves. By contrast, nutrients such as total sugar, vitamin C, carotenoids, potassium, calcium, magnesium, and iron contents were higher in old leaves that also exhibited higher phenolic contents and most antioxidant activities than young shoots. Generally, most nutrients, phenolic contents, and antioxidant activities exhibited no clear trend among different plant origins. The harvesting period of July-August provided a suitable climate for biosynthesis of most nutrients, while high phenolics were mainly found in samples harvested in March-April. No clear trend was observed in the prevalence of antioxidant activities that varied according to assay techniques.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/foods10112799DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623237PMC
November 2021

The Effect of Sacred Lotus () and Its Mixtures on Phenolic Profiles, Antioxidant Activities, and Inhibitions of the Key Enzymes Relevant to Alzheimer's Disease.

Molecules 2020 Aug 14;25(16). Epub 2020 Aug 14.

Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand.

Sacred lotus () has long been used as a food source and ingredient for traditional herbal remedies. Plant parts contain neuroprotective agents that interact with specific targets to inhibit Alzheimer's disease (AD). Organic solvents including methanol, ethyl acetate, hexane, and -butanol, are widely employed for extraction of sacred lotus but impact food safety. Seed embryo, flower stalk, stamen, old leaf, petal, and leaf stalk of sacred lotus were extracted using hot water (aqueous extraction). The extractions were analyzed for their bioactive constituents, antioxidant and anti-AD properties as key enzyme inhibitory activities toward acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase 1 (BACE-1). Results showed that the sacred lotus stamen exhibited significant amounts of phenolics, including phenolic acids and flavonoids, that contributed to high antioxidant activity via both single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms, with anti-AChE, anti-BChE, and anti-BACE-1 activities. To enhance utilization of other sacred lotus parts, a combination of stamen, old leaf and petal as the three sacred lotus plant components with the highest phenolic contents, antioxidant activities, and enzyme inhibitory properties was analyzed. Antagonist interaction was observed, possibly from flavonoids-flavonoids interaction. Further in-depth elucidation of this issue is required. Findings demonstrated that an aqueous extract of the stamen has potential for application as a functional food to mitigate the onset of Alzheimer's disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules25163713DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463813PMC
August 2020

Comparison of Phytochemicals, Antioxidant, and In Vitro Anti-Alzheimer Properties of Twenty-Seven spp. Cultivated in Thailand.

Molecules 2020 Jun 3;25(11). Epub 2020 Jun 3.

Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. To fight the disease, natural products, including mulberry, with antioxidant activities and inhibitory activities against key enzymes (acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and beta-secretase 1 (BACE-1)) are of interest. However, even in the same cultivars, mulberry trees grown in different populated locations might possess disparate amounts of phytochemical profiles, leading to dissimilar health properties, which cause problems when comparing different cultivars of mulberry. Therefore, this study aimed to comparatively investigate the phytochemicals, antioxidant activities, and inhibitory activities against AChE, BChE, and BACE-1, of twenty-seven spp. cultivated in the same planting area in Thailand. The results suggested that fruit samples were rich in phenolics, especially cyanidin, kuromanin, and keracyanin. Besides, the aqueous fruit extracts exhibited antioxidant activities, both in single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms, while strong inhibitory activities against AD key enzymes were observed. Interestingly, among the twenty-seven spp., sp. code SKSM 810191 with high phytochemicals, antioxidant activities and in vitro anti-AD properties is a promising cultivar for further developed as a potential mulberry resource with health benefits against AD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules25112600DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321130PMC
June 2020
-->